Research Progress on Elements of Wild Edible Mushrooms
Abstract
:1. Introduction
2. Content and Physiological Functions of Four Essential Trace Elements of Wild Edible Mushrooms
2.1. Physiological Role of Iron and Content of Iron in Edible Mushrooms
2.2. Physiological Role of Copper and Content of Copper in Wild Edible Mushrooms
2.3. Physiological Role of Zinc and Content of Zinc in Wild Edible Mushrooms
2.4. Physiological Role of Manganese and Content of Manganese in Wild Edible Mushrooms
3. Physiological Functions and Content Physiological Functions of Four Heavy Elements of Wild Edible Mushrooms
3.1. Physiological Role of Cadmium and Content of Cadmium in Wild Edible Mushrooms
3.2. Physiological Role of Lead and Content of Lead in Wild Edible Mushrooms
3.3. Physiological Role of Mercury and Content of Mercury in Wild Edible Mushrooms
3.4. Physiological Role of Arsenic and Content of Arsenic in Wild Edible Mushrooms
4. Influencing Factors of Element Contents in Wild Edible Mushrooms
4.1. Influence of Human Factors on Mineral Elements of Wild Edible Mushrooms
4.2. Effect of Processing Methods on Mineral Element Content of Wild Edible Mushrooms
4.3. Effect of Species on Mineral Element Content of Wild Edible Mushrooms
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhang, Y.; Wang, D.; Chen, Y.; Liu, T.; Zhang, S.; Fan, H.; Liu, H.; Li, Y. Healthy function and high valued utilization of edible fungi. Food Sci. Hum. Wellness 2021, 10, 408–420. [Google Scholar] [CrossRef]
- Hawksworth, D.L. Mushrooms: The extent of the unexplored potential. Int. J. Med. Mushrooms 2001, 3, 82. [Google Scholar] [CrossRef]
- Hawksworth, D. Global species numbers of fungi: Are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers. Conserv. 2012, 21, 2425–2433. [Google Scholar] [CrossRef]
- Li, H.; Tian, Y.; Menolli, N., Jr.; Ye, L.; Karunarathna, S.C.; Perez-Moreno, J.; Rahman, M.M.; Rashid, M.H.; Phengsintham, P.; Rizal, L. Reviewing the world’s edible mushroom species: A new evidence-based classification system. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1982–2014. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Q.; Huang, C.; Gao, W.; Qu, J. History, current situation and trend of edible mushroom industry development. Mycosystema 2015, 34, 524–540. [Google Scholar]
- Kalac, P. Trace element contents in European species of wild growing edible mushrooms: A review for the period 2000–2009. Food Chem. 2010, 45, 2–15. [Google Scholar] [CrossRef]
- Šišák, L. The importance of mushroom picking as compared to forest berries in the Czech Republic. Mykol. Sborník 2007, 84, 78–83. [Google Scholar]
- Beluhan, S.; Ranogajec, A. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chem. 2011, 81, 1076–1082. [Google Scholar] [CrossRef]
- Niazi, A.R.; Ghafoor, A. Different ways to exploit mushrooms: A review. All Life 2021, 14, 450–460. [Google Scholar] [CrossRef]
- Team, D. The Surprising Protein Composition of Mushrooms. 2019. Available online: https://blog.designsforhealth.com/node/1101 (accessed on 16 March 2022).
- Alofe, F.; Odeyemi, O.; Oke, O. Three edible wild mushrooms from Nigeria: Their proximate and mineral composition. Plant Foods Hum. Nutr. 1996, 49, 63–73. [Google Scholar] [CrossRef]
- Chang, S.; Buswell, J.A. Development of the World Mushroom Industry: Applied Mushroom Biology and International Mushroom Organizations. Int. J. Med. Mushrooms 2008, 10, 195–208. [Google Scholar] [CrossRef]
- Morales, D.; Tabernero, M.; Largo, C.; Polo, G.; Piris, A.J.; Soler-Rivas, C. Effect of traditional and modern culinary processing, bioaccessibility, biosafety and bioavailability of eritadenine, a hypocholesterolemic compound from edible mushrooms. Food Funct. 2018, 9, 6360–6368. [Google Scholar] [CrossRef] [Green Version]
- Gil-Ramirez, A.; Smiderle, F.R.; Morales, D.; Govers, C.; Synytsya, A.; Wichers, H.J.; Iacomini, M.; Soler-Rivas, C. Water-soluble polysaccharide extracts from the oyster culinary-medicinal mushroom Pleurotus ostreatus (Agaricomycetes) with HMGCR inhibitory activity. Int. J. Med. Mushrooms 2017, 19, 879–892. [Google Scholar] [CrossRef]
- Xia, F.; Huang, W.; Wang, J.; Guan, W. An innovative development path for Yunnan’s edible mushroom industry to serve rural revitalisation. Rural Revital. 2021, 52, 82–84. [Google Scholar]
- Li, Q.; Wang, Y. Trace element Copper and human health. Stud. Trace Elem. Health 2007, 24, 61–63. [Google Scholar]
- Miao, J.; Gao, Q.; Xu, S. Trace Elements and Related Diseases; Henan Medical University Press: Zhengzhou, China, 1997. [Google Scholar]
- Sun, X.; Wu, T.; Li, L. Relationship Between Trace Elements of Zinc, Iron, Copper and Manganese and Common Diseases in the Elderly. Nutr. Health 2018, 18, 43–45. [Google Scholar]
- Marettová, E.; Maretta, M.; Legáth, J. Toxic effects of cadmium on testis of birds and mammals: A review. Anim. Reprod. Sci. 2015, 155, 1–10. [Google Scholar] [CrossRef]
- Mudgal, V.; Madaan, N.; Mudgal, A.; Singh, R.; Mishra, S. Effect of toxic metals on human health. Open Nutraceuticals J. 2010, 3, 94–99. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, Y.; Li, S.; Deng, M.; Yang, X.; Yang, Y.; Yao, Y. Research Progress on the Harm of Heavy Metals to Human Body in Aquatic Products. Agric. Technol. Equip. 2020, 370, 55–56. [Google Scholar]
- Byrne, A.R.; Ravnik, V.; Kosta, L. Trace element concentrations in higher fungi. Sci. Total Environ. 1976, 6, 65–78. [Google Scholar] [CrossRef]
- Severoglu, Z.; Sumer, S.; Yalcin, B.; Leblebici, Z.; Aksoy, A. Trace metal levels in edible wild fungi. Int. J. Environ. Sci. Technol. 2013, 10, 295–304. [Google Scholar] [CrossRef]
- Alonso, J.; García, M.; Pérez-López, M.; Melgar, M. The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch. Environ. Contam. Toxicol. 2003, 44, 180–188. [Google Scholar] [CrossRef]
- Işıloğlu, M.; Yılmaz, F.; Merdivan, M. Concentrations of trace elements in wild edible mushrooms. Food Chem. 2001, 73, 169–175. [Google Scholar] [CrossRef]
- Liu, B.; Huang, Q.; Cai, H.; Guo, X.; Wang, T.; Gui, M. Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem. 2015, 188, 294–300. [Google Scholar] [CrossRef]
- Alonso, J.; Salgado, M.; Garcia, M.; Melgar, M. Accumulation of mercury in edible macrofungi: Influence of some factors. Arch. Environ. Contam. Toxicol. 2000, 38, 158–162. [Google Scholar] [CrossRef]
- Benbrahim, M.; Denaix, L.; Thomas, A.-L.; Balet, J.; Carnus, J.-M. Metal concentrations in edible mushrooms following municipal sludge application on forest land. Environ. Pollut. 2006, 144, 847–854. [Google Scholar] [CrossRef]
- Fraga, C.G. Relevance, essentiality and toxicity of trace elements in human health. Mol. Asp. Med. 2005, 26, 235–244. [Google Scholar] [CrossRef]
- Mazurkiewicz, N.; Podlasińska, J. Bioaccumulation of trace elements in wild-growing edible mushrooms from Lubuskie voivodeship, Poland. Chem. Ecol. 2014, 30, 110–117. [Google Scholar] [CrossRef]
- Širić, I.; Humar, M.; Kasap, A.; Kos, I.; Mioč, B.; Pohleven, F. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms. Environ. Sci. Pollut. Res. 2016, 23, 18239–18252. [Google Scholar] [CrossRef]
- Gałgowska, M.; Pietrzak-Fiećko, R. Cadmium and Lead Content in Selected Fungi from Poland and Their Edible Safety Assessment. Molecules 2021, 26, 7289. [Google Scholar] [CrossRef]
- Kojta, A.K.; Zhang, J.; Wang, Y.; Li, T.; Saba, M.; Falandysz, J. Mercury contamination of fungi genus Xerocomus in the Yunnan Province in China and the region of Europe. J. Environ. Sci. Health Part A 2015, 50, 1342–1350. [Google Scholar] [CrossRef]
- Scrimshaw, N.S. Functional consequences of iron deficiency in human populations. J. Nutr. Sci. Vitaminol. 1984, 30, 47–63. [Google Scholar] [CrossRef]
- Tan, J.C.; Burns, D.L.; Jones, H.R. Severe ataxia, myelopathy, and peripheral neuropathy due to acquired copper deficiency in a patient with history of gastrectomy. J. Parenter. Enter. Nutr. 2006, 30, 446–450. [Google Scholar] [CrossRef]
- Danks, D. Copper deficiency in humans. Annu. Rev. Nutr. 1988, 8, 235–257. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc deficiency in women, infants and children. J. Am. Coll. Nutr. 1996, 15, 113–120. [Google Scholar] [CrossRef]
- Aggett, P.J.; Comerford, J.G. Zinc and human health. Nutr. Rev. 1995, 53, S16. [Google Scholar]
- Zhang, H.; Zhao, Y.; Yang, L.; Yang, H.; Zhang, L. Trace elements and human health. Occup. Health 2000, 16, 89–92. [Google Scholar]
- Wu, X.; Chao, C.; Sun, H.; Yu, M.; Yang, L. Trace element manganese in the content of Rhodiola genus and its relationship with human health. World Elem. Med. 2011, 18, 23–29. [Google Scholar]
- Du, L.; Song, K. Trace elements and human health. Nutr. Food China 2000, 5, 37–38. [Google Scholar]
- Dong, G. Correlation analysis of trace elements iron, zinc, iodine, selenium and fluoride and human health. China Mod. Med. 2013, 20, 183–184. [Google Scholar]
- Isildak, Ö.; Turkekul, I.; Elmastas, M.; Tuzen, M. Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chem. 2004, 86, 547–552. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Akata, I.; Guven, G.; Tepe, B. Metal concentration and health risk assessment of wild mushrooms collected from the Black Sea region of Turkey. Environ. Sci. Pollut. Res. 2020, 27, 26419–26441. [Google Scholar] [CrossRef] [PubMed]
- Ouzouni, P.K.; Petridis, D.; Koller, W.-D.; Riganakos, K.A. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem. 2009, 115, 1575–1580. [Google Scholar] [CrossRef]
- Kokkoris, V.; Massas, I.; Polemis, E.; Koutrotsios, G.; Zervakis, G.I. Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Sci. Total Environ. 2019, 685, 280–296. [Google Scholar] [CrossRef]
- Mitsakou, C.; Dimitroulopoulou, S.; Heaviside, C.; Katsouyanni, K.; Samoli, E.; Rodopoulou, S.; Costa, C.; Almendra, R.; Santana, P.; Dell’Olmo, M.M. Environmental public health risks in European metropolitan areas within the EURO-HEALTHY project. Sci. Total Environ. 2019, 658, 1630–1639. [Google Scholar] [CrossRef]
- Authority, E.F.S. Dietary Reference Values for Nutrients Summary Report; Wiley Online Library: Hoboken, NJ, USA, 2017. [Google Scholar]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary reference intakes. J. Am. Diet. Assoc. 2001, 101, 294. [Google Scholar] [CrossRef]
- National Health Commission of the People’s Republic of China. Chinese Dietary Reference Intakes—Part 3: Trace Element; WS/T 578.3—2017; National Health Commission of the People’s Republic of China: Beijing, China, 2017.
- Uauy, R.; Olivares, M.; Gonzalez, M. Essentiality of copper in humans. Am. J. Clin. Nutr. 1998, 67, 952S–959S. [Google Scholar] [CrossRef]
- Kodama, H.; Fujisawa, C. Copper metabolism and inherited coppertransport disorders: Molecular mechanisms, screening, and treatment. Metallomics 2009, 1, 42–52. [Google Scholar] [CrossRef]
- Mirończuk-Chodakowska, I.; Socha, K.; Zujko, M.E.; Terlikowska, K.M.; Borawska, M.H.; Witkowska, A.M. Copper, manganese, selenium and zinc in wild-growing edible mushrooms from the eastern territory of “Green Lungs of Poland”: Nutritional and toxicological implications. Int. J. Environ. Res. Public Health 2019, 16, 3614. [Google Scholar] [CrossRef]
- Keles, A.; Genccelep, H.; Demirel, K. Elemental composition of naturally growing wild edible mushroom. J. Nat. Prod. Plant Resour 2017, 7, 37–44. [Google Scholar]
- Sesli, E.; Tuzen, M.; Soylak, M. Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. J. Hazard. Mater. 2008, 160, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Kalač, P.; Svoboda, L. A review of trace element concentrations in edible mushrooms. Food Chem. 2000, 69, 273–281. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, G.; Wang, L. Assessment of potential human health risk of trace element in wild edible mushroom species collected from Yunnan Province, China. Environ. Sci. Pollut. Res. 2020, 27, 29218–29227. [Google Scholar] [CrossRef]
- Narin, I.; Bisgin, A.T.; Tuzen, M.; Mustafa, U.; Mendil, D.; Soylak, M. Determination and evaluation of Cu, Mn, Zn, Cd, Pb and Ni contents in wild-grown edible mushroom species from Cappadocia, Turkey. Cumhur. Sci. J. 2021, 42, 285–291. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, L.; He, Y. Trace Elements Iron, Manganese, Boron, Zinc, Copper, Molybdenum and Human Health. Fertil. Health 2020, 47, 12–17. [Google Scholar]
- Zhang, J.; Wang, H. Zinc Fertilizer Application and Human Zinc Nutrition Health. Fertil. Health 2020, 47, 11–16. [Google Scholar]
- Cakmak, I.; Kutman, U.Á. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- Cao, J.; He, C. The influence of zinc deficiency on human health. J. Mod. Med. Health 2014, 30, 1016–1019. [Google Scholar] [CrossRef]
- Mendil, D.; Uluözlü, Ö.D.; Hasdemir, E.; Çaǧlar, A. Determination of trace elements on some wild edible mushroom samples from Kastamonu, Turkey. Food Chem. 2004, 88, 281–285. [Google Scholar] [CrossRef]
- Gençcelep, H.; Uzun, Y.; Tunçtürk, Y.; Demirel, K. Determination of mineral contents of wild-grown edible mushrooms. Food Chem. 2009, 113, 1033–1036. [Google Scholar] [CrossRef]
- Ouzouni, P.K.; Veltsistas, P.G.; Paleologos, E.K.; Riganakos, K.A. Determination of metal content in wild edible mushroom species from regions of Greece. J. Food Compos. Anal. 2007, 20, 480–486. [Google Scholar] [CrossRef]
- Širić, I.; Kasap, A.; Kos, I.; Markota, T.; Tomić, D.; Poljak, M. Heavy metal contents and bioaccumulation potential of some wild edible mushrooms. Šumarski List 2016, 140, 29–37. [Google Scholar]
- Chowaniak, M.; Niemiec, M.; Paluch, Ł. Bioconcentration of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in Lactarius salmonicolor in the Western Carpathians. J. Elem. 2017, 22, 1537–1547. [Google Scholar]
- Świsłowski, P.; Rajfur, M. Mushrooms as biomonitors of heavy metals contamination in forest areas. Ecol. Chem. Eng. 2018, 25, 557–568. [Google Scholar] [CrossRef]
- Siwulski, M.; Budka, A.; Rzymski, P.; Mleczek, P.; Budzyńska, S.; Gąsecka, M.; Szostek, M.; Kalač, P.; Kuczyńska-Kippen, N.; Niedzielski, P. Multiannual monitoring (1974–2019) of rare earth elements in wild growing edible mushroom species in Polish forests. Chemosphere 2020, 257, 127173. [Google Scholar] [CrossRef]
- Bosch, A.; Fast, K.; Mattson, B. Mushrooms as Bioindicators of Heavy Metals in Sites Affected by Industrial Activity in the Macatawa Watershed; Hope College: Holland, MI, USA, 2017. [Google Scholar]
- Altıntığ, E.; Hişir, M.E.; Altundağ, H. Determination of Cr, Cu, Fe, Ni, Pb and Zn by ICP-OES in mushroom samples from Sakarya, Turkey. Sak. Üniversitesi Fen Bilimleri Enstitüsü Derg. 2017, 21, 496–504. [Google Scholar]
- Keles, A.; Genccelep, H. Determination of elemental composition of some wild growing edible mushrooms. Mantar Derg. 2020, 11, 129–137. [Google Scholar]
- Gezer, K.; Kaygusuz, O. An assessment of the heavy metal content of various wild edible mushrooms in the Denizli province, Turkey. J. Environ. Prot. Ecol. 2014, 15, 425. [Google Scholar]
- Ouzouni, P.; Riganakos, K. Nutritional value and metal content profile of Greek wild edible fungi. Acta Aliment. 2007, 36, 99–110. [Google Scholar] [CrossRef]
- Tel-Cayan, G.; Ullah, Z.; Ozturk, M.; Yabanli, M.; Aydin, F.; Duru, M.E. Heavy metals, trace and major elements in 16 wild mushroom species determined by ICP-MS. At. Spectrosc. 2018, 39, 29–37. [Google Scholar] [CrossRef]
- Li, Q.; Li, S.-H.; Huang, W.-L.; Liu, C.-Y.; Xiong, C.; Li, X.-L.; Zheng, L.-Y. Mineral constituents of a prized edible mushroom (Tricholoma matsutake) and soils beneath the fruiting bodies from the production areas across China. J. Mt. Sci. 2016, 13, 2046–2052. [Google Scholar] [CrossRef]
- Lodenius, M.; Kuusi, T.; Laaksovirta, K.; Liukkonen-Lilja, H.; Piepponen, S. Lead, cadmium and mercury contents of fungi in Mikkeli, SE Finland. In Annales Botanici Fennici; JSTOR: New York, NY, USA, 1981; pp. 183–186. [Google Scholar]
- Falandysz, J.; Chudzińska, M.; Barałkiewicz, D.; Saba, M.; Wang, Y.; Zhang, J. Occurrence, variability and associations of trace metallic elements and arsenic in sclerotia of medicinal Wolfiporia extensa from polymetallic soils in Yunnan, China. Acta Pol. Pharm. Drug Res. 2017, 74, 1379–1387. [Google Scholar]
- Nowakowski, P.; Markiewicz-Żukowska, R.; Soroczyńska, J.; Puścion-Jakubik, A.; Mielcarek, K.; Borawska, M.H.; Socha, K. Evaluation of toxic element content and health risk assessment of edible wild mushrooms. J. Food Compos. Anal. 2021, 96, 103698. [Google Scholar] [CrossRef]
- Hedberg, Y.S.; Lidén, C.; Wallinder, I.O. Correlation between bulk-and surface chemistry of Cr-tanned leather and the release of Cr (III) and Cr (VI). J. Hazard. Mater. 2014, 280, 654–661. [Google Scholar] [CrossRef]
- Shen, X.; Chi, Y.; Xiong, K. The effect of heavy metal contamination on humans and animals in the vicinity of a zinc smelting facility. PLoS ONE 2019, 14, e0207423. [Google Scholar] [CrossRef]
- Mohammadi, A.A.; Zarei, A.; Esmaeilzadeh, M.; Taghavi, M.; Yousefi, M.; Yousefi, Z.; Sedighi, F.; Javan, S. Assessment of heavy metal pollution and human health risks assessment in soils around an industrial zone in Neyshabur, Iran. Biol. Trace Elem. Res. 2020, 195, 343–352. [Google Scholar] [CrossRef]
- WHO/FAO. Expert committee on food additives, summary and conclusions. In Proceedings of the 53rd Meeting, Rome, Italy, 1–10 June 1999. [Google Scholar]
- Patra, R.; Rautray, A.K.; Swarup, D. Oxidative stress in lead and cadmium toxicity and its amelioration. Vet. Med. Int. 2011, 2011, 457327. [Google Scholar] [CrossRef]
- Barry, P. A comparison of concentrations of lead in human tissues. Occup. Environ. Med. 1975, 32, 119–139. [Google Scholar] [CrossRef]
- World Health Organization. Lead-Environmental Health Criteria 3; WHO: Geneva, Switzerland, 1977. [Google Scholar]
- Bhardwaj, J.K.; Panchal, H.; Saraf, P. Cadmium as a testicular toxicant: A Review. J. Appl. Toxicol. 2021, 41, 105–117. [Google Scholar] [CrossRef]
- Ashizawa, A.; Faroon, O.; Ingerman, L.; Jenkins, K.; Tucker, P.; Wright, S. Toxicological Profile for Cadmium; U.S. Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2012.
- Mocevic, E.; Specht, I.O.; Marott, J.L.; Giwercman, A.; Jönsson, B.A.; Toft, G.; Lundh, T.; Bonde, J.P. Environmental mercury exposure, semen quality and reproductive hormones in Greenlandic Inuit and European men: A cross-sectional study. Asian J. Androl. 2013, 15, 97. [Google Scholar] [CrossRef] [Green Version]
- Ilieva, I.; Sainova, I.; Yosifcheva, K. Toxic Effects of Heavy Metals (Mercury and Arsenic) on the Male Fertility. Acta Morphol. Et Anthropol. 2021, 28, 64–75. [Google Scholar]
- Booth, S.; Zeller, D. Mercury, food webs, and marine mammals: Implications of diet and climate change for human health. Environ. Health Perspect. 2005, 113, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic exposure and toxicology: A historical perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [PubMed]
- Das, H.; Mitra, A.K.; Sengupta, P.; Hossain, A.; Islam, F.; Rabbani, G. Arsenic concentrations in rice, vegetables, and fish in Bangladesh: A preliminary study. Environ. Int. 2004, 30, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.; Tran, H.C.; Nguyen, T.C.; Pham, H.V.; Schertenleib, R.; Giger, W. Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat. Environ. Sci. Technol. 2001, 35, 2621–2626. [Google Scholar] [CrossRef]
- Goering, P.; Waalkes, M.; Klaassen, C. Toxicology of cadmium. In Toxicology of Metals; Springer: Berlin/Heidelberg, Germany, 1995; pp. 189–214. [Google Scholar]
- Flanagan, P.R.; McLellan, J.S.; Haist, J.; Cherian, M.G.; Chamberlain, M.J.; Valberg, L.S. Increased dietary cadmium absorption in mice and human subjects with iron deficiency. Gastroenterology 1978, 74, 841–846. [Google Scholar] [CrossRef]
- Melgar, M.; Alonso, J.; Pérez-López, M.; Garcia, M. Influence of some factors in toxicity and accumulation of cadmium from edible wild macrofungi in NW Spain. J. Environ. Sci. Health Part B 1998, 33, 439–455. [Google Scholar] [CrossRef]
- Orywal, K.; Socha, K.; Nowakowski, P.; Zoń, W.; Kaczyński, P.; Mroczko, B.; Łozowicka, B.; Perkowski, M. Health risk assessment of exposure to toxic elements resulting from consumption of dried wild-grown mushrooms available for sale. PLoS ONE 2021, 16, e0252834. [Google Scholar] [CrossRef]
- Adamiak, E.A.; Kalembasa, S.; Kuziemska, B. Contents of heavy metals in selected species of edible mushrooms. Acta Agrophysica 2013, 20, 7–16. [Google Scholar]
- Ndimele, C.C.; Ndimele, P.E.; Chukwuka, K.S. Accumulation of heavy metals by wild mushrooms in Ibadan, Nigeria. J. Health Pollut. 2017, 7, 26–30. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, Q.; Su, Q.; Zhang, H.; Liu, X. Heavy metals contents and human health risks of typical wild edible mushrooms. Environ. Chem. 2021, 40, 223–231. [Google Scholar]
- Penghu, L.; Ruilian, L.; Hua, C.; Yixiang, W.; Boqi, W. Effects of Cd on edible fungi growth and Cd pollution prevention and control techniques in mushroom production. Ecol. Environ. 2019, 28, 419. [Google Scholar]
- Markovac, J.; Goldstein, G.W. Picomolar concentrations of lead stimulate brain protein kinase C. Nature 1988, 334, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2014, 19, 164. [Google Scholar]
- Zhu, F.; Qu, L.; Fan, W.; Qiao, M.; Hao, H.; Wang, X. Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environ. Monit. Assess. 2011, 179, 191–199. [Google Scholar] [CrossRef]
- Svoboda, L.; Havlíčková, B.; Kalač, P. Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chem. 2006, 96, 580–585. [Google Scholar] [CrossRef]
- Komárek, M.; Chrastný, V.; Štíchová, J. Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area. Environ. Int. 2007, 33, 677–684. [Google Scholar] [CrossRef]
- Ivanić, M.; Furdek Turk, M.; Tkalčec, Z.; Fiket, Ž.; Mešić, A. Distribution and Origin of Major, Trace and Rare Earth Elements in Wild Edible Mushrooms: Urban vs. Forest Areas. J. Fungi 2021, 7, 1068. [Google Scholar] [CrossRef]
- Mozaffarian, D. Fish, mercury, selenium and cardiovascular risk: Current evidence and unanswered questions. Int. J. Environ. Res. Public Health 2009, 6, 1894–1916. [Google Scholar] [CrossRef]
- Demková, L.; Árvay, J.; Hauptvogl, M.; Michalková, J.; Šnirc, M.; Harangozo, Ľ.; Bobuľská, L.; Bajčan, D.; Kunca, V. Mercury content in three edible wild-growing mushroom species from different environmentally loaded areas in Slovakia: An ecological and human health risk assessment. J. Fungi 2021, 7, 434. [Google Scholar] [CrossRef]
- Árvay, J.; Záhorcová, Z.; Tomáš, J.; Hauptvogl, M.; Stanovič, R.; Harangozo, L. Mercury in edible wild-grown mushrooms from historical mining area–Slovakia: Bioaccumulation and risk assessment. J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 1–4. [Google Scholar] [CrossRef]
- Vetter, J.; Berta, E. Mercury content of some wild edible mushrooms. Z. Für Lebensm. Und-Forsch. A 1997, 205, 316–320. [Google Scholar] [CrossRef]
- Árvay, J.; Tomáš, J.; Hauptvogl, M.; Kopernická, M.; Kováčik, A.; Bajčan, D.; Massányi, P. Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. J. Environ. Sci. Health Part B 2014, 49, 815–827. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.; Zhang, C.; Zeng, G.; Liu, Y.; Xu, W.; Wu, Y.; Lan, S. Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China. Chemosphere 2017, 170, 17–24. [Google Scholar] [CrossRef]
- Prakash, S.; Verma, A.K. Anomalies in biochemical constituents of kidney in Arsenic induced Mystus vittatus. Bull. Pure Appl. Sci. 2020, 39a, 189–193. [Google Scholar] [CrossRef]
- Prakash, S.; Verma, A.K. Effect of arsenic on lipid metabolism of a fresh water cat fish, Mystus vittatus. Liver 2019, 10, 30. [Google Scholar]
- Saha, J.; Dikshit, A.; Bandyopadhyay, M.; Saha, K. A review of arsenic poisoning and its effects on human health. Crit. Rev. Environ. Sci. Technol. 1999, 29, 281–313. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, H.; Li, S.-J.; Li, J.-Q.; Wang, Y.; Li, T. Arsenic in edible and medicinal mushrooms from Southwest China. Int. J. Med. Mushrooms 2015, 17, 601–605. [Google Scholar] [CrossRef]
- Vetter, J. Arsenic content of some edible mushroom species. Eur. Food Res. Technol. 2004, 219, 71–74. [Google Scholar] [CrossRef]
- Komık, M.; Afyon, A.; Yağız, D. Minor element and heavy metal contents of wild growing and edible mushrooms from Western Black Sea Region of Turkey. Fresenius Environ. Bull. 2007, 16, 1359–1362. [Google Scholar]
- Niedzielski, P.; Mleczek, M.; Magdziak, Z.; Siwulski, M.; Kozak, L. Selected arsenic species: As (III), As (V) and dimethylarsenic acid (DMAA) in Xerocomus badius fruiting bodies. Food Chem. 2013, 141, 3571–3577. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, S.; Gurgen, A.; Çevik, U. Accumulation of metals in some wild and cultivated mushroom species. Sigma J. Eng. Nat. Sci. 2019, 37, 1375–1384. [Google Scholar]
- Sun, J.; Zhang, J.; Zhao, Y.-L.; Wang, Y.-Z.; Li, W.-Y. Arsenic, cadmium and lead in sclerotia of Wolfiporia extensa of Yunnan, China. Food Addit. Contam. Part B 2016, 9, 106–112. [Google Scholar] [CrossRef]
- Šíma, J.; Vondruška, J.; Svoboda, L.; Šeda, M.; Rokos, L. The accumulation of risk and essential elements in edible mushrooms Chlorophyllum rhacodes, Suillus grevillei, Imleria badia, and Xerocomellus chrysenteron growing in the Czech Republic. Chem. Biodivers. 2019, 16, e1800478. [Google Scholar] [PubMed]
- Huang, S.; Liao, Q.; Hua, M.; Wu, X.; Bi, K.; Yan, C.; Chen, B.; Zhang, X. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere 2007, 67, 2148–2155. [Google Scholar] [CrossRef]
- Mleczek, M.; Magdziak, Z.; Gąsecka, M.; Niedzielski, P.; Kalač, P.; Siwulski, M.; Rzymski, P.; Zalicka, S.; Sobieralski, K. Content of selected elements and low-molecular-weight organic acids in fruiting bodies of edible mushroom Boletus badius (Fr.) Fr. from unpolluted and polluted areas. Environ. Sci. Pollut. Res. 2016, 23, 20609–20618. [Google Scholar] [CrossRef]
- Svoboda, L.; Zimmermannová, K.; Kalač, P. Concentrations of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emission area of a copper smelter and a mercury smelter. Sci. Total Environ. 2000, 246, 61–67. [Google Scholar] [CrossRef]
- Ziarati, P.; Rabizadeh, H. The Effect of Thermal and Non Thermal of Food Processes and Cooking Method in Some Essential Mineral Contents in Mushroom (Agaricus bisporus) in Iran. Appl. Sci. 2013, 2, 954–959. [Google Scholar]
- Ziarati, P.; Rabizadeh, H. Safety and nutritional comparison of fresh, cooked and frozen mushroom (Agaricus bisporus). Int. J. Farm. Alli. Sci. 2013, 2, 1141–1147. [Google Scholar]
- Lee, K.; Lee, H.; Choi, Y.; Kim, Y.; Jeong, H.S.; Lee, J. Effect of different cooking methods on the true retention of vitamins, minerals, and bioactive compounds in shiitake mushrooms (Lentinula edodes). Food Sci. Technol. Res. 2019, 25, 115–122. [Google Scholar] [CrossRef]
- Drewnowska, M.; Hanć, A.; Barałkiewicz, D.; Falandysz, J. Pickling of chanterelle Cantharellus cibarius mushrooms highly reduce cadmium contamination. Environ. Sci. Pollut. Res. 2017, 24, 21733–21738. [Google Scholar] [CrossRef] [PubMed]
- Vetter, J. Data on arsenic and cadmium contents of some common mushrooms. Toxicon 1994, 32, 11–15. [Google Scholar] [CrossRef]
- Dimitrijevic, M.V.; Mitic, V.D.; Cvetkovic, J.S.; Stankov Jovanovic, V.P.; Mutic, J.J.; Nikolic Mandic, S.D. Update on element content profiles in eleven wild edible mushrooms from family Boletaceae. Eur. Food Res. Technol. 2016, 242, 1–10. [Google Scholar] [CrossRef]
- Campos, J.A.; Tejera, N.A.; Sánchez, C.J. Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. Biometals 2009, 22, 835–841. [Google Scholar] [CrossRef]
- Mleczek, M.; Magdziak, Z.; Goliński, P.; Siwulski, M.; Stuper-Szablewska, K. Concentrations of minerals in selected edible mushroom species growing in Poland and their effect on human health. Acta Sci. Pol. Technol. Aliment. 2013, 12, 203–214. [Google Scholar]
- Çayır, A.; Coşkun, M.; Coşkun, M. The heavy metal content of wild edible mushroom samples collected in Canakkale Province, Turkey. Biol. Trace Elem. Res. 2010, 134, 212–219. [Google Scholar] [CrossRef] [PubMed]
Main Existing Position | Symptoms | Function | References | |
---|---|---|---|---|
Iron | Whole human body | Iron-deficiency anemia, liver development is blocked | An important component of human hemoglobin, myoglobin, and oxidase, which can solve symptoms such as iron deficiency anemia | [17,18,34] |
Copper | Liver, muscles, and bone | Anemia symptoms, osteoporosis | Helps hemoglobin absorb iron and promotes the growth and formation of bone and myelin sheath | [16,35,36] |
Zinc | Bone and skeletal muscle | Excessive zinc leads to nausea, vomiting, diarrhea, and fever, and deficiency of zinc affects growth, sexual maturity, and immune defense system | Essential component of a large number of zinc-dependent enzymes that facilitate the synthesis and degradation of lipids, proteins, and nucleic acids, among others | [37,38] |
Manganese | Brain, kidney, pancreas, and liver | Deficiency leads to skeletal deformities, and excess causes human dysfunction | Protects the cardiovascular and cerebrovascular systems of the elderly and affects the body’s antiaging ability | [18,39,40,41] |
Species | Methods | Countries | References |
---|---|---|---|
Agaricus bisporus, Polyporus squamosus, Pleurotus ostreatus, Armillaria mellea, Lepista nuda, Marasmius oreades, Boletus badius, Morchella esculenta, M. elata, M. vulgaris | AAS (atomic absorption spectroscopy) | Turkey | [43] |
Cyathus striatus, Inonotus hispidus, Otidea onotica, Schizophyllum commune, Trichaptum biforme, Tricholoma fracticum, Xylaria polymorpha, Helvella elastica, Inocybe rimosa, Paxillus involutus, Amanita caesarea, A. ceciliae, A. vaginata, Agrocybe praecox, Cantharellus cibarius, Craterellus cornucopioides, Chroogomphus rutilus, Daedalea quercina, Fistulina hepatica, Gymnopus dryophilus, Ganoderma lucidum, Helvella crispa, Hydnum repandum, Infundibulicybe gibba, Macrolepiota procera, Tapinella atrotomentosa | ICP-OES (inductively coupled plasma–optical emission spectrometry) | Turkey | [44] |
Cantharellus cibarius, Russula delica var chloroides, Ramaria largentii, Hygrophorus russula, Amanita caesarea, Fistulina hepatica, Boletus aureus, Armillaria tabescens, A. mellea, Lepista nuda | AAS | Greece | [45] |
Agaricus bisporus, A. bitorquis, A gennadii, Coprinus comatus, Psathyrella candolleana, Volvopluteus gloiocephalus | AAS | Greece | [46] |
Species | Methods | Countries | References |
---|---|---|---|
Agaricus bisporus, Armillaria mellea, Boletus edulis, B. subtomentosus, Cantharellus cibarius, Cortinarius caperatus, Imleria badia, Lactarius deliciosus, Leccinum rufum, L. scabrum, Lentinula edodes, Macrolepiota procera, Pleurotus ostreatus, Russula heterophylla, R. vinosa, Suillus bovinus, S. grevillei, S. luteus, Tricholoma equestre, T. portentosum, Xerocomellus chrysenteron | ICP-MS (inductively coupled plasma mass spectrometry) | Poland | [53] |
Morchella esculenta, Mitrophora semilibera, Agaricus bisporus, Lentinus strigosus, Coprinus comatus, Macrolepiota procera, Pleurotus eryngii, P. ostreatus, Lepista irina, L. nuda, L. personata, Agrocybe cylindracea, A. parecox, Pholiota aurivella, Volvariella bombycine, Leccinum scabrum, L. versipelle, Suillus luteus, Lactarius deliciosus, Russula delica | AAS | Turkey | [54] |
Calvatia excipuliformis, Lycoperdon perlatum, Infundibulicybe gibba, Armillaria mellea, Marasmius oreades, Xerula radicata, Cantharellus cibarius, C. tubaeformis, Craterellus cibarius, Hypholoma fasciculare, Infundibulicybe gibba, Collybia dryophila, Lepista nuda, Mycena aetites | GFAAS (graphite furnace atomic absorption spectrometry), AAS | Turkey | [55] |
Agaricus deliciosus, Boletus aereus, B. speciosus, Cantharellus cibarius, Catathelasma ventricosum, Dictyophora indusiata, Laccaria amethystea, Leccinum crocipodium, Lactarius crocatus, L. volemus, Polyporus ellisii, Russula aeruginea, R. alutacea, R. virescens, Ramaria botrytoides, Sarcodon imbricatum, Termitomyces albuminosus, Thelephora ganbajun, Tricholoma matsutake | ICP-OES | China | [57] |
Agaricus campestris, Agrocybe aegerita, A. dura, Armillaria mellea, Boletus edulis, B. luteus, Coprinus comatus, Lactarius piperatus, L. salmonicolor, L. volemus, Marasmius oreades, Panellus stipticus, Piptoporus betulinus, Pleurotus ostreatus, Rhizopogon luteolus, Russula delica | FAAS (flame atomic absorption spectrophotometry) | Turkey | [58] |
Species | Methods | Countries | References |
---|---|---|---|
Morchella vulgaris, M. esculenta, Helvella lacunosa, Agaricus campestris, A. urinascens, Coprinellus micaceus, Macrolepiota procera, Leucoagaricus nympharum, Boletus chrysenteron, Leccinum scabrum, Agrocybe dura, Cantharellus cibarius, Handkea utriformis, Lycoperdon perlatum, Vascellum pratense, Marasmius oreades, Pleurotus eryngii, P. ostreatus, Volvariella gloiocephala, Lentinus tigrinus, Polyporus squamosus, Psathyrella candolleana, Lactarius piperatus, Russula delica, Stropharia coronilla, Suillus granulatus, S. luteus, Infundibulicybe gibba, Lepista nuda, L. personata | AAS | Turkey | [64] |
Cantharellus cibarius, Hydnum repandum, Lactarius salmonicolor, Xerocomus chrysenteron, Agaricus cupreobrunneus, Amanita franchetii, Hygrophorus chrysodon, H. eburneus | AAS | Greece | [65] |
Agaricus campestris, Armillaria mellea, Boletus aestivalis, B. edulis, Clitocybe inversa, C. nebularis, Lactarius deterrimus, Macrolepiota procera, Tricholoma portentosum, T. terreum | XRF (X-ray fluorescence spec trometry) | Croatia | [66] |
Lactarius salmonicolor | AES (atomic emission spec troscopy) | Slovakia | [67] |
Agaricus bisporus, A. langei, Coprinus comatus, Hydnum repandum, Marasmius oreades, Armillaria ostoyae, Agrocybe praecox, Pleurotus eryngii, P. ostreatus, Cyclocybe cylindracea, Cantharellus cibarius, Clavulina cinerea, Leccinum scabrum, Suillus granulatus, S. luteus | AAS | Turkey | [72] |
Species | Methods | Countries | References |
---|---|---|---|
Clitocybe alexandri, C. flaccida, Lepista inversa, Volvariella speciosa, Lactarius sanguifluus, L. semisanguifluus | AAS | Turkey | [25] |
Morchella esculenta, Helvella leucopus, Pleurotus ostreatus, Lactarius deliciosus, Tricholoma terreum, Suillus luteus | ICP-OES | Turkey | [73] |
Boletus edulis, B. luridiformis, Suillus granulatus, Amanita rubescens, Macrolepiota procera, Pleurotus ostreatus, Lepista nuda, Volvariella gloiocephala | AAS | Greece | [74] |
Agaricus bisporus, A. bitorquis, A. essettei, Craterellus cornucopioides, Lepista nuda, Leucoagaricus leucothites, Ramaria flava | ICP-MS | Turkey | [75] |
Tricholoma matsutake | ICP-AES (inductively coupled plasma atomic emission spectrometry) | China | [76] |
Elements | Main Concentrated Parts | Major Harms | Primary Contact Pathway | Excretion | References |
---|---|---|---|---|---|
Lead | Bones | Reproductive system inj- ury, preterm delivery, miscarriage, infertility in women, abnormal prostate function in men | Air, water, food | Urine, feces | [84,85,86] |
Cadmium | Kidneys, liver, testes, etc. | The male reproductive function suffers damage, with some toxicity to the testes | Soil, food | Urine, feces | [19,87,88] |
Mercury | CNS (central nervous system), digestive system, and kidneys, among others | Blood mercury levels higher than 8 mg/L reduce sperm quality and fertility, and cause damage to the respiratory system, skin, blood, and eyes | Food, air | Urine, feces | [89,90,91] |
Arsenic | Liver, lung, kidneys, skin, etc. | Pulmonary disease, repro- ductive problems, vascular disease, gangrene. Preterm birth, miscarriage, stillbirth | Water, air, food, soil | Urine, feces | [90,92,93,94] |
Species | Methods | Countries | References |
---|---|---|---|
Agaricus campestris, A.macrosporus, Amanita rubescens, Boletus pinicola, B.badius, Cantharellus cibarius, Clitocybe nebularis, Coprinus comatus, Lactarius deliciosus, Lepista nuda, Macrolepiota procera, Russula cyanoxantha, Tricholoma portentosum | GFAAS | Spain | [97] |
Boletus edulis, Xerocomus badius | ICP-MS | Poland | [98] |
Chlorophyllum brunneum, Coprinus africanus, Pleurotus floridanus, Cantharellus cibarius, Cortinarius melliolens, Entoloma spp, Volvariella speciosa | An Alpha-4 Cathodeon atomic absorption spectrophotometer | Nigeria | [100] |
Boletus aereus, Collybia albuminosa, Cantharellus cibarius, Agaricus blazei, Catathelasma ventricosum, Cordyceps militaris, Grifola frondosa, Thelephora ganbajun | XRF | China | [101] |
Species | Methods | Countries | References |
---|---|---|---|
Agrocybe aegerita, Agaricus bisporus, Coprinus comatus, Collybia velutipes, Clitocybe conglobata, Hypsizygus marmoreus, Hericium erinaceus, Lentinus edodes, Lepista sordida, Pleurotus nebrodensis, P.eryngii, P.ostreatus, Russula albida, Volvariella volvacea | ICP-AES | China | [105] |
Cantharellus cibarius, Lepista nuda, Armillaria mellea, Collybia dryophila, Marasmius oreades, Amanita rubescens, Macrolepiota rhacodes, Agaricus silvaticus, Suillus bovinus, Leccinum scabrum, Xerocomus badius, X.chrysenteron, Lactarius piperatus, Russula cyanoxantha, Lycoperdon perlatum | AAS | Czech Republic | [106] |
Pleurotus dryinus, Infundibulicybe gibba, Lycoperdon excipuliforme, L.perlatum, Paralepista flaccida, Psathyrella multipedata, L.perlatum, P. piluliformis (forest), Macrolepiota procera, I.gibba, P.piluliformis (grassland), Coprinus comatus, Hymenopellis radicata, Leucoagaricus leucothites, Agrocybe cylindracea, Lactarius deterrimus, Lepista nuda, Cratherellus cornucopioides | HR-ICP-MS | Croatia | [108] |
Species | Methods | Countries | References |
---|---|---|---|
Boletus subtomentosus, Imleria badia, Xerocomellus chrysenteron | CVAAS (cold vapor atomic ab sorption spectroscopy) | Slovakia | [110] |
Boletus reticulatus, Macrolepiota procera, Russula xerampelina, Suillus grevillei, Xerocomellus chrysenteron | CVAAS | Slovakia | [111] |
Agaricus arvensis, A.esettei, A.campestris, A.haemorroidarius, A.silvaticus, Armillaria mellea, Clitocybe odora, Cratarellus cornucopioides, Fistulina hepatica, Hericium clathroides, Hirneola auricula, Hypholoma capnoides, Laccaria laccata, L.amethystina, Lactarius deliciosus, Lepista gilva, L.inversa, L.luscina, L.nebularis, L.nuda, Lycoperdon perlatum, Macrolepiota procera, M.rhacodes, M.mastoidea, Pleurotus ostreatus, P.pulmonarius, Suillus granulatus, S.grevillei, Stropharia aeruginosa, Tricholoma imbricatum, T.scalpturatum, T.terreum, Xerocomus chrysentheron, X.porosporus, X.subtomentosus | AAS | Hungary | [112] |
Boletus pulverulentus, Cantharellus cibarius, Lactarius quietus, Macrolepiota procera, Russula xerampelina, Suillus grevillei | FAAS/GFAAS | Slovakia | [113] |
Species | Methods | Countries | References |
---|---|---|---|
Albatrellus cristatus, Amanita caesarea, Amauroderma guangxiense, Auricularia auricula-judae, Boletus aereus, B.auripes, B.brunneissimus, B.edulis, B.ferrugineus, B.impolitus, B.magnificus, B.pallidus, B.satanas, B.speciosus, B.tomentipes, B.umbriniporus, Catathelasma ventricosum, Ganoderma capense, G.tsugae, G.philippii, Lactarius chichuensis, L.volemus, Leccinum rugosiceps, Lentinus edodes, Lepista nuda, Macrocybe gigantea, Osteina obducta, Pleurotus ostreatus, Ramaria formosa, R.rufescens, Retiboletus griseus, Russula pseudodelica, R.vinosa, R.violacea, R.virescens, Rigidoporus ulmarius, Sarcodon scabrosus, Scleroderma citrinum, Shiraia bambusicola, Sparassis crispa, Suillus pictus, Termitomyces globulus, Thelephora ganbajun, Tricholoma bakamatsutake, T.pessundatum, Wolfiporia extensa, Xerocomellus rubellus | AFS (atomic fluorescence spec trometry) | China | [118] |
Amanita caesarea, Cantharellus cibarius, Craterellus cornucopioides, Fistulina hepatica, Meripilus giganteus | ICP-MS | Turkey | [122] |
Wolfiporia extensa | ICP-MC | China | [123] |
Chlorophyllum rhacodes, Suillus grevillei, Imleria badia, Xerocomellus chrysenteron | — | Czech Republic | [124] |
Agaricus arvensis, A.augustus, A.campestris, A.esellei, A.langei, A.purpurellus, A.sylvaticus, A.sylvicola, Armillaria mellea, Calvatia excipuliformis, C.utriformis, Cantharellus cibarius, Clitocybe odora, Collybia butyracea, Craterellus cornucopioides, Fistulina hepatica, Hericium coralloides, Hirneola auricula, Hydnum repandum, Hypholoma capnoides, Laccaria amethysthea, L.laccata, Lactarius deliciosus, L.deterrimus, Langermannia gigantea, Lepista flaccida, L.nebularis, L.nuda, Lycoperdon perlatum, Macrolepiota procera, M.rhacodes, Pleurotus ostreatus, P.pulmonarius, Stropharia aeruginosa, Suillus granulatus, S.grevillei, Tricholoma terreum | ICP-MS | Hungary | [119] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, H.; Li, J.; Wang, Y. Research Progress on Elements of Wild Edible Mushrooms. J. Fungi 2022, 8, 964. https://doi.org/10.3390/jof8090964
Liu S, Liu H, Li J, Wang Y. Research Progress on Elements of Wild Edible Mushrooms. Journal of Fungi. 2022; 8(9):964. https://doi.org/10.3390/jof8090964
Chicago/Turabian StyleLiu, Shuai, Honggao Liu, Jieqing Li, and Yuanzhong Wang. 2022. "Research Progress on Elements of Wild Edible Mushrooms" Journal of Fungi 8, no. 9: 964. https://doi.org/10.3390/jof8090964
APA StyleLiu, S., Liu, H., Li, J., & Wang, Y. (2022). Research Progress on Elements of Wild Edible Mushrooms. Journal of Fungi, 8(9), 964. https://doi.org/10.3390/jof8090964