Substrate Optimization for Shiitake (Lentinula edodes (Berk.) Pegler) Mushroom Production in Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Culture Source and Spawn Preparation
2.3. Substrate Preparation
2.4. Determination of L. edodes Cultivation Parameters
2.5. Substrate Analyses
2.6. Statistical Analysis
3. Results
3.1. Substrate Lignocellulosic Content
3.2. Substrate Mineral Content
3.3. Spawn Run Times, Pinhead Formation, and Fructification
3.4. Cap Diameter and Stipe Length
3.5. Total Yield and Biological Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Economic Commission for Africa. The Demographic Profile of African Countries; United Nations Economic Commission for Africa: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- FAO. Regional Overview of Food Security and Nutrition in Africa. The Challenges of Building Resilience to Shocks and Stresses; Acra: Singapore, 2017. [Google Scholar]
- Dagne, G. Food Security in Ethiopia: Review. Int. J. Res. Stud. Agric. Sci. 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Fentahun, M.T.; Hager, H. Exploiting locally available resources for food and nutritional security enhancement: Wild fruits diversity, potential and state of exploitation in the Amhara region of Ethiopia. Food Secur. 2009, 1, 207–219. [Google Scholar] [CrossRef]
- Ayinu, Y.T.; Ayal, D.Y.; Zeleke, T.T.; Beketie, K.T. Impact of climate variability on household food security in Godere District, Gambella Region, Ethiopia. Clim. Serv. 2022, 27, 100307. [Google Scholar] [CrossRef]
- Narayanan, S. Food security from free collection of foods: Evidence from India. Food Policy 2021, 100, 101998. [Google Scholar] [CrossRef]
- Dejene, T.; Oria-de-Rueda, J.A.; Martín-Pinto, P. Edible wild mushrooms of Ethiopia: Neglected non-timber forest products. Rev. Fitotec. Mex. 2017, 40, 391–397. [Google Scholar] [CrossRef]
- Werghemmi, W.; Abou Fayssal, S.; Mazouz, H.; Hajjaj, H.; Hajji, L. Olive and green tea leaves extract in Pleurotus ostreatus var. florida culture media: Effect on mycelial linear growth rate, diameter and growth induction index. IOP Conf. Ser. Earth Environ. Sci. 2022, 1090, 012020. [Google Scholar] [CrossRef]
- Yehuala, K. Potentials and Constraints of Mushoom Production in Ethiopia a Paper Presented at the National Mushroom Conference; Addis Ababa University: Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Muleta, D.; Woyessa, D.; Teferi, Y. Mushroom consumption habits of Wacha Kebele residents, southwestern Ethiopia. Glob. Res. J. Agric. Biol. Sci. 2013, 4, 6–16. [Google Scholar]
- Ashrafuzzaman, M.; Kamruzzaman, A.K.; Razi, I.; Shahidullah, S. Comparative Studies on the growth and yield of Shiitake Mushroom (Lentinus edodes) on different substrates. Adv. Environ. Biol. 2009, 3, 195–203. [Google Scholar]
- Elbagory, M.; El-Nahrawy, S.; Omara, A.E.-D.; Eid, E.M.; Bachheti, A.; Kumar, P.; Abou Fayssal, S.; Adelodun, B.; Bachheti, R.K.; Kumar, P.; et al. Sustainable bioconversion of wetland plant biomass for Pleurotus ostreatus var. florida cultivation: Studies on proximate and biochemical characterization. Agriculture 2022, 12, 2095. [Google Scholar] [CrossRef]
- Royse, D.J.; Baars, J.; Tan, Q. Current overview of mushroom production in the world. In Edible and Medicinal Mushrooms; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 5–13. [Google Scholar]
- Abdullah, M.B.; Abed, I.A.; Alkobaisy, J.S. Effect of different substrates and supplement with three types of spawn on Letinula edodes parameters for first production in Iraq. IOP Conf. Ser. Earth Environ. Sci. 2022, 1060, 012060. [Google Scholar] [CrossRef]
- Erdoğan Eliuz, E.A. Antibacterial activity and antibacterial mechanism of ethanol extracts of Lentinula edodes (Shiitake) and Agaricus bisporus (button mushroom). Int. J. Environ. Health Res. 2022, 32, 1828–1841. [Google Scholar] [CrossRef]
- Assemie, A.; Abaya, G. The effect of edible mushroom on health and their biochemistry. Int. J. Microbiol. 2022, 2022, 8744788. [Google Scholar] [CrossRef]
- Garcia, J.; Afonso, A.; Fernandes, C.; Nunes, F.M.; Marques, G.; Saavedra, M.J. Comparative antioxidant and antimicrobial properties of Lentinula edodes Donko and Koshin varieties against priority multidrug-resistant pathogens. S. Afr. J. Chem. Eng. 2021, 35, 98–106. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, S.M.; Chun, J.; Lee, H.B.; Lee, J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem. 2006, 99, 381–387. [Google Scholar] [CrossRef]
- Raman, J.; Jang, K.-Y.; Oh, Y.-L.; Oh, M.; Im, J.-H.; Lakshmanan, H.; Sabaratnam, V. Cultivation and nutritional value of prominent Pleurotus spp.: An overview. Mycobiology 2021, 49, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kumla, J.; Suwannarach, N.; Sujarit, K.; Penkhrue, W.; Kakumyan, P.; Jatuwong, K.; Vadthanarat, S.; Lumyong, S. Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules 2020, 25, 2811. [Google Scholar] [CrossRef] [PubMed]
- Dulce, S.; Gerardo, M.; Luz, M.; Waliszewski, K. Cultivation of shiitake mushroom, Lentinula edodes, in several lignocellulosic materials originating from the subtropics. Agronomy 1999, 19, 13–19. [Google Scholar]
- Atila, F. Compositional changes in lignocellulosic content of some agro-wastes during the production cycle of shiitake mushroom. Sci. Hortic. 2019, 245, 263–268. [Google Scholar] [CrossRef]
- Ramkumar, L.; Thirunavukkarasu, P.; Ramanathan, T. Development of improved technology for commercial production and preservation of Shiitak mushroom (Lentinus edodes). Am. J. Agric. Environ. Sci. 2010, 7, 433–439. [Google Scholar]
- Ahmad Zakil, F.; Muhammad Hassan, K.H.; Mohd Sueb, M.S.; Isha, R. Growth and yield of Pleurotus ostreatus using sugarcane bagasse as an alternative substrate in Malaysia. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 022021. [Google Scholar] [CrossRef]
- Sidana, A.; Farooq, U. Sugarcane bagasse: A potential medium for fungal cultures. Chin. J. Biol. 2014, 5, 840505. [Google Scholar] [CrossRef] [Green Version]
- Sivagurunathan, P.; Sivasankari, S. Influence of chicken manure on biological efficiency of Pleurotus spp. Waste Biomass Valoriz. 2015, 6, 23–28. [Google Scholar] [CrossRef]
- Bellettini, M.B.; Fiorda, F.A.; Maieves, H.A.; Teixeira, G.L.; Ávila, S.; Hornung, P.S.; Júnior, A.M.; Ribani, R.H. Factors affecting mushroom Pleurotus spp. Saudi J. Biol. Sci. 2019, 26, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Beje, G.; Diriba, M.; Dawit, A. Evaluation of locally available substrates for cultivation of oyster mushroom (Pleurotus ostreatus) in Jimma, Ethiopia. Afr. J. Microbiol. Res. 2013, 7, 2228–2237. [Google Scholar] [CrossRef] [Green Version]
- Atila, F. Evaluation of Suitability of various agro-wastes for productivity of Pleurotus djamor, Pleurotus citrinopileatus and Pleurotus eryngii mushrooms. J. Exp. Agric. Int. 2017, 17, 1–11. [Google Scholar] [CrossRef]
- Gaitán-Hernández, R.; Esqueda, M.; Gutiérrez, A.; Beltrán-García, M. Quantitative changes in the biochemical composition of lignocellulosic residues during the vegetative growth of Lentinula edodes. Braz. J. Microbiol. 2011, 42, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.; Abudul Rauf, C.; Sheikh, M.I. Yield performance of oyster mushroom (Pleurotus ostreatus) on different substrates. Bangladesh J. Agric. Res. 2005, 38, 613–623. [Google Scholar] [CrossRef] [Green Version]
- Srigley, C.T.; Mossoba, M.M. Current analytical techniques for food lipids. In Food Safety; Wiley: New York, NY, USA, 2016; pp. 33–64. [Google Scholar]
- Drenovsky, R.; Vo, D.; Graham, K.; Scow, K. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 2004, 48, 424–430. [Google Scholar] [CrossRef]
- Dai, X.; Zhou, W.; Liu, G.; Liang, G.; He, P.; Liu, Z. Soil C/N and pH together as a comprehensive indicator for evaluating the effects of organic substitution management in subtropical paddy fields after application of high-quality amendments. Geoderma 2019, 337, 1116–1125. [Google Scholar] [CrossRef]
- Gao, S.; Huang, Z.; Feng, X.; Bian, Y.; Huang, W.; Liu, Y. Bioconversion of rice straw agro-residues by Lentinula edodes and evaluation of non-volatile taste compounds in mushrooms. Sci. Rep. 2020, 10, 1814. [Google Scholar] [CrossRef] [Green Version]
- Ferdinandi, P.; Godliving Yesusaa, S.M.; Anthony Manoni, M.; Amelia Kajumulo, K. Ligninolytic enzymes activities of Pleurotus sapidus P969 during vegetative growth and fruit development on sugarcane residues-based substrate. Int. J. Biotechnol. 2014, 3, 58–71. [Google Scholar]
- Tavarwisa, D.M.; Govera, C.; Mutetwa, M.; Ngezimana, W. Evaluating the suitability of baobab fruit shells as substrate for growing Oyster mushroom (Pleurotus ostreatus). Int. J. Agron. 2021, 2021, 6620686. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis; Wiley: New York, NY, USA, 2015; pp. 539–579. [Google Scholar]
- Kabbashi, N.A.; Mirghani, M.E.S.; Alam, M.Z.; Qudsieh, S.Y.; Bello, I.A. Characterization of the Baobab fruit shells as adsorption material. Int. Food Res. J. 2017, 24, 472–474. [Google Scholar]
- Ramezan, D.; Alizade Jahan Abadi, B.; Samzade Kermani, A.; Pirnia, M.; Farrokhzad, Y. Cultivation of Turkey tail mushroom (Trametes versicolor) on Lignocellulosic wastes and evaluation of substrate bioconversion. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2021, 91, 777–787. [Google Scholar] [CrossRef]
- Carrasco, J.; Zied, D.C.; Pardo, J.E.; Preston, G.M.; Pardo-Giménez, A. Supplementation in mushroom crops and its impact on yield and quality. AMB Express 2018, 8, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaya, M.; Cam, M. Eritadenine: Pressurized liquid extraction from Lentinula edodes and thermal degradation kinetics. Sustain. Chem. Pharm. 2022, 29, 100809. [Google Scholar] [CrossRef]
- Jo, W.-S.; Kang, M.-J.; Choi, S.-Y.; Yoo, Y.-B.; Seok, S.-J.; Jung, H.-Y. Culture conditions for mycelial growth of Coriolus versicolor. Mycobiology 2010, 38, 195. [Google Scholar] [CrossRef] [Green Version]
- Siwulski, M.; Rzymski, P.; Budka, A.; Kalač, P.; Budzyńska, S.; Dawidowicz, L.; Hajduk, E.; Kozak, L.; Budzulak, J.; Sobieralski, K.; et al. The effect of different substrates on the growth of six cultivated mushroom species and composition of macro and trace elements in their fruiting bodies. Eur. Food Res. Technol. 2019, 245, 419–431. [Google Scholar] [CrossRef] [Green Version]
- Hoa, H.T.; Wang, C.-L.; Wang, C.-H. The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 2015, 43, 423–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalaphallah, R.; Ameen, T.E.L.; EL-Rahmen, R.A.A.; Farrag, E.S. Effect of different agro-wastes substrates on the growth and productivity of the oyster mushroom in upper Egypt. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 24–32. [Google Scholar] [CrossRef]
- Ozcelik, E.; Peksen, A. Hazelnut husk as a substrate for the cultivation of shiitake mushroom (Lentinula edodes). Bioresour. Technol. 2007, 98, 2652–2658. [Google Scholar] [CrossRef] [PubMed]
- Holatko, J.; Hammerschmiedt, T.; Kintl, A.; Mustafa, A.; Naveed, M.; Baltazar, T.; Latal, O.; Skarpa, P.; Ryant, P.; Brtnicky, M. Co-composting of cattle manure with biochar and elemental sulphur and its effects on manure quality, plant biomass and microbiological characteristics of post-harvest soil. Front. Plant Sci. 2022, 13, 1004879. [Google Scholar] [CrossRef] [PubMed]
- Nahm, K.H. Evaluation of the nitrogen content in poultry manure. World’s Poult. Sci. J. 2003, 59, 77–88. [Google Scholar] [CrossRef]
- Grimm, D.; Wösten, H.A.B. Mushroom cultivation in the circular economy. Appl. Microbiol. Biotechnol. 2018, 102, 7795–7803. [Google Scholar] [CrossRef] [Green Version]
Substrate Code | Formulation |
---|---|
S1 | 100% sugarcane bagasse |
S2 | 80% sugarcane bagasse with 20% cow dung |
S3 | 80% sugarcane bagasse with 20% horse manure |
S4 | 80% sugarcane bagasse with 20% chicken manure |
S5 | 80% sugarcane bagasse with 20% cotton seed hulls |
S6 | 80% sugarcane bagasse with 20% sugarcane filter cake |
S7 | 80% sugarcane bagasse with 20% sugarcane trash |
Substrates 2 | Composition (% Dry Weight) | Mineral Elements (mg kg−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | N | C/N | Cellulose | Lignin | Hemicellulose | Mg | K | Ca | Zn | Fe | Na | |
S1 | 46.07 ± 0.21 c | 0.52 ± 0.01 g | 88.44 ± 1.72 a | 40.16 ± 0.55 b | 16.83 ± 0.05 e | 17.70 ± 0.00 b | 627.53 ± 0.05 b | 3591.20 ± 0.10 a | 1040.20 ± 0.10 a | 8.18 ± 0.00 b | 2010.20 ± 0.01 d | 1160.20 ± 0.10 d |
S2 | 40.57 ± 0.51 e | 1.28 ± 0.65 b | 31.61 ± 0.13 f | 30.03 ± 0.14 f | 26.64 ± 0.19 a | 12.88 ± 0.26 c | 2748.53 ± 0.05 f | 7125.53 ± 0.05 c | 14,107.53 ± 0.57 f | 34.09 ± 0.00 f | 1645.06 ± 0.05 c | 1560.30 ± 0.05 f |
S3 | 40.56 ± 0.05 e | 1.05 ± 0.13 e | 38.54 ± 0.20 e | 39.42 ± 0.05 c | 20.46 ± 0.05 b | 9.95 ± 0.24 d | 1683.75 ± 0.00 e | 8210.05 ± 0.05 f | 4230.06 ± 0.057 d | 19.09 ± 0.00 d | 2515.06 ± 0.05 e | 1330.03 ± 0.05 e |
S4 | 42.78 ± 0.67 d | 2.04 ± 0.87 a | 20.96 ± 0.04 g | 29.13 ± 0.01 g | 15.14 ± 0.27 f | 21.96 ± 6.05 a | 2858.75 ± 0.00 g | 11,408.06 ± 0.05 g | 3235.26 ± 0.15 c | 56.59 ± 0.00 g | 3590.06 ± 0.05 f | 2245.06 ± 0.06 g |
S5 | 49.48 ± 0.01 a | 0.61 ± 0.34 f | 80.72 ± 0.73 b | 37.45 ± 0.48 e | 26.64 ± 0.35 a | 12.88 ± 0.26 c | 873.73 ± 0.00 c | 7145.53 ± 0.05 d | 4940.13 ± 0.15 e | 12.84 ± 0.00 c | 1061.84 ± 0.01 a | 780.10 ± 0.10 a |
S6 | 40.56 ± 0.43 e | 0.84 ± 0.44 d | 48.00 ± 0.28 d | 40.78 ± 0.01 a | 19.73 ± 0.05 c | 13.15 ± 0.43 c | 1598.75 ± 0.00 d | 4370.53 ± 0.05 b | 15,857.56 ± 0.05 g | 29.10 ± 0.01 e | 4270.03 ± 0.05 g | 1125.06 ± 0.05 c |
S7 | 47.18 ± 0.19 b | 0.73 ± 0.18 e | 63.84 ± 0.09 c | 38.37 ± 0.01 d | 17.64 ± 0.18 d | 18.95 ± 0.08 ab | 622.75 ± 0.00 a | 7305.46 ± 0.05 e | 1660.10 ± 0.10 b | 6.32 ± 0.00 a | 1517.50 ± 0.10 b | 839.06 ± 0.05 b |
Substrate |
Spawn Run Time (Days) |
Pinhead Formation (Days) | Fructification (Days) | First Harvest (Days) | Cap Diameter (cm) | Stipe Length (cm) |
Total No. Fruiting Bodies |
---|---|---|---|---|---|---|---|
S1 | 35.66 ± 057 a | 43.66 ± 0.57 ab | 5.00 ± 1.45 a | 4.66 ± 0.57 a | 4.66 ± 0.57 c | 6.16 ± 0.28 d | 5.33 ± 0.57 d |
S2 | 28.66 ± 0.57 c | 42.66 ± 5.85 b | 3.33 ± 0.57 b | 4.33 ± 0.57 a | 12.33 ± 0.57 a | 7.70 ± 0.17 b | 11.33 ± 0.57 b |
S3 | 28.00 ± 1.34 cd | 39.00 ± 1.24 a | 4.00 ± 1.00 ab | 4.11 ± 1.00 a | 13.33 ± 0.57 a | 8.53 ± 0.05 a | 11.33 ± 0.57 b |
S4 | 26.33 ± 0.57 d | 36.00 ± 1.52 c | 3.66 ± 0.57 ab | 3.66 ± 0.05 a | 10.33 ± 0.57 b | 6.66 ± 0.57 c | 15.66 ± 0.28 a |
S5 | 33.00 ± 2.64 b | 40.00 ± 1.34 bc | 4.66 ± 0.57 ab | 4.33 ± 0.57 a | 5.56 ± 0.57 c | 6.53 ± 0.05 cd | 5.00 ± 1.60 d |
S6 | 31.66 ± 0.57 b | 44.33 ± 2.08 ab | 4.00 ± 1.00 ab | 4.13 ± 1.02 a | 10.00 ± 1.04 b | 8.53 ± 0.05 a | 7.66 ± 0.57 c |
S7 | 32.33 ± 0.57 b | 45.00 ± 1.16 a | 4.66 ± 0.57 ab | 4.66 ± 0.57 a | 4.66 ± 0.28 c | 5.56 ± 0.05 e | 5.33 ± 0.57 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desisa, B.; Muleta, D.; Dejene, T.; Jida, M.; Goshu, A.; Martin-Pinto, P. Substrate Optimization for Shiitake (Lentinula edodes (Berk.) Pegler) Mushroom Production in Ethiopia. J. Fungi 2023, 9, 811. https://doi.org/10.3390/jof9080811
Desisa B, Muleta D, Dejene T, Jida M, Goshu A, Martin-Pinto P. Substrate Optimization for Shiitake (Lentinula edodes (Berk.) Pegler) Mushroom Production in Ethiopia. Journal of Fungi. 2023; 9(8):811. https://doi.org/10.3390/jof9080811
Chicago/Turabian StyleDesisa, Buzayehu, Diriba Muleta, Tatek Dejene, Mulissa Jida, Abayneh Goshu, and Pablo Martin-Pinto. 2023. "Substrate Optimization for Shiitake (Lentinula edodes (Berk.) Pegler) Mushroom Production in Ethiopia" Journal of Fungi 9, no. 8: 811. https://doi.org/10.3390/jof9080811
APA StyleDesisa, B., Muleta, D., Dejene, T., Jida, M., Goshu, A., & Martin-Pinto, P. (2023). Substrate Optimization for Shiitake (Lentinula edodes (Berk.) Pegler) Mushroom Production in Ethiopia. Journal of Fungi, 9(8), 811. https://doi.org/10.3390/jof9080811