Sulfite Management during Vinification and Impact on the Flavor of Solaris Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Standards
2.2. Winemaking
2.3. SO2 Measurement
2.4. Analysis of Volatile Compounds
2.5. Sensory Analysis
2.5.1. Panel Training
2.5.2. Panel Wine Evaluation
2.6. Data Analysis
3. Results and Discussion
3.1. Acetaldehyde Production and Degradation during Wine Fermentation
3.2. Free SO2 Levels and Acetaldehyde Concentration during Wine Storage
3.3. Changes in Volatile Compounds during 3, 6, and 12 Months of Storage
3.4. Effect of SO2 Management on Volatile Compounds in Final Wines (12 Months of Storage)
3.5. Effect of SO2 Management on Sensory Properties in Final Wines (12 Months of Storage)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveira, C.M.; Ferreira, A.C.S.; De Freitas, V.; Silva, A.M.S. Oxidation mechanisms occurring in wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Jackson, R.S. Fermentation. In Wine Science, 5th ed.; Jackson, R.S., Ed.; Academic Press: San Diego, CA, USA, 2020; pp. 462–571. [Google Scholar] [CrossRef]
- Jackowetz, J.N.; Dierschke, S.; Mira de Orduña, R. Multifactorial analysis of acetaldehyde kinetics during alcoholic fermentation by Saccharomyces cerevisiae. Food Res. Int. 2011, 44, 310–316. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Effect of SO2 on the formation and evolution of volatile compounds in wines. Food Control 2007, 18, 1501–1506. [Google Scholar] [CrossRef]
- Ferreira, V.; Bueno, M.; Franco-Luesma, E.; Cullere, L.; Fernandez-Zurbano, P. Key changes in wine aroma active compounds during bottle storage of Spanish red wines under different oxygen levels. J. Agric. Food Chem. 2014, 62, 10015–10027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Petersen, M.; Liu, J.; Toldam-Andersen, T. Influence of pre-fermentation treatments on wine volatile and sensory profile of the new disease tolerant cultivar Solaris. Molecules 2015, 20, 19791. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Bredie, W.L.P.; Sherman, E.; Harbertson, J.F.; Heymann, H. Comparison of rapid descriptive sensory methodologies: Free-choice profiling, flash profile and modified flash profile. Food Res. Int. 2018, 106, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Brajkovich, M.; Tibbits, N.; Peron, G.; Lund, C.M.; Dykes, S.I.; Kilmartin, P.A.; Nicolau, L. Effect of screwcap and cork closures on SO2 levels and aromas in a Sauvignon Blanc wine. J. Agric. Food Chem. 2005, 53, 10006–10011. [Google Scholar] [CrossRef] [PubMed]
- Price, E.J.; Linforth, R.S.T.; Dodd, C.E.R.; Phillips, C.A.; Hewson, L.; Hort, J.; Gkatzionis, K. Study of the influence of yeast inoculum concentration (Yarrowia lipolytica and Kluyveromyces lactis) on blue cheese aroma development using microbiological models. Food Chem. 2014, 145, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Toldam-Andersen, T.B.; Petersen, M.A.; Zhang, S.; Arneborg, N.; Bredie, W.L.P. Instrumental and sensory characterisation of Solaris white wines in Denmark. Food Chem. 2015, 166, 133–142. [Google Scholar] [CrossRef]
- Henderson, P. Sulphur dioxide. The science behind this anti-microbial, anti-oxidant wine additive. J. Pract. Winery Vineyard 2014, 1, 54–60. [Google Scholar]
- Tanner, H.; Sandoz, M. Bestimmung der freien SO2 neben Askorbinsäure und anderen Reduktonen unter Zuhilfenahme von Glyoxal. Schweiz. Z. Obs.-Weinbau 1972, 108, 331–337. [Google Scholar]
- Zhang, S.; Petersen, M.A. Comparison of headspace methods for detecting highly volatile compounds in wine. In 14th Weurman Symposium; Taylor, A., Mottram, D., Eds.; Context Products Ltd.: Cambridge, UK, 2015; pp. 579–582. [Google Scholar]
- Munoz, A.M.; Civille, G.V.; Carr, B.T. Sensory Evaluation in Quality Control; Springer: New York, NY, USA, 1992. [Google Scholar]
- Costell, E. A comparison of sensory methods in quality control. Food Qual. Prefer. 2002, 13, 341–353. [Google Scholar] [CrossRef]
- Bakker, B.M.; Bro, C.; Kotter, P.; Luttik, M.A.H.; van Dijken, J.P.; Pronk, J.T. The mitochondrial alcohol dehydrogenase adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J. Bacteriol. 2000, 182, 4730–4737. [Google Scholar] [CrossRef] [PubMed]
- Berlowska, J.; Kregiel, D.; Ambroziak, W. Pyruvate decarboxylase activity assay in situ of different industrial yeast strains. Food Technol. Biotechnol. 2009, 47, 96–100. [Google Scholar]
- Smith, C. Review of basics on sulfur dioxide—Part I. In Enology Briefs; University of California: Davis, CA, USA, 1982; pp. 1–4. [Google Scholar]
- Danilewicz, J.C. Review of reaction mechanisms of oxygen and proposed intermediate reduction products in wine: Central role of iron and copper. Am. J. Enol. Vitic. 2003, 54, 73–85. [Google Scholar] [CrossRef]
- Bueno, M.; Marrufo-Curtido, A.; Carrascón, V.; Fernández-Zurbano, P.; Escudero, A.; Ferreira, V. Formation and accumulation of acetaldehyde and strecker aldehydes during red wine oxidation. Front. Chem. 2018, 14, 6–20. [Google Scholar] [CrossRef]
- Lee, D.F.; Swinny, E.E.; Jones, G.P. NMR identification of ethyl-linked anthocyanin-flavanol pigments formed in model wine ferments. Tetrahedron Lett. 2004, 45, 1671–1674. [Google Scholar] [CrossRef]
- Rivasgonzalo, J.C.; Bravoharo, S.; Santosbuelga, C. Detection of compounds formed through the reaction of malvidin 3-Mmonoglucoside and catechin in the presence of acetaldehyde. J. Agric. Food Chem. 1995, 43, 1444–1449. [Google Scholar] [CrossRef]
- Peppard, T.L.; Halsey, S.A. The occurrence of 2 geometrical-Iisomers of 2,4,5-Trimethyl-1,3-Dioxolane in beer. J. Inst. Brew. 1982, 88, 309–312. [Google Scholar] [CrossRef]
- Zhang, D.; Wie, Z.; Han, Y.; Duan, Y.; Shi, B.; Ma, W. A Review on Wine Flavour Profiles Altered by Bottle Aging. Molecules 2023, 28, 6522. [Google Scholar] [CrossRef]
- Chisholm, M.G.; Guiher, L.A.; Zaczkiewicz, S.M. Aroma characteristics of aged Vidal Blanc wine. Am. J. Enol. Vitic. 1995, 46, 56–62. [Google Scholar] [CrossRef]
- Zoecklein, B.W.; Hackney, C.H.; Duncan, S.E.; Marcy, J.E. Effect of fermentation, aging and thermal storage on total glycosides, phenol-free glycosides and volatile compounds of White Riesling (Vitis vinifera L.) wines. J. Ind. Microb. Biotechnol. 1999, 22, 100–107. [Google Scholar] [CrossRef]
- Wilson, B.; Strauss, C.R.; Williams, P.J. Changes in free and glycosidically bound monoterpenes in developing Muscat grapes. J. Agric. Food Chem. 1984, 32, 919–924. [Google Scholar] [CrossRef]
- Escudero, A.; Cacho, J.; Ferreira, V. Isolation and identification of odorants generated in wine during its oxidation: A gas chromatography-olfactometric study. Eur. Food Res. Technol. 2000, 211, 105–110. [Google Scholar] [CrossRef]
- Escudero, A.; Asensio, E.; Cacho, J.; Ferreira, V. Sensory and chemical changes of young white wines stored under oxygen. An assessment of the role played by aldehydes and some other important odorants. Food Chem. 2002, 77, 325–331. [Google Scholar] [CrossRef]
- Zea, L.; Moyano, L.; Moreno, J.A.; Medina, M. Aroma series as fingerprints for biological ageing in fino sherry-type wines. J. Sci. Food Agric. 2007, 87, 2319–2326. [Google Scholar] [CrossRef]
- Vanderhaegen, B.; Neven, H.; Verachtert, H.; Derdelinckx, G. The chemistry of beer aging—A critical review. Food Chem. 2006, 95, 357–381. [Google Scholar] [CrossRef]
- Etiévant, P.X. Wine. In Volatile Compounds in Foods and Beverages; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 483–546. [Google Scholar] [CrossRef]
- Guth, H. Comparison of different white wine varieties in odor profiles by instrumental analysis and sensory studies. Abstr. Pap. Am. Chem. Soc. 1997, 213, 3027–3032. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Buttery, R.G.; Turnbaugh, J.G.; Benson, M. Odor Thresholds of various branched esters. LWT-Food Sci. Technol. 1995, 28, 153–156. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Buttery, R.G.; Teranishi, R.; Flath, R.A.; Guntert, M. Identification of additional pineapple volatiles. J. Agric. Food Chem. 1991, 39, 1848–1851. [Google Scholar] [CrossRef]
- Ahmed, E.M.; Dennison, R.A.; Dougherty, R.H.; Shaw, P.E. Flavor and odor thresholds in water of selected orange juice components. J. Agric. Food Chem. 1978, 26, 187–191. [Google Scholar] [CrossRef]
- Gómez-Míguez, M.J.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile components of Zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- Tao, Y.S.; Zhang, L. Intensity prediction of typical aroma characters of cabernet sauvignon wine in Changli County (China). LWT-Food Sci. Technol. 2010, 43, 1550–1556. [Google Scholar] [CrossRef]
- Pino, J.A.; Queris, O. Analysis of volatile compounds of mango wine. Food Chem. 2011, 125, 1141–1146. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem. 2004, 84, 585–590. [Google Scholar] [CrossRef]
- Franco, M.; Peinado, R.A.; Medina, M.; Moreno, J. Off-vine grape drying effect on volatile compounds and aromatic series in must from Pedro Ximenez grape variety. J. Agric. Food Chem. 2004, 52, 3905–3910. [Google Scholar] [CrossRef] [PubMed]
- Cullere, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Moyano, L.; Zea, L.; Moreno, J.; Medina, M. Analytical study of aromatic series in sherry wines subjected to biological aging. J. Agric. Food Chem. 2002, 50, 7356–7361. [Google Scholar] [CrossRef]
- Ferreira, A.C.S.; de Pinho, P.G.; Rodrigues, P.; Hogg, T. Kinetics of oxidative degradation of white wines and how they are affected by selected technological parameters. J. Agric. Food Chem. 2002, 50, 5919–5924. [Google Scholar] [CrossRef]
- Coetzee, C.; Buica, A.; du Toit, W.J. The use of SO2 to bind acetaldehyde in wine: Sensory Implications. Afr. J. Enol. Vitic. 2018, 39. [Google Scholar] [CrossRef]
- Vanderhaegen, B.; Neven, H.; Coghe, S.; Verstrepen, K.J.; Verachtert, H.; Derdelinckx, G. Evolution of chemical and sensory properties during aging of top-fermented beer. J. Agric. Food Chem. 2003, 51, 6782–6790. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Ortin, N.; Escudero, A.; Lopez, R.; Cacho, J. Chemical characterization of the aroma of Grenache rose wines: Aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. J. Agric. Food Chem. 2002, 50, 4048–4054. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.A.; Elsey, G.M.; Capone, D.L.; Perkins, M.V.; Sefton, M.A. Fate of damascenone in Wine: The role of SO2. J. Agric. Food Chem. 2004, 52, 8127–8131. [Google Scholar] [CrossRef]
- Ferreira, A.C.S.; Hogg, T.; de Pinho, P.G. Identification of key odorants related to the typical aroma of oxidation-spoiled white wines. J. Agric. Food Chem. 2003, 51, 1377–1381. [Google Scholar] [CrossRef]
Compounds | 3 Months | 6 Months | 12 Months | p-Value |
---|---|---|---|---|
Propyl acetate | 226 | 200 | 87 | <0.001 |
2-Methylpropyl acetate | 83 | 63 | 20 | <0.001 |
Butyl acetate | 13.0 | 7.1 | 2.3 | <0.001 |
Hexyl acetate | 760 | 627 | 149 | <0.001 |
Phenethyl acetate | 1270 | 446 | 185 | <0.001 |
Ethyl 2-methylbutyrate | 0.9 | 4.3 | 6.2 | <0.001 |
Ethyl 3-methylbutyrate | 3.9 | 17.1 | 21.6 | <0.001 |
Ethyl pyruvate | 97 | 231 | 362 | <0.001 |
Methyl octanoate | 1.8 | 2.3 | 3.9 | <0.001 |
Ethyl 9-decenoate | 8.0 | 26.0 | 46.7 | <0.001 |
Diethyl succinate | 208 | 2400 | 7750 | <0.001 |
(E)-2-Hexen-1-ol | 2.3 | 5.7 | 13.5 | <0.001 |
(Z)-2-Hexen-1-ol | 10.8 | 13.6 | 17.0 | <0.001 |
1-Heptanol | 10.6 | 23.6 | 39.1 | <0.001 |
1-Octanol | 3.8 | 5.5 | 7.7 | <0.001 |
Linalool | 69 | 92 | 129 | <0.001 |
Hotrienol | 45 | 59 | 84 | <0.001 |
Furfural | 4.3 | 13.2 | 53.7 | <0.001 |
Neroloxide | 11.2 | 32.7 | 49.0 | <0.001 |
Vitispirane | 1.7 | 11.1 | 13.0 | <0.001 |
2,4,5-Trimethyl-1,3-dioxolane | 0.0 | 690 | 910 | <0.001 |
Compounds | Odor Threshold 1 | Calculated LRI 2 | Standard LRI 3 | Odor Description 4 | Concentrations of Wines | Sig. | Log OAV 5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Low SO2 | High SO2 | No SO2 | SO2 in Juice | Control | Low SO2 | High SO2 | No SO2 | SO2 in Juice | ||||||
Esters | |||||||||||||||
Ethyl propanoate | 1800 (1) | 971 | 962 | Fruit | 360 | 340 | 330 | 330 | 340 | ns | −0.7 | −0.7 | −0.7 | −0.7 | −0.7 |
Ethyl 2-methylpropanoate | 15 (2) | 969 | 969 | Sweet, rubber | 51 | 50 | 51 | 46 | 48 | ns | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Ethyl butanoate | 20 (2) | 1038 | 1040 | Apple | 320 | 290 | 310 | 290 | 310 | ns | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 |
Ethyl 2-methylbutyrate | 1 (2) | 1053 | 1058 | Apple | 7.1 a | 5.8 b | 6.4 ab | 5.4 b | 6.4 ab | * | 0.9 | 0.8 | 0.8 | 0.7 | 0.8 |
Ethyl 3-methylbutyrate | 3 (2) | 1072 | 1079 | Fruit | 24 a | 19 b | 21 ab | 19 b | 24 a | * | 0.9 | 0.8 | 0.8 | 0.8 | 0.9 |
Ethyl pentanoate | 94 (3) | 1153 | 1150 | Yeast, fruit | 0.89 | 0.73 | 0.79 | 0.68 | 0.70 | ns | −2.0 | −2.1 | −2.1 | −2.1 | −2.1 |
Ethyl 2-butenoate | - | 1178 | 1174 | - | 6.9 | 6.8 | 7.5 | 6.7 | 7.1 | ns | |||||
Ethyl hexanoate | 5 (2) | 1263 | 1255 | Apple peel, fruit | 940 | 880 | 900 | 850 | 880 | ns | 2.3 | 2.2 | 2.3 | 2.2 | 2.2 |
Ethyl pyruvate | 100,000 (4) | 1284 | 1286 | Ethereal, fruity, sweet, vegetable, caramel | 170 cd | 200 c | 110 d | 790 a | 540 b | *** | −2.8 | −2.7 | −3.0 | −2.1 | −2.3 |
Ethyl (E)-3-hexenoate | - | 1327 | 1327 | Pineapple, fruity | 0.32 a | 0.28 ab | 0.24 bc | 0.23 bc | 0.22 c | ** | |||||
Ethyl heptanoate | 220 (1) | 1354 | 1351 | Fruit | 1.1 a | 0.91 ab | 0.80 b | 0.76 b | 0.54 c | *** | −2.3 | −2.4 | −2.4 | −2.5 | −2.6 |
Ethyl lactate | 157,360 (1) | 1353 | 1353 | Fruit | 96 c | 100 bc | 110 ab | 97 bc | 110 a | * | −3.2 | −3.2 | −3.2 | −3.2 | −3.2 |
Ethyl octanoate | 14 (5) | 1447 | 1450 | Fruit, fat | 2200 | 2060 | 2100 | 2000 | 2100 | ns | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 |
Ethyl nonanoate | 377 (6) | 1548 | 1553 | Fruity, rose, waxy, Tropical | 2.8 | 2.0 | 2.3 | 1.8 | 2.4 | ns | −2.1 | −2.3 | −2.2 | −2.3 | −2.2 |
Ethyl furoate | 16,000 (7) | 1641 | - | - | 17 b | 15 b | 10 c | 23 a | 22 a | *** | −3.0 | −3.0 | −3.2 | −2.8 | −2.9 |
Ethyl decanoate | 200 (7) | 1649 | 1651 | Grape | 930 | 870 | 880 | 830 | 890 | ns | 0.7 | 0.6 | 0.6 | 0.6 | 0.6 |
Diethyl succinate | 200,000 (1) | 1691 | 1689 | Wine, fruit | 7700 | 7400 | 8700 | 6400 | 8600 | ns | −1.4 | −1.4 | −1.4 | −1.5 | −1.4 |
Ethyl 9-decenoate | 100 (8) | 1703 | 1705 | Fruit | 53 | 54 | 47 | 42 | 37 | ns | −0.3 | −0.3 | −0.3 | −0.4 | −0.4 |
Ethyl laurate | 500 (9) | 1854 | 1861 | Leaf | 160 | 124 | 150 | 120 | 150 | ns | −0.5 | −0.6 | −0.5 | −0.6 | −0.5 |
Propyl acetate | 4700 (1) | 981 | 978 | Sweet, fruity | 96 a | 91 ab | 83 b | 81 b | 81 b | * | −1.7 | −1.7 | −1.8 | −1.8 | −1.8 |
2-Methylpropyl acetate | 1600 (10) | 1017 | 1018 | Fruit, apple, banana | 19 | 20 | 20 | 19 | 19 | ns | −1.9 | −1.9 | −1.9 | −1.9 | −1.9 |
Butyl acetate | 1880 (1) | 1078 | 1082 | Pear | 2.1 | 2.2 | 2.2 | 2.1 | 2.6 | ns | −3.0 | −2.9 | −2.9 | −3.0 | −2.9 |
3-Methylbutyl acetate | 30 (2) | 1140 | 1142 | Banana | 2100 | 2060 | 2100 | 2100 | 2200 | ns | 1.8 | 1.8 | 1.8 | 1.8 | 1.9 |
Hexyl acetate | 1500 (1) | 1299 | 1293 | Fruit, herb | 150 | 150 | 150 | 150 | 140 | ns | −1.0 | −1.0 | −1.0 | −1.0 | −1.0 |
(Z)-3-Hexenyl acetate | - | 1327 | 1328 | Green, banana | 0.21 | 0.20 | 0.18 | 0.18 | 0.18 | ns | |||||
(E)-3-Hexenyl acetate | - | 1333 | 1337 | Sweet, green, sharp-fruity | 3.3 | 3.7 | 3.7 | 3.1 | 3.7 | ns | |||||
Heptyl acetate | - | 1385 | 1386 | - | 2.7 a | 2.6 a | 2.1 ab | 2.0 b | 1.2 c | ** | |||||
Phenethyl acetate | 250 (2) | 1837 | 1835 | Rose, honey, tobacco | 160 b | 170 b | 190 b | 160 b | 240 a | *** | −0.2 | −0.2 | −0.1 | −0.2 | 0.0 |
Methyl hexanoate | 84 (11) | 1198 | 1196 | Fruit, fresh, sweet | 1.0 | 0.89 | 0.96 | 0.85 | 0.98 | ns | −1.9 | −2.0 | −1.9 | −2.0 | −1.9 |
Methyl octanoate | - | 1400 | 1401 | Orange | 4.2 | 3.8 | 3.9 | 3.3 | 4.1 | ns | |||||
3-Methylbutyl octanoate | 125 (7) | 1668 | 1672 | - | 27 | 23 | 24 | 21 | 27 | ns | −0.7 | −0.7 | −0.7 | −0.8 | −0.7 |
Alcohols | |||||||||||||||
1-Propanol | 9000 (12) | 1041 | 1041 | Alcohol, pungent | 82 c | 130 ab | 110 abc | 140 a | 100 bc | ** | −2.0 | −1.8 | −1.9 | −1.8 | −2.0 |
2-Methyl-1-propanol | 40,000 (2) | 1104 | 1100 | Wine, solvent, bitter | 570 | 1200 | 890 | 1100 | 620 | ns | −1.8 | −1.5 | −1.7 | −1.6 | −1.8 |
1-Butanol | 150,000 (5) | 1164 | 1165 | Medicine, fruit | 210 b | 270 a | 260 a | 270 a | 280 a | * | −2.9 | −2.7 | −2.8 | −2.7 | −2.7 |
3-Methyl-1-butanol | 30,000 (2) | 1237 | 1238 | Whiskey, malt, burnt | 131,000 a | 132,000 a | 126,000 b | 130,000 a | 132,000 a | * | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
1-Pentanol | 64,000 (1) | 1279 | 1274 | Balsamic | 60 a | 48 b | 46 b | 44 b | 60 a | *** | −3.0 | −3.1 | −3.1 | −3.2 | −3.0 |
2-Heptanol | 200 (8) | 1341 | 1340 | 3.0 | 2.7 | 2.8 | 2.5 | 2.9 | ns | −1.8 | −1.9 | −1.9 | −1.9 | −1.8 | |
Hexanol | 8000 (2) | 1373 | 1372 | Resin, flower, green | 2700 a | 2500 b | 2400 b | 2500 b | 2200 c | *** | −0.5 | −0.5 | −0.5 | −0.5 | −0.6 |
(E)-3-Hexenol | 150,000 (1) | 1382 | 1386 | Grass | 25 b | 23 b | 25 b | 23 b | 31 a | *** | −3.8 | −3.8 | −3.8 | −3.8 | −3.7 |
3-Ethoxy-1-propanol | - | 1390 | 1370 | - | 25 a | 16 b | 19 b | 17 b | 18 b | *** | |||||
(Z)-3-Hexenol | 400 (2) | 1398 | 1390 | Grass | 34 b | 34 b | 34 b | 35 b | 47 a | *** | −1.1 | −1.1 | −1.1 | −1.1 | −0.9 |
(E)-2-Hexen-1-ol | 15,000 (13) | 1421 | 1420 | Green, leaf, walnut | 13 | 13 | 12 | 15 | 15 | ns | −3.1 | −3.1 | −3.1 | −3.0 | −3.0 |
(Z)- 2-Hexen-1-ol | - | 1430 | 1430 | Leaf, green, wine, fruit | 18 | 16 | 18 | 16 | 17 | ns | |||||
1-Heptanol | - | 1468 | 1471 | Chemical, green | 44 | 42 | 37 | 34 | 38 | ns | |||||
2-Ethyl-hexanol | 8000 (8) | 1502 | 1499 | Rose, green | 1.0 a | 0.89 ab | 0.89 ab | 0.71 c | 0.75 bc | * | −3.9 | −4.0 | −4.0 | −4.1 | −4.0 |
1-Octanol | 900 (8) | 1570 | 1573 | Chemical, metal, burnt | 9.1 a | 7.5 b | 7.7 b | 7.1 b | 7.0 b | * | −2.0 | −2.1 | −2.1 | −2.1 | −2.1 |
Benzyl alcohol | 200,000 (5) | 1896 | 1897 | Sweet, flower | 1.1 | 1.2 | 1.2 | 1.0 | 1.2 | ns | −5.3 | −5.2 | −5.2 | −5.3 | −5.2 |
2-Phenylethanol | 10,000 (2) | 1936 | 1935 | Honey, spice, rose, lilac | 13,200 b | 9600 cd | 12,800 bc | 9500 d | 16,900 a | ** | 0.1 | 0.0 | 0.1 | 0.0 | 0.2 |
Aldehydes | |||||||||||||||
Acetaldehyde | 500 (2) | 701 | 701 | Pungent, overripe fruit | 18,400 d | 22,400 c | 15,500 e | 46,400 b | 56,000 a | *** | 1.6 | 1.7 | 1.5 | 2.0 | 2.0 |
3-Methylbutanal | 4.6 (1) | 921 | 917 | Malty | 3.0 c | 3.9 b | 2.3 c | 6.8 a | 6.8 a | *** | −0.2 | −0.1 | −0.3 | 0.2 | 0.2 |
Hexanal | 9.1 (14) | 1087 | 1087 | Grass, tallow, fat | 1.5 bc | 2.4 b | 0.57 c | 4.6 a | 4.7 a | *** | −0.8 | −0.6 | −1.2 | −0.3 | −0.3 |
Octanal | - | 1313 | 1311 | Fat, soap, lemon, green | 0.82 | 0.91 | 0.77 | 0.97 | 0.81 | ns | |||||
Nonanal | 15 (5) | 1405 | 1402 | Fat, citrus, green | 1.6 a | 1.2 ab | 0.68 b | 1.6 a | 1.5 a | * | −1.0 | −1.1 | −1.3 | −1.0 | −1.0 |
2-Furfural | 14,100 (15) | 1464 | 1461 | Bread, almond, sweet | 53 b | 50 b | 13 c | 80 a | 72 a | *** | −2.4 | −2.5 | −3.0 | −2.2 | −2.3 |
Decanal | 10 (5) | 1510 | 1511 | Soap, orange peel, tallow | 0.51 bc | 0.63 b | 0.39 c | 0.89 a | 1.1 a | *** | −1.3 | −1.2 | −1.4 | −1.1 | −1.0 |
Benzaldehyde | 2000 (12) | 1541 | 1537 | Almond, burnt sugar | 3.2 | 4.7 | 1.9 | 3.0 | 3.9 | ns | −2.8 | −2.6 | −3.0 | −2.8 | −2.7 |
Ketones | |||||||||||||||
2-Heptanone | - | 1192 | 1190 | Soap | 1.5 a | 1.1 c | 1.1 c | 1.2 bc | 1.4 ab | * | |||||
6-Methyl-5-hepten-2-one | - | 1352 | 1365 | Mushroom, earthy | 0.28 | 0.22 | 0.23 | 0.24 | 0.3 | ns | |||||
2-Nonanone | - | 1386 | 1388 | Hot milk, soap, green | 0.76 a | 0.46 b | 0.55 b | 0.52 b | 0.54 b | * | |||||
Terpene and C-13 norisoprenoids | |||||||||||||||
Limonene | 15 (5) | 1200 | 1200 | Lemon, orange | 0.33 ab | 0.37 a | 0.28 c | 0.36 a | 0.30 bc | ** | −1.7 | −1.6 | −1.7 | −1.6 | −1.7 |
Neroloxide | - | 1482 | 1485 | Floral | 54 | 49 | 47 | 42 | 52 | ns | |||||
Vitispirane | 800 | 1547 | 1533 | Floral, woody | 15 | 13 | 10 | 12 | 15 | ns | −1.7 | −1.8 | −1.9 | −1.8 | −1.7 |
Linalool | 15 (10) | 1559 | 1560 | Flower, lavender | 140 a | 130 a | 82 b | 140 a | 150 a | *** | 1.0 | 0.9 | 0.7 | 1.0 | 1.0 |
β-Damascenone | 0.05 (2) | 1841 | 1844 | Apple, rose, honey | 4.3 b | 4.2 b | 0.98 c | 6.5 a | 5.9 a | *** | 1.9 | 1.9 | 1.3 | 2.1 | 2.1 |
Hotrienol | 100 (14) | 1623 | 1621 | Floral | 90 a | 86 a | 54 b | 91 a | 99 a | *** | 0.0 | −0.1 | −0.3 | 0.0 | 0.0 |
α-Terpineol | 250 (10) | 1712 | 1716 | Oil, anise, mint | 13 | 12 | 12 | 12 | 13 | ns | −1.3 | −1.3 | −1.3 | −1.3 | −1.3 |
Other compounds | |||||||||||||||
2,4,5-trimethyl-1,3-dioxolane | 900 (16) | 941 | 940 | Green, phenolic | 310 c | 310 c | 23 d | 2100 a | 1800 b | *** | −0.5 | −0.5 | −1.6 | 0.4 | 0.3 |
Dihydro-2-methyl-3(2H)-thiophenone | - | 1543 | 1518 | - | 0.34 b | 0.44 b | 0.40 b | 0.27 b | 1.0 a | *** |
Sensory Attributes | Reference Materials | Low SO2 | High SO2 | No SO2 | SO2 in Juice | p-Value |
Overall impression | None | 0.7 | 1.1 | 6.8 a | 5.2 a | <0.001 |
Chemical | 2 mL ethanol (99.9%), 200 μL ethyl acetate, 20 μL white vinegar in 25 mL wine | 0.8 | 1 | 5.8 a | 4.7 a | <0.001 |
Citrus | 2 mL each of fresh grapefruit and lemon juice and some peel | 0.1 | 0.7 | 2.5 a | 2.7 a | <0.001 |
Bitter | 0.015 g quinine sulfate in 1 L water | 0.7 | 1.4 | 4.3 a | 3.9 a | <0.001 |
Flower | 12 mL elderflower juice + 1 μL rose flavor | −0.4 | 0.1 | 2.3 a | 2.2 a | <0.001 |
Honey | 3.5 g honey in 25 mL wine | 0.1 | 0.0 | 1.9 a | 2.1 a | <0.001 |
Overripe fruit | 12 g overripe apple in 25 mL wine | 0.2 | 0.6 | 4.6 a | 4.1 a | <0.001 |
Lactic acid | 16 g buttermilk (Arla, Denmark) in 25 mL wine | −0.3 | 0.4 a | 3.7 b | 2.2 ab | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toldam-Andersen, T.B.; Zhang, S.; Liu, J.; Bredie, W.L.P.; Petersen, M.A. Sulfite Management during Vinification and Impact on the Flavor of Solaris Wine. Fermentation 2024, 10, 210. https://doi.org/10.3390/fermentation10040210
Toldam-Andersen TB, Zhang S, Liu J, Bredie WLP, Petersen MA. Sulfite Management during Vinification and Impact on the Flavor of Solaris Wine. Fermentation. 2024; 10(4):210. https://doi.org/10.3390/fermentation10040210
Chicago/Turabian StyleToldam-Andersen, Torben Bo, Shujuan Zhang, Jing Liu, Wender L. P. Bredie, and Mikael Agerlin Petersen. 2024. "Sulfite Management during Vinification and Impact on the Flavor of Solaris Wine" Fermentation 10, no. 4: 210. https://doi.org/10.3390/fermentation10040210
APA StyleToldam-Andersen, T. B., Zhang, S., Liu, J., Bredie, W. L. P., & Petersen, M. A. (2024). Sulfite Management during Vinification and Impact on the Flavor of Solaris Wine. Fermentation, 10(4), 210. https://doi.org/10.3390/fermentation10040210