Physicochemical Characterization of In Situ Annealed Starch and Its Application in a Fermented Dairy Beverage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification of Starch by In Situ Annealing
2.3. Extraction of Sweet Potato Starch
2.4. Scanning Electron Microscopy
2.5. Pasting Properties
2.6. Thermal Properties
2.7. X-ray Diffraction
2.8. Digestibility
2.9. Preparation of Inoculum and Maintenance of Culture
2.10. Elaboration of Fermented Dairy Beverages
2.11. Microbiological Analysis
2.12. Sensory Analysis
2.13. Stability during Storage
2.14. In Vitro Simulation of L. casei Survival in Gastrointestinal Conditions
2.15. In Vitro Digestibility of Starch Contained in Fermented Dairy Beverages
2.16. Statistical Analysis
3. Results and Discussion
3.1. Scanning Electron Microscopy
3.2. Evaluation of Viscosity in the Simulated Pasteurization Process
3.3. Thermal Properties
3.4. X-ray Diffraction and Crystallinity
3.5. In Vitro Digestibility of Native Sweet Potato-Modified Starches
3.6. Elaboration of Fermented Dairy Beverages
Ingredients | FA | FB | FC | |
---|---|---|---|---|
Fermented base | Pasteurized skimmed milk powder (g) | 2.16 | 2.16 | 2.16 |
Whey (g) | 1.80 | 1.80 | 1.80 | |
H2O (mL) | 26.04 | 26.04 | 26.04 | |
Nonfermented base | Modified starch (g) | 7.00 | 10.5 | - |
Pasteurized skimmed milk powder (g) | 5.04 | 4.62 | 5.88 | |
H2O (mL) | 36.96 | 33.88 | 43.12 | |
Sweet base | Honey (g) | 7.00 | 7.00 | 7.00 |
Fruit pulp (g) | 14.00 | 14.00 | 14.00 | |
Total | 100 | 100 | 100 |
3.7. Microbiological Analysis
3.8. Sensory Analysis
3.9. Evaluation of Stability of Physical–Chemical and Microbiological Properties during Storage
3.10. In Vitro Simulation of L. casei Survival under Gastrointestinal Conditions
3.11. In Vitro Digestibility of Modified Sweet Potato Starch
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAO Statistics. 2020. Available online: http://www.fao.org/faostat/zh/#data/QC (accessed on 21 June 2020).
- Elgabry, R.M.; Sedeek, M.S.; Meselhy, K.M.; Fawzy, G.A. A review on the potential health benefits of sweet potato: Insights into its preclinical and clinical studies. Int. J. Food Sci. 2023, 58, 2866–2872. [Google Scholar] [CrossRef]
- Trung, P.T.B.; Ngoc, L.B.B.; Hoa, P.N.; Tien, N.N.T.; Van Hung, P. Impact of heat-moisture and annealing treatments on physicochemical properties and digestibility of starches from different colored sweet potato varieties. Int. J. Biol. Macromol. 2017, 105, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Jo, A.R.; Kim, H.R.; Choi, S.J.; Lee, J.S.; Chung, M.N.; Han, S.K.; Park, C.S.; Moon, T.W. Preparation of slowly digestible sweet potato Daeyumi starch by dual enzyme modification. Carbohydr. Polym. 2016, 143, 164. [Google Scholar] [CrossRef] [PubMed]
- Englyst, K.; Goux, A.; Meynier, A.; Quigley, M.; Englyst, H.; Brack, O.; Vinoy, S. Interlaboratory validation of the starch digestibility method for determination of rapidly digestible and slowly digestible starch. Food Chem. 2018, 245, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Hamaker, B.R. Slowly Digesting Starch and Fermentable Fiber. U.S. Patent US20140179629A1, 18 December 2015. [Google Scholar]
- BeMiller, J.N. Physical Modification of Starch. In Starch in Food: Structure, Function and Applications, 2nd ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 223–253. [Google Scholar]
- Jayakody, L.; Hoover, R. Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins—A review. Carbohydr. Polym. 2008, 74, 691–703. [Google Scholar] [CrossRef]
- Vilpox, O.F.; Brito, V.H.; Cereda, M.P. Starch Extracted from Corms, Roots, Rhizomes, and Tubers for Food Application. In Starches for Food Application: Chemical, Technological and Health Properties; Clerici, M.T.P.S., Schmiele, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 103–165. [Google Scholar]
- Rocha, T.S.; Cunha, V.A.G.; Jane, J.L.; Franco, C.M.L. Structural characterization of Peruvian carrot (Arracacia xanthorrhiza) starch and the effect of annealing on its semicrystalline structure. J. Agric. Food Chem. 2011, 59, 4208–4216. [Google Scholar] [CrossRef] [PubMed]
- Veronese, A.F.; de Souza Rocha, T.; Franco, C.M.L.; Costa, M.S.; Grossmann, M.V.E. Starch–Carboxymethyl Cellulose (CMC) Mixtures Processed by Extrusion. Starch-Stärke 2018, 70, 11–12. [Google Scholar] [CrossRef]
- Felisberto, M.H.F.; Beraldo, A.L.; Costa, M.S.; Boas, F.V.; Franco, C.M.L.; Clerici, M.T.P.S. Physicochemical and structural properties of starch from young bamboo culm of Bambusa tuldoides. Food Hydrocoll. 2019, 87, 101–107. [Google Scholar] [CrossRef]
- Nara, S.; Komiya, T. Studies on the Relationship Between Water-satured State and Crystallinity by the Diffraction Method for Moistened Potato Starch. Starch-Stärke 1993, 35, 407–410. [Google Scholar] [CrossRef]
- Cunha, T.M.; Castro, F.P.; de Barreto, P.L.M.; Benedet, H.D.; Prudêncio, E.S. Avaliação físico-química, microbiológica e reológica de bebida láctea e leite fermentado adicionados de probióticos. Semin. Ciências Agrárias 2008, 29, 103–116. [Google Scholar] [CrossRef]
- da Silva, N. Manual de Métodos de Análise Microbiológica de Alimentos; Varela: Rio de Janeiro, Brazil, 2007. [Google Scholar]
- Stone, H.; Bleibaum, R.; Thomas, H.A. Sensory Evaluation Practices; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Fonteles, T.V.; Costa, M.G.M.; de Jesus, A.L.T.; Fontes, C.P.M.L.; Fernandes, F.A.N.; Rodrigues, S. Stability and quality parameters of probiotic cantaloupe melon juice produced with sonicated juice. Food Bioprocess Technol. 2013, 6, 2860–2869. [Google Scholar] [CrossRef]
- AOAC. Association of official analytical chemists. In Official Methods of Analysis of the AOAC International, 19th ed.; AOAC: Arlington, TX, USA, 2012. [Google Scholar]
- Bedani, R.; Vieira, A.D.S.; Rossi, E.A.; Saad, S.M.I. Tropical fruit pulps decreased probiotic survival to in vitro gastrointestinal stress in synbiotic soy yogurt with okara during storage. LWT Food Sci. Technol. 2014, 55, 436–443. [Google Scholar] [CrossRef]
- Shimakura, S.E.; Ribeiro, P.J., Jr. Estatística; Universidade de Brasília: Brasília, Brazil, 2006; p. 114. [Google Scholar]
- Zhang, B.; Wu, H.; Gou, M.; Xu, M.; Liu, Y.; Jing, L.; Zhao, K.; Jiang, H.; Li, W. The Comparison of Structural, Physicochemical, and Digestibility Properties of Repeatedly and Continuously Annealed Sweet Potato Starch. J. Food Sci. 2019, 84, 2050–2058. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.T.; Zhou, D.N.; Jin, Z.Y.; Xu, X.M.; Chen, H.Q. Effect of debranching and heat-moisture treatments on structural characteristics and digestibility of sweet potato starch. Food Chem. 2015, 187, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Rocha, T.D.S.; Carneiro, A.P.D.A.; Franco, C.M.L. Effect of enzymatic hydrolysis on some physicochemical properties of root and tuber granular starches. Food Sci. Technol. 2010, 30, 544–551. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wang, X.; Xiao, Y.; Luo, F.; Lin, Q.; Ding, Y. Structural changes of A-, B-and C-type starches of corn, potato and pea as influenced by sonication temperature and their relationships with digestibility. Food Chem. 2021, 358, 129858. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, K.S.; Singh, N.; Kaur, M. Characteristics of the different corn types and their grain fractions: Physicochemical, thermal, morphological, and rheological properties of starches. J. Food Eng. 2004, 64, 119–127. [Google Scholar] [CrossRef]
- Tortoe, C.; Akonor, P.T.; Koch, K.; Menzel, C.; Adofo, K. Amylose and amylopectin molecular fractions and chain length distribution of amylopectin in 12 varieties of Ghanaian sweet potato (Ipomoea batatas) flours. Int. J. Food Prop. 1017, 20, 3225–3233. [Google Scholar] [CrossRef]
- Xu, M.; Saleh, A.S.M.; Gong, B.; Li, B.; Jing, L.; Gou, M.; Jiang, H.; Li, W. The effect of repeated versus continuous annealing on structural, physicochemical, and digestive properties of potato starch. Int. Food Res. 2018, 111, 324–333. [Google Scholar] [CrossRef]
- Amaro, G.B.; Talamini, V.; Fernandes, F.R.; Silva, G.O.; Madeira, N.R. Desempenho de cultivares de batata-doce para rendimento e qualidade de raízes em Sergipe. Braz. J. Agric. Sci. 2019, 14, e5628. [Google Scholar] [CrossRef]
- Tester, R.F.; Debon, S.J.J. Annealing of starch—A review. Int. J. Biol. Macromol. 2000, 27, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hirose, S.; Iwahashi, Y.; Seo, A.; Sumiyoshi, M.; Takahashi, T.; Tamori, Y. Concurrent therapy with a low-carbohydrate diet and miglitol remarkably improved the postprandial blood glucose and insulin levels in a patient with reactive hypoglycemia due to late dumping syndrome. Intern. Med. 2016, 55, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Villarroel, R.; Gómez, C.; Vera, C.; Torres, J. Almidón resistente: Características tecnológicas e intereses fisiológicos. Rev. Chil. Nutr. 2018, 45, 271–278. [Google Scholar] [CrossRef]
- Zhang, G.; Hamaker, B. Slowly Digestible Starch: Concept, Mechanism, and Proposed Extended Glycemic Index. Crit. Rev. Food Sci. Nutr. 2009, 49, 852–867. [Google Scholar] [CrossRef]
- Hasek, L.Y.; Phillips, R.J.; Zhang, G.; Kinzig, K.P.; Kim, C.Y.; Powley, T.L.; Hamaker, B.R. Dietary Slowly Digestible Starch Triggers the Gut–Brain Axis in Obese Rats with Accompanied Reduced Food Intake. Mol. Nutr. Food Res. 2018, 62, 1700117. [Google Scholar] [CrossRef] [PubMed]
- Ministério da Saúde do Brasil. Resolução RDC n. 12; Agência Nacional de Vigilância Sanitária: São Paulo, Brazil, 2001.
- López, P.I.G.; Zambrano, Á.M.Z.; Rosado, C.F.R.; Peña, A.M. Evaluación de una bebida láctea fermentada novel a base de lactosuero y harina de camote. La Técnica 2018, 19, 47–60. [Google Scholar]
- Ariza, A.C.; Sánchez-Pimienta, T.G.; Rivera, J.A. Taste perception as a risk factor for childhood obesity. Salud Publica Mex. 2019, 60, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.R.D.; Martins, T.R.; Rosenthal, A.; Hauck, J.T.; Deliza, R. Fermented milk beverage: Formulation and process. Ciênc. Rural 2019, 49, e20180382. [Google Scholar] [CrossRef]
- Shirkhani, M.; Madadlou, A.; Khosrowshahi, A. Enzymatic Modification to Stabilize the Fermented Milk Drink, D oogh. J. Texture Stud. 2015, 46, 22–33. [Google Scholar] [CrossRef]
- Marin, M.; Madruga, N.D.A.; Rodrigues, R.D.S.; Machado, M.R.G. Caracterização físico-química e sensorial de bebida probiótica de soja. Bol. Cent. Pesqui. Process. Aliment. 2014, 32, 93–104. [Google Scholar] [CrossRef]
- Damodaran, S.; Damodaran, K.L.; Parkin, O.R.; Fennema, A.; Brandelli, A.D.O.; Rios, A.L.O.; d Carvalho, F.; Cladera-Olivera, I.; Nunes, P.F.H. (Eds.) Fennema’s Food Chemistry, 4th ed.; Artmed: Porto Alegre, Brazil, 2010. [Google Scholar]
- Yu, Y.; Wu, J.; Xu, Y.; Xiao, G.; Zou, B. The effect of litchi juice on exopolysaccharide production in milk fermented by Lactobacillus casei. Int. J. Food Sci. Technol. 2018, 53, 2730–2737. [Google Scholar] [CrossRef]
- Andrade, R.C.; Figueredo, C.S.; de Carvalho Alves, J.; Roselino, M.N. Evidence and updates on non-dairy synbiotic beverage development. Recent Pat. Biotechnol. 2022, 16, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Lamadrid, A.A.; Bernal, G.L.A.; Morales, M.M.G. Capacidad de adhesión y fermentación a gránulos de almidón de papa por bacterias ácido lácticas silvestres para evaluar su actividad como prebiótico. Rev. Cent. Investig. Univ. Salle 2009, 8, 5–21. [Google Scholar]
- Liljeberg, H.; Åkerberg, A.; Björck, I. Resistant starch formation in bread as influenced by choice of ingredients or baking conditions. Food Chem. 1996, 56, 389–394. [Google Scholar] [CrossRef]
- Putri, W.D.R.; Haryadi; Marseno, D.W.; Cahyanto, M.N. Role of Lactic Acid Bacteria on Structural and Physicochemical Properties of Sour Cassava Starch. APCBEE Procedia 2012, 2, 104–109. [Google Scholar] [CrossRef]
- Ministério da Saúde do Brasil. Instrução Normativa n. 75; Agência Nacional de Vigilância Sanitária: São Paulo, Brazil, 2020.
Sample | T0 (°C) | Tp (°C) | Tf (°C) | ΔT (°C) | ΔH (J/g) | CI (%) |
---|---|---|---|---|---|---|
RU-Native | 69.43 ± 0.44 c | 73.92 ± 0.00 b | 78.05 ± 0.02 b | 8.62 ± 0.42 c | 14.96 ± 0.18 ns | 38.91 ± 0.93 a |
RU-annealed | 73.12 ± 0.10 a | 76.23 ± 0.00 a | 79.63 ± 0.14 a | 6.51 ± 0.04 d | 15.90 ± 0.01 ns | 43.74 ± 0.22 b |
RC-Native | 64.50 ± 0.64 e | 69.94 ± 0.45 c | 75.76 ± 0.55 c | 11.26 ± 0.08 b | 14.26 ± 0.04 ns | 38.87 ± 0.48 a |
RC-annealed | 68.10 ± 0.12 d | 71.33 ± 0.10 c | 74.49 ± 0.04 d | 6.43 ± 0.08 d | 13.82 ± 1.97 ns | 36.02 ± 0.33 c |
L-Native | 58.00 ± 0.00 f | 65.36 ± 0.95 d | 74.53 ± 0.08 d | 16.53 ± 0.20 a | 13.92 ± 0.75 ns | 35.00 ± 1.00 c |
L-annealed | 71.76 ± 0.16 b | 74.56 ± 0.23 ab | 78.2 b ± 0.33 b | 6.53 d ± 0.17 d | 15.75 ± 1.69 ns | 42.33 ± 1.53 b |
Attribute | FA * | FB * |
---|---|---|
Appearance 1 | 7.08 ± 1.51 | 7.10 ± 1.50 |
Color 1 | 7.42 ± 1.41 | 7.21 ± 1.50 |
Aroma 1 | 6.04 ± 1.86 | 6.32 ± 1.65 |
Flavor 1 | 5.75 ± 2.17 | 5.98 ± 2.03 |
Texture 1 | 6.57 ± 1.99 | 6.08 ± 2.15 |
Global acceptance 1 | 6.11 ± 1.71 | 6.19 ± 1.77 |
Purchase intention 2 | 3.22 ± 1.78 | 3.18 ± 0.75 |
Formulation | Day 1 | Day 7 | Day 14 |
---|---|---|---|
Total soluble solids (° Brix) | |||
FB | 20.53 ± 0.65 a | 20.76 ± 0.40 a | 20.66 ± 0.25 a |
FC | 17.64 ± 0.26 b | 15.24 ± 0.26 c | 8.06 ± 0.06 d |
pH | |||
FB | 5.28 ± 0.04 b | 4.82 ± 0.12 c | 4.39 ± 0.02 d |
FC | 5.66 ± 0.01 a | 4.77 ± 0.02 c | 4.48 ± 0.02 d |
Titratable acidity (% lactic acid) | |||
FB | 0.48 ± 0.01 e | 0.63 ± 0.02 d | 0.90 ± 0.02 a |
FC | 0.43 ± 0.01 f | 0.69 ± 0.02 c | 0.83 ± 0.01 b |
Water holding capacity (%) | |||
FB | 47.30 ± 2.48 a | 31.63 ± 2.56 b | 47.76 ± 1.37 a |
FC | 12.43 ± 1.23 e | 20.44 ± 0.75 c | 18.83 ± 0.40 d |
Syneresis (%) | |||
FB | 42.32 ± 0.21 e | 34.81 ± 0.59 f | 44.68 ± 0.36 d |
FC | 89.88 ± 0.96 a | 72.25 ± 1.32 b | 71.99 ± 0.34 c |
Lactobacillus casei count (Log CFU/mL) | |||
FB | 9.925 ± 0.140 a | 9.817 ± 0.057 a | 9.336 ± 0.199 a |
FC | 9.287 ± 0.032 b | 9.489 ± 0.124 b | 9.505 ± 0.129 b |
Microorganism | Time (Day) | Initial (CFU/mL) | Gastric Phase (CFU/mL) | Enteric Phase I (CFU/mL) | Enteric Phase II (CFU/mL) | Survival Rate (%) (CFU/mL) |
---|---|---|---|---|---|---|
L. casei | 1 | 8.96 ± 0.01 a | 6.84 ± 0.01 c | 6.73 ± 0.03 d | 6.34 ± 0.03 f | 70.76 ± 0.18 b |
30 | 7.92 ± 0.01 b | 6.66 ± 0.02 e | 6.15 ± 0.03 g | 5.94 ± 0.00 h | 75.00 ± 0.17 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, L.S.; Cordon Cardona, A.D.; Freitas Cardines, P.H.; de Barros, M.; Bosso Tomal, A.A.; de Souza Rocha, T. Physicochemical Characterization of In Situ Annealed Starch and Its Application in a Fermented Dairy Beverage. Fermentation 2024, 10, 321. https://doi.org/10.3390/fermentation10060321
de Oliveira LS, Cordon Cardona AD, Freitas Cardines PH, de Barros M, Bosso Tomal AA, de Souza Rocha T. Physicochemical Characterization of In Situ Annealed Starch and Its Application in a Fermented Dairy Beverage. Fermentation. 2024; 10(6):321. https://doi.org/10.3390/fermentation10060321
Chicago/Turabian Stylede Oliveira, Luma Sarai, Andres David Cordon Cardona, Pedro Henrique Freitas Cardines, Márcio de Barros, Adriana Aparecida Bosso Tomal, and Thais de Souza Rocha. 2024. "Physicochemical Characterization of In Situ Annealed Starch and Its Application in a Fermented Dairy Beverage" Fermentation 10, no. 6: 321. https://doi.org/10.3390/fermentation10060321
APA Stylede Oliveira, L. S., Cordon Cardona, A. D., Freitas Cardines, P. H., de Barros, M., Bosso Tomal, A. A., & de Souza Rocha, T. (2024). Physicochemical Characterization of In Situ Annealed Starch and Its Application in a Fermented Dairy Beverage. Fermentation, 10(6), 321. https://doi.org/10.3390/fermentation10060321