Development of Potentially Probiotic Mead from Co-Fermentation by Saccharomyces cerevisiae var. boulardii and Kombucha Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Obtaining and Cultivating Microorganisms
2.2.2. Central Composite Design (CCD): Preliminary Tests
2.2.3. Mead Production
2.2.4. Experimental Validation of the Pilot Scale and Fermentation Kinetics
2.2.5. Viable Cell Count of Lactic Acid Bacteria (LAB) and Yeast
2.2.6. Survival of Microorganisms after Simulated Gastrointestinal Digestion
2.2.7. Color Analysis
2.2.8. Total Phenolics and Antioxidant Potential of Mead
2.2.9. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Kombucha
3.2. Central Composite Design (CCD): Preliminary Tests
3.3. Fermentation Kinetics of the Pilot Scale
3.4. Viable Cell Count and Simulated In Vitro Digestibility at 37 °C
3.5. Color Analysis of the Mead
3.6. Total Phenolics and Antioxidant Potential of Mead
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, A.P.; Mendes-Ferreira, A.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. High-Cell-Density Fermentation of Saccharomyces cerevisiae for the Optimisation of Mead Production. Food Microbiol. 2013, 33, 114–123. [Google Scholar] [CrossRef]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Szatkowska, K. Fruit and Herbal Meads—Chemical Composition and Antioxidant Properties. Food Chem. 2019, 283, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Bednarek, M.; Szwengiel, A. Distinguishing between Saturated and Unsaturated Meads Based on Their Chemical Characteristics. LWT 2020, 133, 109962. [Google Scholar] [CrossRef]
- Ceslová, L.; Pravcová, K.; Juričová, M.; Fischer, J. Rapid HPLC/MS/MS Analysis of Phenolic Content and Profile for Mead Quality Assessment. Food Control 2022, 134, 108737. [Google Scholar] [CrossRef]
- Fu, Y.; Shi, X.; Li, F.; Yan, X.; Li, B.; Luo, Y.; Jiang, G.; Liu, X.; Wang, L. Fermentation of Mead Using Saccharomyces cerevisiae and Lactobacillus paracasei: Strain Growth, Aroma Components and Antioxidant Capacity. Food Biosci. 2023, 52, 102402. [Google Scholar] [CrossRef]
- Brasil. Instrução Normativa no 34, de 29 de novembro de 2012. Aprova o Regulamento Técnico de Identidade e Qualidade das bebidas fermentadas: Fermentado de fruta; fermentado de fruta licoroso; fermentado de fruta composto; sidra; hidromel; fermentado de cana; saquê ou sake. Diário Of. República Fed. Bras. 2012, 1, 3.
- Starowicz, M.; Granvogl, M. Trends in Food Science & Technology an Overview of Mead Production and the Physicochemical, Toxicological, and Sensory Characteristics of Mead with a Special Emphasis on Flavor. Trends Food Sci. Technol. 2020, 106, 402–416. [Google Scholar]
- Souza, H.F.; Bessa, M.S.; Gonçalves, V.D.D.P.; dos Santos, J.V.; Pinheiro, C.; das Chagas, E.G.L.; de Carvalho, M.V.; Brandi, I.V.; Kamimura, E.S. Growing Conditions of Saccharomyces boulardii for the Development of Potentially Probiotic Mead: Fermentation Kinetics, Viable Cell Counts and Bioactive Compounds. Food Sci. Technol. Int. 2023, 10820132231162683. [Google Scholar] [CrossRef]
- Pereira, A.P.; Oliveira, J.M.; Mendes-Ferreira, A.; Estevinho, L.M.; Mendes-Faia, A. Mead and Other Fermented Beverages. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry; Elsevier: Amsterdam, The Netherlands, 2017; pp. 407–434. ISBN 9780444636775. [Google Scholar]
- Qureshi, N.; Tamhane, D. V Production of Mead by Immobilized Whole Cells of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1985, 21, 280–281. [Google Scholar] [CrossRef]
- Navrátil, M.; Šturdík, E.; Gemeiner, P. Batch and Continuous Mead Production with Pectate Immobilised, Ethanol-Tolerant Yeast. Biotechnol. Lett. 2001, 23, 977–982. [Google Scholar] [CrossRef]
- Pereira, A.P.; Dias, T.; Andrade, J.; Ramalhosa, E.; Estevinho, L.M. Mead Production: Selection and Characterization Assays of Saccharomyces cerevisiae Strains. Food Chem. Toxicol. 2009, 47, 2057–2063. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Ferreira, A.; Cosme, F.; Barbosa, C.; Falco, V.; Inês, A.; Mendes-Faia, A. Optimization of Honey-Must Preparation and Alcoholic Fermentation by Saccharomyces cerevisiae for Mead Production. Int. J. Food Microbiol. 2010, 144, 193–198. [Google Scholar] [CrossRef]
- Roldán, A.; Van Muiswinkel, G.C.J.; Lasanta, C.; Palacios, V.; Caro, I. Influence of Pollen Addition on Mead Elaboration: Physicochemical and Sensory Characteristics. Food Chem. 2011, 126, 574–582. [Google Scholar] [CrossRef]
- Rodrigues, K.L.; Araújo, T.H.; Schneedorf, J.M.; Ferreira, C.d.S.; Moraes, G.d.O.I.; Coimbra, R.S.; Rodrigues, M.R. A Novel Beer Fermented by Kefir Enhances Anti-Inflammatory and Anti-Ulcerogenic Activities Found Isolated in Its Constituents. J. Funct. Foods 2016, 21, 58–69. [Google Scholar] [CrossRef]
- Capece, A.; Romaniello, R.; Pietrafesa, A.; Siesto, G.; Pietrafesa, R.; Zambuto, M.; Romano, P. Use of Saccharomyces cerevisiae Var. boulardii in Co-Fermentations with S. cerevisiae for the Production of Craft Beers with Potential Healthy Value-Added. Int. J. Food Microbiol. 2018, 284, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Mulero-Cerezo, J.; Briz-Redón, Á.; Serrano-Aroca, Á. Saccharomyces cerevisiae Var. boulardii: Valuable Probiotic Starter for Craft Beer Production. Appl. Sci. 2019, 9, 3250. [Google Scholar] [CrossRef]
- Cardoso, M.P.S.; Macedo, K.M.; Souza, V.S.N.; de Maldonado, R.R.; Figueiredo, A.F.R.; Aguiar-Oliveira, E. Desenvolvimento de Duas Formulações Base de Cerveja Estilo Sour Empregando Kefir e Kombucha na Fermentação/Development of Two Sour Beer Basic Formulations Using Kefir and Kombucha for Fermentation. Braz. J. Dev. 2021, 7, 5616–5628. [Google Scholar] [CrossRef]
- Souza, H.F.; Carosia, M.F.; Pinheiro, C.; de Carvalho, M.V.; de Oliveira, C.A.F.; Kamimura, E.S. On Probiotic Yeasts in Food Development: Saccharomyces boulardii, a Trend. Food Sci. Technol. 2022, 42, 92321. [Google Scholar] [CrossRef]
- Mulero-Cerezo, J.; Tuñón-Molina, A.; Cano-Vicent, A.; Pérez-Colomer, L.; Martí, M.; Serrano-Aroca, Á. Alcoholic and Non-Alcoholic Rosé Wines Made with Saccharomyces cerevisiae Var. boulardii Probiotic Yeast. Arch. Microbiol. 2023, 205, 201. [Google Scholar] [CrossRef]
- Souza, H.F.; Monteiro, G.F.; Bogáz, L.T.; Freire, E.N.S.; Pereira, K.N.; Vieira de Carvalho, M.; Gomes da Cruz, A.; Viana Brandi, I.; Setsuko Kamimura, E. Bibliometric Analysis of Water Kefir and Milk Kefir in Probiotic Foods from 2013 to 2022: A Critical Review of Recent Applications and Prospects. Food Res. Int. 2024, 175, 113716. [Google Scholar] [CrossRef]
- Souza, H.F.; Monteiro, G.F.; Di Próspero Gonçalves, V.D.; dos Santos, J.V.; de Oliveira, A.C.D.; Pereira, K.N.; Carosia, M.F.; de Carvalho, M.V.; Brandi, I.V.; Kamimura, E.S. Evaluation of Sensory Acceptance, Purchase Intention and Color Parameters of Potentially Probiotic Mead with Saccharomyces boulardii. Food Sci. Biotechnol. 2023, 33, 1651–1659. [Google Scholar] [CrossRef]
- Souza, H.F.; Bogáz, L.T.; Monteiro, G.F.; Freire, E.N.S.; Pereira, K.N.; de Carvalho, M.V.; da Silva Rocha, R.; da Cruz, A.G.; Brandi, I.V.; Kamimura, E.S. Water Kefir in Co-Fermentation with Saccharomyces boulardii for the Development of a New Probiotic Mead. Food Sci. Biotechnol. 2024, 1–13. [Google Scholar] [CrossRef]
- Kelesidis, T.; Pothoulakis, C. Efficacy and Safety of the Probiotic Saccharomyces boulardii for the Prevention and Therapy of Gastrointestinal Disorders. Therap. Adv. Gastroenterol. 2012, 5, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Hadjimbei, E.; Botsaris, G.; Goulas, V.; Alexandri, E.; Gekas, V.; Gerothanassis, I.P. Functional stability of goats’ milk yoghurt supplemented with Pistacia atlantica resin extracts and Saccharomyces boulardii. Int. J. Dairy Technol. 2020, 73, 134–143. [Google Scholar] [CrossRef]
- Sen, S.; Mansell, T.J. Yeasts as Probiotics: Mechanisms, Outcomes, and Future Potential. Fungal Genet. Biol. 2020, 137, 103333. [Google Scholar] [CrossRef]
- Sarwar, A.; Aziz, T.; Al-Dalali, S.; Zhao, X.; Zhang, J.; Ud Din, J.; Chen, C.; Cao, Y.; Yang, Z. Physicochemical and Microbiological Properties of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii in Combination with Inulin. Foods 2019, 8, 468. [Google Scholar] [CrossRef]
- Senkarcinova, B.; Graça Dias, I.A.; Nespor, J.; Branyik, T. Probiotic Alcohol-Free Beer Made with Saccharomyces cerevisiae Var. boulardii. LWT 2019, 100, 362–367. [Google Scholar] [CrossRef]
- Swieca, M.; Kordowska-Wiater, M.; Pytka, M.; Gawlik-Dziki, U.; Seczyk, L.; Złotek, U.; Kapusta, I. Nutritional and Pro-Health Quality of Lentil and Adzuki Bean Sprouts Enriched with Probiotic Yeast Saccharomyces cerevisiae Var. boulardii. LWT 2019, 100, 220–226. [Google Scholar] [CrossRef]
- Santana, R.V.; Santos, D.C.; dos Santana, A.C.A.; Filho, J.G.d.O.; de Almeida, A.B.; de Lima, T.M.; Silva, F.G.; Egea, M.B. Quality Parameters and Sensorial Profile of Clarified “Cerrado” Cashew Juice Supplemented with Sacharomyces boulardii and Different Sweeteners. LWT 2020, 128, 109319. [Google Scholar] [CrossRef]
- Singu, B.D.; Bhushette, P.R.; Annapure, U.S. Thermo-Tolerant Saccharomyces cerevisiae Var. boulardii Coated Cornflakes as a Potential Probiotic Vehicle. Food Biosci. 2020, 36, 100668. [Google Scholar] [CrossRef]
- Aung, T.; Eun, J.B. Production and Characterization of a Novel Beverage from Laver (Porphyra dentata) through Fermentation with Kombucha Consortium. Food Chem. 2021, 350, 129274. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Taillandier, P. Understanding Kombucha Tea Fermentation: A Review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Ariff, R.M.; Chai, X.Y.; Chang, L.S.; Fazry, S.; Othman, B.A.; Babji, A.S.; Lim, S.J. Recent Trends in Kombucha: Conventional and Alternative Fermentation in Development of Novel Beverage. Food Biosci. 2023, 53, 102714. [Google Scholar]
- Dartora, B.; Hickert, L.R.; Fabricio, M.F.; Ayub, M.A.Z.; Furlan, J.M.; Wagner, R.; Perez, K.J.; Sant’Anna, V. Understanding the Effect of Fermentation Time on Physicochemical Characteristics, Sensory Attributes, and Volatile Compounds in Green Tea Kombucha. Food Res. Int. 2023, 174, 113569. [Google Scholar] [CrossRef] [PubMed]
- Kapp, J.M.; Sumner, W. Kombucha: A Systematic Review of the Empirical Evidence of Human Health Benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef]
- Zubaidah, E.; Afgani, C.A.; Kalsum, U.; Srianta, I.; Blanc, P.J. Comparison of in Vivo Antidiabetes Activity of Snake Fruit Kombucha, Black Tea Kombucha and Metformin. Biocatal. Agric. Biotechnol. 2019, 17, 465–469. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Zamora-Vega, R.; Montañez-Soto, J.L.; Martínez-Flores, H.E.; Flores-Magallón, R.; Muñoz-Ruiz, C.V.; Venegas-González, J.; Ortega, T.J.A. Effect of incorporating prebiotics in coating materials for the microencapsulation of Sacharomyces boulardii. Int. J. Food Sci. Nutr. 2012, 63, 930–935. [Google Scholar] [CrossRef]
- Silva, N.; Junqueira, V.C.A.; Silveira, N.F.A.; Taniwaki, M.H.; Gomes, R.A.R.; Okazaki, M.M. Manual de Métodos de Análise Microbiológica de Alimentos, 3rd ed.; Livraria Varela: Sao Paulo, Brazil, 2007. [Google Scholar]
- Mathara, J.M.; Schillinger, U.; Guigas, C.; Franz, C.; Kutima, P.M.; Mbugua, S.K.; Shin, H.K.; Holzapfel, W.H. Functional Characteristics of Lactobacillus Spp. from Traditional Maasai Fermented Milk Products in Kenya. Int. J. Food Microbiol. 2008, 126, 57–64. [Google Scholar] [CrossRef]
- Fonseca, H.C.; de Sousa Melo, D.; Ramos, C.L.; Dias, D.R.; Schwan, R.F. Probiotic Properties of Lactobacilli and Their Ability to Inhibit the Adhesion of Enteropathogenic Bacteria to Caco-2 and HT-29 Cells. Probiotics Antimicrob. Proteins 2021, 13, 102–112. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough Study of Reactivity of Various Compound Classes toward the Folin-Ciocalteu Reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of Antioxidant Power: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, A.; Pascoal, A.; Choupina, A.B.; Carvalho, C.A.; Feás, X.; Estevinho, L.M. Developments in the Fermentation Process and Quality Improvement Strategies for Mead Production. Molecules 2014, 19, 12577–12590. [Google Scholar] [CrossRef]
- Sertović, E.; Sarić, Z.; Barać, M.; Barukčić, I.; Kostić, A.; Božanić, R. Physical, chemical, microbiological and sensory characteristics of a probiotic beverage produced from different mixtures of cow’s milk and soy beverage by Lactobacillus acidophilus La5 and yoghurt culture. Food Technol. Biotechnol. 2019, 57, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Zendeboodi, F.; Khorshidian, N.; Mortazavian, A.M.; da Cruz, A.G. Probiotic: Conceptualization from a New Approach. Curr. Opin. Food Sci. 2020, 32, 103–123. [Google Scholar] [CrossRef]
- Birch, R.M.; Walker, G.M. Influence of Magnesium Ions on Heat Shock and Ethanol Stress Responses of Saccharomyces cerevisiae. Ezyme Microb. Technol. 2000, 26, 678–687. [Google Scholar] [CrossRef]
- Paula, B.P.; Chávez, D.W.H.; Lemos Junior, W.J.F.; Guerra, A.F.; Corrêa, M.F.D.; Pereira, K.S.; Coelho, M.A.Z. Growth Parameters and Survivability of Saccharomyces boulardii for Probiotic Alcoholic Beverages Development. Front. Microbiol. 2019, 10, 2092. [Google Scholar] [CrossRef]
- Paula, B.P.; de Souza Lago, H.; Firmino, L.; Fernandes Lemos Júnior, W.J.; Ferreira Dutra Corrêa, M.; Fioravante Guerra, A.; Signori Pereira, K.; Zarur Coelho, M.A. Technological Features of Saccharomyces cerevisiae Var. boulardii for Potential Probiotic Wheat Beer Development. LWT 2021, 135, 110233. [Google Scholar] [CrossRef]
- Young, G.W.Z.; Blundell, R. A Review on the Phytochemical Composition and Health Applications of Honey. Heliyon 2023, 9, e12507. [Google Scholar] [CrossRef]
- Madigan, M.T.; Martinko, J.M.; Dunlap, P.V.; Clark, D.P. Microbiologia de Brock, 12th ed.; Artmed: Porto Alegre, Brazil, 2010; p. 1160. [Google Scholar]
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health Benefits of Probiotics: A Review. ISRN Nutr. 2013, 2013, 481651. [Google Scholar] [CrossRef]
- Goktas, H.; Dertli, E.; Sagdic, O. Comparison of Functional Characteristics of Distinct Saccharomyces boulardii Strains Isolated from Commercial Food Supplements. LWT 2021, 136, 110340. [Google Scholar] [CrossRef]
- dos Santos, D.C.; Filho, J.G.d.O.; Andretta, J.R.; Silva, F.G.; Egea, M.B. Challenges in Maintaining the Probiotic Potential in Alcoholic Beverage Development. Food Biosci. 2023, 52, 102485. [Google Scholar] [CrossRef]
- Hyrslova, I.; Kana, A.; Nesporova, V.; Mrvikova, I.; Doulgeraki, A.I.; Lampova, B.; Doskocil, I.; Musilova, S.; Kieliszek, M.; Krausova, G. In Vitro Digestion and Characterization of Selenized Saccharomyces cerevisiae, Pichia fermentans and Probiotic Saccharomyces boulardii. J. Trace Elem. Med. Biol. 2024, 83, 127402. [Google Scholar] [CrossRef]
- Içen, H.; Corbo, M.R.; Sinigaglia, M.; Korkmaz, B.I.O.; Bevilacqua, A. Microbiology and Antimicrobial Effects of Kombucha, a Short Overview. Food Biosci. 2023, 56, 103270. [Google Scholar] [CrossRef]
- National Low-Risk Drinking Recommendations (or Drinking Guidelines) and Standard Units Knowledge for Policy. Available online: https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/national-low-risk-drinking-recommendations-drinking-guidelines_en (accessed on 19 June 2024).
- Alcohol—PAHO/WHO Pan American Health Organization. Available online: https://www.paho.org/en/topics/alcohol (accessed on 19 June 2024).
- Prestianni, R.; Matraxia, M.; Naselli, V.; Pirrone, A.; Badalamenti, N.; Ingrassia, M.; Gaglio, R.; Settanni, L.; Columba, P.; Maggio, A.; et al. Use of Sequentially Inoculation of Saccharomyces cerevisiae and Hanseniaspora uvarum Strains Isolated from Honey By-Products to Improve and Stabilize the Quality of Mead Produced in Sicily. Food Microbiol. 2022, 107, 104064. [Google Scholar] [CrossRef] [PubMed]
- Mazauric, J.P.; Salmon, J.M. Interactions between Yeast Lees and Wine Polyphenols during Simulation of Wine Aging: I. Analysis of Remnant Polyphenolic Compounds in the Resulting Wines. J. Agric. Food Chem. 2005, 53, 5647–5653. [Google Scholar] [CrossRef]
- Lopes, A.C.A.; Costa, R.; Andrade, R.P.; Lima, L.M.Z.; Santiago, W.D.; Cardoso, M.G.; Duarte, W.F. Impact of Saccharomyces cerevisiae single inoculum and mixed inoculum with Meyerozyma caribbica on the quality of mead. Eur. Food Res. Technol. 2020, 246, 2175–2185. [Google Scholar] [CrossRef]
- Akalın, H.; Bayram, M.; Anlı, R.E. Determination of some individual phenolic compounds and antioxidant capacity of mead produced from different types of honey. J. Inst. Brew. 2017, 123, 167–174. [Google Scholar] [CrossRef]
- Kahoun, D.; Řezková, S.; Královský, J. Effect of Heat Treatment and Storage Conditions on Mead Composition. Food Chem. 2017, 219, 357–363. [Google Scholar] [CrossRef]
- Neffe-Skocińska, K.; Karbowiak, M.; Kruk, M.; Kołożyn-Krajewska, D.; Zielińska, D. Polyphenol and Antioxidant Properties of Food Obtained by the Activity of Acetic Acid Bacteria (AAB)—A Systematic Review. J. Funct. Foods 2023, 107, 105691. [Google Scholar] [CrossRef]
- Gulçin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Larsen, P.; Ahmed, M. Evaluation of Antioxidant Potential of Honey Drops and Honey Lozenges. Food Chem. Adv. 2022, 1, 100013. [Google Scholar] [CrossRef]
Tests | S. boulardii (g/L) | Kombucha (mL/L) |
---|---|---|
1 | −1 (0.5) | −1 (20.0) |
2 | +1 (1.0) | −1 (20.0) |
3 | −1 (0.5) | +1 (30.0) |
4 | +1 (1.0) | +1 (30.0) |
5 *Cp | 0 (0.75) | 0 (25.0) |
6 *Cp | 0 (0.75) | 0 (25.0) |
7 *Cp | 0 (0.75) | 0 (25.0) |
Tests | S. boulardii (g/L) (Initial) | Kombucha (mL/L) (Initial) | pH (Final) | Total Acidity (% Lactic Acid) (Final) | Soluble Solids (°Brix) (Final) | Alcohol Content (%) (Final) | Log10 Yeast Count (CFU/mL) (Final) | Log10 Lactic Acid Bacteria Count (CFU/mL) (Final) |
---|---|---|---|---|---|---|---|---|
1 | −1 (0.5) | −1 (20.0) | 3.17 | 0.60 | 17.90 | 6.45 | 7.36 | 8.23 |
2 | 1 (1.0) | −1 (20.0) | 3.19 | 0.53 | 16.90 | 6.80 | 7.25 | 7.65 |
3 | −1 (0.5) | 1 (30.0) | 3.20 | 0.54 | 17.90 | 7.10 | 7.80 | 8.08 |
4 | 1 (1.0) | 1 (30.0) | 3.17 | 0.64 | 17.15 | 8.05 | 7.22 | 7.87 |
5 *Cp | 0 (0.75) | 0 (25.0) | 3.17 | 0.55 | 18.25 | 6.18 | 7.34 | 7.54 |
6 *Cp | 0 (0.75) | 0 (25.0) | 3.33 | 0.59 | 18.45 | 6.05 | 7.51 | 7.20 |
7 *Cp | 0 (0.75) | 0 (25.0) | 3.17 | 0.59 | 18.85 | 6.06 | 7.21 | 7.59 |
Treatment | L* | a* | b* |
---|---|---|---|
T1 | 76.09 ± 1.26 b | 1.82 ± 0.82 a | 35.93 ± 3.05 a |
T2 | 77.56 ± 1.11 a | 1.58 ± 0.49 a | 34.12 ± 1.23 a |
Bioactive Compounds | T1 | T2 |
---|---|---|
Total phenolic (mg de GAE/100 mL) | 17.34 ± 0.22 a | 17.16 ± 0.15 a |
ABTS (µmol TE/100 mL) | 62.92 ± 5.54 a | 68.03 ± 5.04 a |
FRAP (µmol TE/100 mL) | 4.93 ± 0.09 a | 4.94 ± 0.04 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, H.F.d.; Freire, E.N.S.; Monteiro, G.F.; Bogáz, L.T.; Teixeira, R.D.; Junior, F.V.S.; Teixeira, F.D.; Santos, J.V.d.; Carvalho, M.V.d.; Rocha, R.d.S.; et al. Development of Potentially Probiotic Mead from Co-Fermentation by Saccharomyces cerevisiae var. boulardii and Kombucha Microorganisms. Fermentation 2024, 10, 482. https://doi.org/10.3390/fermentation10090482
Souza HFd, Freire ENS, Monteiro GF, Bogáz LT, Teixeira RD, Junior FVS, Teixeira FD, Santos JVd, Carvalho MVd, Rocha RdS, et al. Development of Potentially Probiotic Mead from Co-Fermentation by Saccharomyces cerevisiae var. boulardii and Kombucha Microorganisms. Fermentation. 2024; 10(9):482. https://doi.org/10.3390/fermentation10090482
Chicago/Turabian StyleSouza, Handray Fernandes de, Eduardo Novais Souza Freire, Giovana Felício Monteiro, Lorena Teixeira Bogáz, Ricardo Donizete Teixeira, Fabiano Vaquero Silva Junior, Felipe Donizete Teixeira, João Vitor dos Santos, Marina Vieira de Carvalho, Ramon da Silva Rocha, and et al. 2024. "Development of Potentially Probiotic Mead from Co-Fermentation by Saccharomyces cerevisiae var. boulardii and Kombucha Microorganisms" Fermentation 10, no. 9: 482. https://doi.org/10.3390/fermentation10090482
APA StyleSouza, H. F. d., Freire, E. N. S., Monteiro, G. F., Bogáz, L. T., Teixeira, R. D., Junior, F. V. S., Teixeira, F. D., Santos, J. V. d., Carvalho, M. V. d., Rocha, R. d. S., da Cruz, A. G., Bell, J. M. L. N. d. M., Brandi, I. V., & Kamimura, E. S. (2024). Development of Potentially Probiotic Mead from Co-Fermentation by Saccharomyces cerevisiae var. boulardii and Kombucha Microorganisms. Fermentation, 10(9), 482. https://doi.org/10.3390/fermentation10090482