Effects of Soybean Meal Fermented by Lactobacillus plantarum NX69 on Growth Performance and Intestinal Health of Nursery Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Animal Trial Design and Feeding Management
2.2. Sample Collection
2.3. Measurement of Growth Performance Indicators
2.4. Measurement of Intestinal Tissue Structure and Morphology in Nursery Pigs
2.5. RT-qPCR Detection of mRNA Expression of Cecal Mucosal Barrier Factors in Nursery Pigs
2.6. Extraction of Total Microbial DNA from Cecal Contents of Nursery Pigs
2.7. 16S rDNA Amplicon Sequencing of Cecal Microbiota in Nursery Pigs
2.8. Measurement of Cecal Metabolites in Nursery Pigs
2.9. Correlation Analysis Using Linkbio’s Correlation Clustering Heatmap
2.10. Statistical Analysis
3. Results
3.1. Effect of NX69 Fermented Soybean Meal on Growth Performance of Nursery Pigs
3.2. Effect of NX69 Fermented Soybean Meal on Intestinal Tissue Morphology of Nursery Pigs
3.3. Effect of NX69 Fermented Soybean Meal on mRNA Expression of Intestinal Mucosal Factors in Pigs
3.4. Impact of NX69 Fermented Soybean Meal on Cecal Microbiota Abundance in Nursery Pigs
3.5. Effect of NX69 Fermented Soybean Meal on the Cecal Microbiota of Pigs
3.6. Identification of Core Gut Microbiota in Nursery Pigs
3.7. Effect of NX69 Fermented Soybean Meal on Cecal Metabolites in Nursery Pigs
3.8. Correlation Analysis Between Differential Metabolites and Differential Bacterial Genera
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castillo Zuniga, J.; Fresno Rueda, A.M.; Samuel, R.S.; St-Pierre, B.; Levesque, C.L. Impact of Lactobacillus- and Bifidobacterium-Based Direct-Fed Microbials on the Performance, Intestinal Morphology, and Fecal Bacterial Populations of Nursery Pigs. Microorganisms 2024, 12, 1786. [Google Scholar] [CrossRef]
- Yu, J.; Zuo, B.; Li, Q.; Zhao, F.; Wang, J.; Huang, W.; Sun, Z.; Chen, Y.; Schmitz-Esser, S. Dietary supplementation with Lactiplantibacillus plantarum P-8 improves the growth performance and gut microbiota of weaned piglets. Microbiol. Spectr. 2024, 12, e0234522. [Google Scholar] [CrossRef]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef]
- Wang, S.; Yao, B.; Gao, H.; Zang, J.; Tao, S.; Zhang, S.; Huang, S.; He, B.; Wang, J. Combined supplementation of Lactobacillus fermentum and Pediococcus acidilactici promoted growth performance, alleviated inflammation, and modulated intestinal microbiota in weaned pigs. BMC Vet. Res. 2019, 15, 239. [Google Scholar] [CrossRef]
- Zhaxi, Y.; Meng, X.; Wang, W.; Wang, L.; He, Z.; Zhang, X.; Pu, W. Duan-Nai-An, A Yeast Probiotic, Improves Intestinal Mucosa Integrity and Immune Function in Weaned Piglets. Sci. Rep. 2020, 10, 4556. [Google Scholar] [CrossRef] [PubMed]
- Seddik, H.A.; Bendali, F.; Gancel, F.; Fliss, I.; Spano, G.; Drider, D. Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics Antimicrob. Proteins 2017, 9, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, M.; Zheng, Y.; Miao, K.; Qu, X. The Carbohydrate Metabolism of Lactiplantibacillus plantarum. Int. J. Mol. Sci. 2021, 22, 13452. [Google Scholar] [CrossRef] [PubMed]
- Missotten, J.A.M.; Michiels, J.; Ovyn, A.; De Smet, S.; Dierick, N.A. Fermented liquid feed for pigs. Arch. Anim. Nutr. 2010, 64, 437–466. [Google Scholar] [CrossRef]
- Pereira, W.A.; Franco, S.M.; Reis, I.L.; Mendonça, C.M.N.; Piazentin, A.C.M.; Azevedo, P.O.S.; Tse, M.L.P.; De Martinis, E.C.P.; Gierus, M.; Oliveira, R.P.S. Beneficial effects of probiotics on the pig production cycle: An overview of clinical impacts and performance. Vet. Microbiol. 2022, 269, 109431. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Zhu, X.; Cai, L.; Farooq, M.Z.; Yan, X. Bacteroides-derived isovaleric acid enhances mucosal immunity by facilitating intestinal IgA response in broilers. J. Anim. Sci. Biotechnology. 2023, 14, 4. [Google Scholar] [CrossRef]
- Chen, J.; Mou, L.; Wang, L.; Wu, G.; Dai, X.; Chen, Q.; Zhang, J.; Luo, X.; Xu, F.; Zhang, M.; et al. Mixed Bacillus subtilis and Lactiplantibacillus plantarum-fermented feed improves gut microbiota and immunity of Bamei piglet. Front. Microbiol. 2024, 15, 1442373. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Gong, T.; Jiang, Z.; Lu, Z.; Wang, Y. The Role of Probiotics in Alleviating Postweaning Diarrhea in Piglets From the Perspective of Intestinal Barriers. Front. Cell. Infect. Microbiol. 2022, 12, 883107. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, C.; Ye, J.; Chen, H.; Tao, R. Effects of dietary supplementation of fermented Ginkgo biloba L. residues on growth performance, nutrient digestibility, serum biochemical parameters and immune function in weaned piglets. Anim. Sci. J. 2015, 86, 790–799. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Swine, 11th ed.; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Yu, B.; Chen, D.; Mao, X.; Zheng, P.; Luo, J.; He, J. Dietary chlorogenic acid improves growth performance of weaned pigs through maintaining antioxidant capacity and intestinal digestion and absorption function. J. Anim. Sci. 2018, 96, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yan, G.; Meng, X.; Wang, X.; Zhao, Z.; Zhou, S.; Li, G.; Zhang, Q.; Wei, X. Effects of Lactobacillus plantarum and Pediococcus acidilactici co-fermented feed on growth performance and gut microbiota of nursery pigs. Front. Vet. Sci. 2022, 9, 1076906. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.M.; Jiang, Z.Y.; Zheng, C.T.; Wang, L.; Yang, X.F. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K881. J. Anim. Sci. 2014, 92, 1496–1503. [Google Scholar] [CrossRef]
- Kuo, W.; Odenwald, M.A.; Turner, J.R.; Zuo, L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann. N. Y. Acad. Sci. 2022, 1514, 21–33. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, D.; Nakamura, M. Biological Clock and Inflammatory Bowel Disease Review: From the Standpoint of the Intestinal Barrier. Gastroenterol. Res. Pract. 2022, 2022, 2939921. [Google Scholar] [CrossRef]
- Zuo, L.; Kuo, W.-T.; Turner, J.R. Tight Junctions as Targets and Effectors of Mucosal Immune Homeostasis. Cell. Mol. Gastroenterol. Hepatol. 2020, 10, 327–340. [Google Scholar] [CrossRef]
- Saito, A.C.; Endo, C.; Fukazawa, Y.; Higashi, T.; Chiba, H. Effects of TAMP family on the tight junction strand network and barrier function in epithelial cells. Ann. N. Y. Acad. Sci. 2022, 1517, 234–250. [Google Scholar] [CrossRef]
- Liang, C.; Fu, R.; Chen, D.; Tian, G.; He, J.; Zheng, P.; Mao, X.; Yu, B. Effects of mixed fibres and essential oils blend on growth performance and intestinal barrier function of piglets challenged with enterotoxigenic Escherichia coli K88. J. Anim. Physiol. Anim. Nutr. 2023, 107, 1356–1367. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Bottoms, K.A.; Stein, H.H.; Blavi, L.; Bradley, C.L.; Bergstrom, J.; Knapp, J.; Story, R.; Maxwell, C.; Tsai, T.; et al. Dietary Organic Acids Modulate Gut Microbiota and Improve Growth Performance of Nursery Pigs. Microorganisms 2021, 9, 110. [Google Scholar] [CrossRef]
- Xu, B.; Fu, J.; Zhu, L.; Li, Z.; Jin, M.; Wang, Y. Overall assessment of antibiotic substitutes for pigs: A set of meta-analyses. J. Anim. Sci. Biotechnol. 2021, 12, 3. [Google Scholar] [CrossRef]
- Gustafsson, J.K.; Johansson, M.E.V. The role of goblet cells and mucus in intestinal homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 785–803. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Wang, L.; Xiong, Y.; Wen, X.; Wang, Z.; Yang, X.; Gao, K.; Jiang, Z. Effects of Lactobacillus reuteri LR1 on the growth performance, intestinal morphology, and intestinal barrier function in weaned pigs. J. Anim. Sci. 2018, 96, 2342–2351. [Google Scholar] [CrossRef] [PubMed]
- Pupa, P.; Apiwatsiri, P.; Sirichokchatchawan, W.; Pirarat, N.; Maison, T.; Koontanatechanon, A.; Prapasarakul, N. Use of Lactobacillus plantarum (strains 22F and 25F) and Pediococcus acidilactici (strain 72N) as replacements for antibiotic-growth promotants in pigs. Sci. Rep. 2021, 11, 12028. [Google Scholar] [CrossRef]
- Finn, D.R. A metagenomic alpha-diversity index for microbial functional biodiversity. FEMS Microbiol. Ecol. 2024, 100, fiae019. [Google Scholar] [CrossRef]
- Lee, A.; Le Bon, M.; Connerton, I.F.; Mellits, K.H. Common colonic community indicators of the suckling pig microbiota where diversity and abundance correlate with performance. FEMS Microbiol. Ecol. 2022, 98, fiac048. [Google Scholar] [CrossRef]
- Wu, D.-T.; Yuan, Q.; Guo, H.; Fu, Y.; Li, F.; Wang, S.-P.; Gan, R.-Y. Dynamic changes of structural characteristics of snow chrysanthemum polysaccharides during in vitro digestion and fecal fermentation and related impacts on gut microbiota. Food Res. Int. 2021, 141, 109888. [Google Scholar] [CrossRef]
- Lapébie, P.; Lombard, V.; Drula, E.; Terrapon, N.; Henrissat, B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat. Commun. 2019, 10, 2043. [Google Scholar] [CrossRef]
- Price, K.L.; Totty, H.R.; Lee, H.B.; Utt, M.D.; Fitzner, G.E.; Yoon, I.; Ponder, M.A.; Escobar, J. Use of Saccharomyces cerevisiae fermentation product on growth performance and microbiota of weaned pigs during Salmonella infection1. J. Anim. Sci. 2010, 88, 3896–3908. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zheng, J.; Deng, K.; Chen, L.; Zhao, X.L.; Jiang, X.M.; Fang, Z.F.; Che, L.Q.; Xu, S.Y.; Feng, B.; et al. Supplementation with organic acids showing different effects on growth performance, gut morphology and microbiota of weaned pigs fed with highly or less digestible diets. J. Anim. Sci. 2018, 96, 3302–3318. [Google Scholar] [CrossRef]
- Liang, J.; Kou, S.; Chen, C.; Raza, S.H.A.; Wang, S.; Ma, X.; Zhang, W.-J.; Nie, C. Effects of Clostridium butyricum on growth performance, metabonomics and intestinal microbial differences of weaned piglets. BMC Microbiol. 2021, 21, 85. [Google Scholar] [CrossRef]
- Wei, X.; Tsai, T.; Howe, S.; Zhao, J. Weaning Induced Gut Dysfunction and Nutritional Interventions in Nursery Pigs: A Partial Review. Animals 2021, 11, 1279. [Google Scholar] [CrossRef]
- Chen, T.; Long, W.; Zhang, C.; Liu, S.; Zhao, L.; Hamaker, B.R. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides dominated gut microbiota. Sci. Rep. 2017, 7, 2594. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Chen, G.; Wan, P.; Dai, Z.; Hu, B.; Chen, L.; Ou, S.; Zeng, X.; Sun, Y. Modulating Effects of Dicaffeoylquinic Acids from Ilex kudingcha on Intestinal Microecology In Vitro. J. Agric. Food Chem. 2017, 65, 10185–10196. [Google Scholar] [CrossRef]
- Tudela, H.; Claus, S.P.; Saleh, M. Next Generation Microbiome Research: Identification of Keystone Species in the Metabolic Regulation of Host-Gut Microbiota Interplay. Front. Cell Dev. Biol. 2021, 9, 719072. [Google Scholar] [CrossRef] [PubMed]
- Brestoff, J.R.; Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 2013, 14, 676–684. [Google Scholar] [CrossRef]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef]
Item | C1 | T2 | T3 |
---|---|---|---|
Ingredient | |||
Soybean meal (%) | 58.5 | 57.5 | 55.5 |
Corn (%) | 21.0 | 21.0 | 21.0 |
Puffed soybean (%) | 6.0 | 5.5 | 5.0 |
NX69 (%) | 0 | 1.0 | 3.0 |
Fish meal (%) | 4.0 | 4.0 | 4.0 |
Whey powder (%) | 5.0 | 5.5 | 6.0 |
Soybean oil (%) | 2.0 | 2.0 | 2.0 |
Salt (%) | 0.3 | 0.25 | 0.25 |
Stone powder (%) | 1.2 | 1.25 | 1.26 |
Calcium hydrogen phosphate (%) | 1.0 | 1.0 | 1.0 |
Vitamin premix2 (%) | 0.2 | 0.21 | 0.2 |
Trace mineral premix3 (%) | 0.5 | 0.5 | 0.5 |
L-Lysine (%) | 0.20 | 0.16 | 0.15 |
DL-Methionine (%) | 0.05 | 0.08 | 0.1 |
L-Threonine (%) | 0.05 | 0.05 | 0.05 |
Analyzed nutrient level | |||
Metabolizable energy (MJ/kg) | 13.85 | 13.83 | 13.88 |
Crude protein (%) | 17.50 ± 0.85 | 17.47 ± 0.70 | 17.37 ± 0.40 |
Crude fat (%) | 4.22 ± 0.32 | 4.16 ± 0.24 | 4.14 ± 0.28 |
Ash (%) | 6.47 ± 0.40 | 6.59 ± 0.42 | 6.67 ± 0.42 |
Calcium (%) | 0.77 ± 0.06 | 0.76 ± 0.03 | 0.76 ± 0.05 |
Phosphorus, total (%) | 0.69 ± 0.05 | 0.69 ± 0.04 | 0.70 ± 0.04 |
Lysine (%) | 1.24 ± 0.06 | 1.23 ± 0.05 | 1.23 ± 0.03 |
Methionine (%) | 0.35 ± 0.02 | 0.35 ± 0.03 | 0.34 ± 0.03 |
Threonine (%) | 0.68 ± 0.02 | 0.71 ± 0.02 | 0.72 ± 0.02 |
Growth Performance | C1 | T2 | T3 |
---|---|---|---|
Initial weight/kg | 11.58 ± 1.55 b | 16.95 ± 0.668 a | 11.82 ± 0.6 b |
The end weight/kg | 24.34 ± 0.88 b | 36.26 ± 0.6 a | 28.31 ± 0.36 b |
Average daily gain/kg | 0.42 ± 0.05 c | 0.64 ± 0.01 a | 0.55 ± 0.01 b |
Average daily feed intake/kg | 1.26 ± 0.44 a | 0.93 ± 0.04 b | 0.93 ± 0.01 b |
Feed to body weight ratio (F/G) | 2.97 ± 0.40 a | 1.45 ± 0.68 b | 1.69 ± 0.53 b |
C1 | T2 | T3 | |
---|---|---|---|
Villus height(mm) | 0.50 ± 0.06 b | 0.76 ± 0.11 a | 0.84 ± 0.17 a |
Crypt depth(mm) | 0.62 ± 0.06 a | 0.58 ± 0.05 a | 0.46 ± 0.03 b |
Villus height/Crypt depth | 0.82 ± 0.15 c | 1.32 ± 0.21 b | 1.89 ± 0.40 a |
Sample | Observed_otus | Shannon | Simpson | Chao1 | Goods_coverage | Pielou_e |
---|---|---|---|---|---|---|
C1_M1 | 617 | 6.79 | 0.96 | 617.00 | 1.00 | 0.73 |
C1_M2 | 691 | 5.98 | 0.91 | 693.22 | 1.00 | 0.63 |
C1_M3 | 416 | 5.42 | 0.89 | 416.05 | 1.00 | 0.62 |
T2_M1 | 899 | 7.15 | 0.96 | 903.20 | 1.00 | 0.73 |
T2_M2 | 904 | 7.37 | 0.98 | 905.82 | 1.00 | 0.75 |
T2_M3 | 947 | 7.56 | 0.97 | 951.18 | 1.00 | 0.76 |
T3_M1 | 717 | 7.31 | 0.98 | 718.24 | 1.00 | 0.77 |
T3_M2 | 910 | 7.84 | 0.99 | 911.18 | 1.00 | 0.80 |
T3_M3 | 924 | 7.69 | 0.98 | 927.06 | 1.00 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Lin, F.; Peng, S.; Ma, Y.; Wu, H.; Li, Z. Effects of Soybean Meal Fermented by Lactobacillus plantarum NX69 on Growth Performance and Intestinal Health of Nursery Pigs. Fermentation 2025, 11, 235. https://doi.org/10.3390/fermentation11050235
Zhao M, Lin F, Peng S, Ma Y, Wu H, Li Z. Effects of Soybean Meal Fermented by Lactobacillus plantarum NX69 on Growth Performance and Intestinal Health of Nursery Pigs. Fermentation. 2025; 11(5):235. https://doi.org/10.3390/fermentation11050235
Chicago/Turabian StyleZhao, Mengshi, Fengqiang Lin, Song Peng, Yaxiong Ma, Huini Wu, and Zhaolong Li. 2025. "Effects of Soybean Meal Fermented by Lactobacillus plantarum NX69 on Growth Performance and Intestinal Health of Nursery Pigs" Fermentation 11, no. 5: 235. https://doi.org/10.3390/fermentation11050235
APA StyleZhao, M., Lin, F., Peng, S., Ma, Y., Wu, H., & Li, Z. (2025). Effects of Soybean Meal Fermented by Lactobacillus plantarum NX69 on Growth Performance and Intestinal Health of Nursery Pigs. Fermentation, 11(5), 235. https://doi.org/10.3390/fermentation11050235