A Digital Approach to Model Quality and Sensory Traits of Beers Fermented under Sonication Based on Chemical Fingerprinting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Physicochemical Measurements
2.2.1. Physical Measurements—RoboBEER
2.2.2. Near-Infrared Spectroscopy
2.2.3. Chemical Measurements
2.3. Sensory Evaluation
2.3.1. Descriptive Sensory Session
2.3.2. Consumer sensory session
2.4. Statistical Analysis and Machine Learning Modeling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Euromonitor-International. Beer in Australia; Euromonitor International: London, UK, 2016. [Google Scholar]
- Euromonitor-International. Statistics—Alcoholic Drinks; Euromonitor-International: London, UK, 2018. [Google Scholar]
- Gonzalez Viejo, C.; Torrico, D.D.; Dunshea, F.R.; Fuentes, S. Bubbles, Foam Formation, Stability and Consumer Perception of Carbonated Drinks: A Review of Current, New and Emerging Technologies for Rapid Assessment and Control. Foods 2019, 8, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Howell, K.; Dunshea, F. Assessment of Beer Quality Based on a Robotic Pourer, Computer Vision, and Machine Learning Algorithms Using Commercial Beers. J. Food Sci. 2018, 83, 1381–1388. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Torrico, D.; Dunshea, F.; Fuentes, S. Emerging Technologies Based on Artificial Intelligence to Assess the Quality and Consumer Preference of Beverages. Beverages 2019, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Viejo, C.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sens. Actuators B Chem. 2020, 308, 127688. [Google Scholar] [CrossRef]
- Lees, M.; Rogers, P.; Campbell, D.; Pecar, M.; Sudarmana, D. Intelligent Systems for the Brewery based on Real-Time Measurement of Biological Parameters. In Proceedings of the 9th Australian Barley Technical Symposium, Melbourne, Austrilia, 12–16 September 1999; pp. 2–8. [Google Scholar]
- Gonzalez Viejo, C.; Fuentes, S.; Howell, K.; Torrico, D.; Dunshea, F. Robotics and computer vision techniques combined with non-invasive consumer biometrics to assess quality traits from beer foamability using machine learning: A potential for artificial intelligence applications. Food Control 2018. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Torrico, D.; Dunshea, F.; Fuentes, S. Development of Artificial Neural Network Models to Assess Beer Acceptability Based on Sensory Properties Using a Robotic Pourer: A Comparative Model Approach to Achieve an Artificial Intelligence System. Beverages 2019, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Bamforth, C. Perceptions of beer foam. J. Inst. Brew. 2000, 106, 229–238. [Google Scholar] [CrossRef]
- Donadini, G.; Fumi, M.D.; de Faveri, M.D. How Foam Appearance Influences the Italian Consumer’s Beer Perception and Preference. J. Inst. Brew. 2011, 117, 523–533. [Google Scholar] [CrossRef]
- Dale, C.; West, C.; Eade, J.; Rito-Palomares, M.; Lyddiatt, A. Studies on the physical and compositional changes in collapsing beer foam. Chem. Eng. J. 1999, 72, 83–89. [Google Scholar] [CrossRef]
- Campbell, G.M.; Mougeot, E. Creation and characterisation of aerated food products. Trends Food Sci. Technol. 1999, 10, 283–296. [Google Scholar] [CrossRef]
- Bamforth, C.; Russell, I.; Stewart, G. Beer: A Quality Perspective; Academic press: Cambridge, MA, USA, 2011. [Google Scholar]
- Pozo-Bayón, M.Á.; Santos, M.; Martín-Álvarez, P.J.; Reineccius, G. Influence of carbonation on aroma release from liquid systems using an artificial throat and a proton transfer reaction–mass spectrometric technique (PTR–MS). Flavour Fragr. J. 2009, 24, 226–233. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Li, G.; Collmann, R.; Condé, B.; Torrico, D. Development of a robotic pourer constructed with ubiquitous materials, open hardware and sensors to assess beer foam quality using computer vision and pattern recognition algorithms: RoboBEER. Food Res. Int. 2016, 89, 504–513. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Lee, M.; Hu, Y.; Chakraborty, S.; Dunshea, F. The Effect of Soundwaves on Foamability Properties and Sensory of Beers with a Machine Learning Modeling Approach. Beverages 2018, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Viejo, C.; Torrico, D.; Dunshea, F.; Fuentes, S. The Effect of Sonication on Bubble Size and Sensory Perception of Carbonated Water to Improve Quality and Consumer Acceptability. Beverages 2019, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Viejo, C.; Caboche, C.H.; Kerr, E.D.; Pegg, C.L.; Schulz, B.L.; Howell, K.; Fuentes, S. Development of a rapid method to assess beer foamability and quality based on relative protein content using RoboBEER and machine learning modeling. Beverages 2020, 6, 28. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, S.; Zhang, W. Predicting acetic acid content in the final beer using neural networks and support vector machine. J. Inst. Brew. 2012, 118, 361–367. [Google Scholar] [CrossRef]
- Grassi, S.; Amigo, J.M.; Lyndgaard, C.B.; Foschino, R.; Casiraghi, E. Beer fermentation: Monitoring of process parameters by FT-NIR and multivariate data analysis. Food Chem. 2014, 155, 279–286. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Torrico, D.; Howell, K.; Dunshea, F. Assessment of beer quality based on foamability and chemical composition using computer vision algorithms, near infrared spectroscopy and machine learning algorithms. J. Sci. Food Agric. 2018, 98, 618–627. [Google Scholar] [CrossRef]
- Giovenzana, V.; Beghi, R.; Guidetti, R. Rapid evaluation of craft beer quality during fermentation process by vis/NIR spectroscopy. J. Food Eng. 2014, 142, 80–86. [Google Scholar] [CrossRef]
- Fuentes, S.; Gonzalez Viejo, C.; Torrico, D.; Dunshea, F. Development of a biosensory computer application to assess physiological and emotional responses from sensory panelists. Sensors 2018, 18, 2958. [Google Scholar] [CrossRef] [Green Version]
- McClure, W.F.; Stanfield, D.L. Near-Infrared Spectroscopy of Biomaterials. Handb. Vib. Spectrosc. 2002. [Google Scholar] [CrossRef]
- Wilson, B.C.; Tuchin, V.V.; Tanev, S. Advances in Biophotonics; IOS Press: Amsterdam, The Netherlands, 2005; Volume 369. [Google Scholar]
- Burns, D.A.; Ciurczak, E.W. Handbook of Near-Infrared Analysis; CRC press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Araka, P.P.; Okparanma, R.N.; Ayotamuno, J.M.; Nawar, S.; Mouazen, A.M. Variability of visible and near-infrared (vis-NIR) diffuse spectral reflectance of cement-based solidified/stabilized pre-treated oil-based drill cuttings. J. Civ. Eng. Constr. Technol. 2019, 10, 60–70. [Google Scholar]
- Biendl, M.; Engelhard, B.; Forster, A.; Gahr, A.; Lutz, A.; Mitter, W.; Schmidt, R.; Schönberger, C. Hops: Their Cultivation, Composition and Usage; Fachverlag Hans Carl: Nuremberg, Germany, 2015. [Google Scholar]
- Wang, S. Infrared Spectroscopy for Food Quality Analysis and Control.; Academic press: Cambridge, MA, USA, 2010. [Google Scholar]
Treatment | Label | Net Content |
---|---|---|
Control | C | 330 mL |
Sonication in fermentation | SF | 330 mL |
Sonication in carbonation | SC | 330 mL |
Parameter | Label |
---|---|
Maximum volume of foam | MaxVol |
Lifetime of foam | LTF |
Total lifetime of foam | TLTF |
Foam drainage | FDrain |
Small bubbles in the foam | SmBubb |
Medium bubbles in the foam | MedBubb |
Large bubbles in the foam | LgBubb |
Alcohol gas release | Alcohol gas release |
Carbon dioxide | CO2 |
Parameter | Label |
---|---|
Foam stability | FStability |
Foam height | FHeight |
Foam texture (bubble size in the foam) | FTexture |
Color Intensity | CIntensity |
Clarity | Clarity |
Aroma Hops | AHops |
Aroma Spices | ASpices |
Aroma Floral | AFloral |
Aroma Fruity | AFruity |
Aroma Burnt Sugar | ABurntSugar |
Aroma Yeast | AYeast |
Aroma Nuts | ANuts |
Aroma Grains | AGrains |
Mouthfeel-Viscosity | MViscosity |
Mouthfeel-Astringency | MAstringency |
Mouthfeel-Warming | MWarming |
Mouthfeel-Carbonation | MCarbonation |
Taste Bitter | TBitter |
Taste Sweet | TSweet |
Taste Sour | TSour |
Flavor Hops | FHops |
Parameter | Label |
---|---|
Foam stability | LFStability |
Foam height | LFHeight |
Foam texture | LFTexture |
Aroma | Aroma |
Carbonation | LMCarbonation |
Taste Bitter | LTBitter |
Taste Sweet | LTSweet |
Taste Sour | LTSour |
Flavor | Flavor |
Overall liking | LOverall |
Perceived Quality | Quality |
Model | Stage | Observations (Samples × Targets) | Correlation Coefficient (R) | Slope | Performance (MSE) |
Model 1 | Training | 454 | 0.98 | 0.95 | 0.01 |
Validation | 97 | 0.88 | 0.82 | 0.10 | |
Testing | 97 | 0.83 | 0.84 | 0.10 | |
Overall | 648 | 0.94 | 0.91 | - | |
Model 2 | Training | 794 | 0.99 | 0.99 | 0.04 |
Validation | 170 | 0.96 | 0.94 | 0.30 | |
Testing | 170 | 0.97 | 0.97 | 0.30 | |
Overall | 1134 | 0.99 | 0.98 | - | |
Model 3 | Training | 416 | 0.99 | 0.97 | 0.02 |
Validation | 89 | 0.94 | 0.99 | 0.20 | |
Testing | 89 | 0.92 | 1.10 | 0.20 | |
Overall | 594 | 0.97 | 0.99 | - | |
Model | Stage | Samples | Accuracy | Error | Performance (MSE) |
Model 4 | Training | 38 | 100% | 0.0% | <0.01 |
Validation | 8 | 90.9% | 9.1% | 0.05 | |
Testing | 8 | 90.9% | 9.1% | 0.02 | |
Overall | 54 | 96.3% | 3.7% | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez Viejo, C.; Fuentes, S. A Digital Approach to Model Quality and Sensory Traits of Beers Fermented under Sonication Based on Chemical Fingerprinting. Fermentation 2020, 6, 73. https://doi.org/10.3390/fermentation6030073
Gonzalez Viejo C, Fuentes S. A Digital Approach to Model Quality and Sensory Traits of Beers Fermented under Sonication Based on Chemical Fingerprinting. Fermentation. 2020; 6(3):73. https://doi.org/10.3390/fermentation6030073
Chicago/Turabian StyleGonzalez Viejo, Claudia, and Sigfredo Fuentes. 2020. "A Digital Approach to Model Quality and Sensory Traits of Beers Fermented under Sonication Based on Chemical Fingerprinting" Fermentation 6, no. 3: 73. https://doi.org/10.3390/fermentation6030073
APA StyleGonzalez Viejo, C., & Fuentes, S. (2020). A Digital Approach to Model Quality and Sensory Traits of Beers Fermented under Sonication Based on Chemical Fingerprinting. Fermentation, 6(3), 73. https://doi.org/10.3390/fermentation6030073