Lignocellulose Degradation and Enzymatic Hydrolysis of Soybean Incorporated Sorghum Silage Inoculated with Feruloyl-Esterase Producing Lactobacillus plantarum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forages, Inoculant and Ensiling
2.2. Silage Opening and Chemical Analyses
2.3. SEM and FTIR Analysis
2.4. Enzymatic Saccharification
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Soybean Incorporated Sorghum Forage before Ensiling
3.2. Fermentation Profile of Soybean Incorporated Sorghum Silage Inoculated with or without L. Plantarum A1
3.3. Nitrogen Fractions of Soybean Incorporated Sorghum Silage Inoculated with or without L. plantarum A1
3.4. Non-Fiber Carbohydrates and Fiber Fractions of Soybean Incorporated Sorghum Silage Inoculated with or without L. plantarum A1
3.5. Ferulic Acid Concentration of Soybean Incorporated Sorghum Silage Inoculated with or without L. plantarum A1
3.6. Structural and Morphological Changes of Soybean Incorporated Sorghum Silage Inoculated with or without L. plantarum A1
3.7. Enzymatic Saccharification of Soybean Incorporated Sorghum Silage Inoculated with or without L. plantarum A1
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, T.; Lü, X. Overcome Saccharification Barrier. In Advances in 2nd Generation of Bioethanol Production; Elsevier: Amsterdam, The Netherlands, 2021; pp. 137–159. [Google Scholar]
- Tyner, W.E. Biofuel Economics and Policy. In Bioenergy; Elsevier: Amsterdam, The Netherlands, 2015; pp. 511–521. [Google Scholar]
- Tyner, W.E. Policy Update: Cellulosic Biofuels Market Uncertainties and Government Policy. Biofuels 2010, 1, 389–391. [Google Scholar] [CrossRef]
- Zielinski, M.; Rusanowska, P.; Zielinska, M.; Dudek, M.; Nowicka, A.; Purwin, C.; Fijałkowska, M.; De bowski, M. Influence of Preparation of Sida Hermaphrodita Silages on Its to Methane. Renew. Energy 2021, 163, 437–444. [Google Scholar] [CrossRef]
- Kitamoto, H.K.; Horita, M.; Cai, Y.; Shinozaki, Y.; Sakaki, K. Silage Produces Biofuel for Local Consumption. Biotechnol. Biofuels 2011, 4, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagel, S.A.; Broderick, G.A. Effect of Formic Acid or Formaldehyde Treatment of Alfalfa Silage on Nutrient Utilization by Dairy Cows 1. J. Dairy Sci. 1992, 75, 140–154. [Google Scholar] [CrossRef]
- Addah, W.; Baah, J.; Mcallister, T.A. Effects of an Exogenous Enzyme-Containing Inoculant on Fermentation Characteristics of Barley Silage and on Growth Performance of Feedlot Steers. Can. J. Anim. Sci. 2016, 96, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.G.; Ham, J.S.; Li, Y.W.; Park, H.S.; Huh, C.; Park, B. Development of a New Lactic Acid Bacterial Inoculant for Fresh Rice Straw Silage. Asian-Australas J. Anim. Sci. 2017, 30, 950–956. [Google Scholar] [CrossRef]
- Jia, T.; Sun, Z.; Gao, R.; Yu, Z. Lactic Acid Bacterial Inoculant Effects on the Vitamin Content of Alfalfa and Chinese Leymus Silage. Asian-Australas J. Anim. Sci. 2019, 32, 1873–1881. [Google Scholar] [CrossRef]
- Ke, W.C.; Ding, W.R.; Xu, D.M.; Ding, L.M.; Zhang, P.; Li, F.D.; Guo, X.S. Effects of Addition of Malic or Citric Acids on Fermentation Quality and Chemical Characteristics of Alfalfa Silage. J. Dairy Sci. 2017, 100, 8958–8966. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, J.S.; Santos, E.M.; dos Santos, A.P.M. Intake and Digestibility of Silages. In Advances in Silage Production and Utilization; IntechOpen: London, UK, 2016; pp. 101–121. [Google Scholar]
- Li, F.H.; Ding, Z.T.; Chen, X.Z.; Zhang, Y.X.; Ke, W.C.; Zhang, X.; Li, Z.Q.; Usman, S.; Guo, X.S. The Effects of Lactobacillus Plantarum with Feruloyl Esterase-Producing Ability or High Antioxidant Activity on the Fermentation, Chemical Composition, and Antioxidant Status of Alfalfa Silage. Anim. Feed Sci. Technol. 2021, 273, 114835. [Google Scholar] [CrossRef]
- Gandra, J.R.; Takiya, C.S.; del Valle, T.A.; Oliveira, E.R.; de Goes, R.H.T.B.; Gandra, E.R.S.; Batista, J.D.O.; Araki, H.M.C. Soybean Whole-Plant Ensiled with Chitosan and Lactic Acid Bacteria: Microorganism Counts, Fermentative Profile, and Total Losses. J. Dairy Sci. 2018, 101, 7871–7880. [Google Scholar] [CrossRef]
- Li, F.; Ke, W.; Ding, Z.; Bai, J.; Zhang, Y.; Xu, D. Pretreatment of Pennisetum Sinese Silages with Ferulic Acid Esterase-Producing Lactic Acid Bacteria and Cellulase at Two Dry Matter Contents: Fermentation Characteristics, Carbohydrates Composition and Enzymatic Saccharification. Bioresour. Technol. 2020, 295, 122261. [Google Scholar] [CrossRef] [PubMed]
- Bolsen, K.K.; Moore, K.J.; Coblentz, W.K.; Siefers, M.K.; White, J.S. Sorghum Silage. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy, Inc. Crop Science Society of America, Inc. Soil Science Society of America, Inc.: South Segoe Road, Madison, WI, USA, 2003; pp. 609–632. [Google Scholar]
- Fernandes, T.; Paula, E.M.; Sultana, H.; Ferraretto, L.F. Short Communication: Influence of Sorghum Cultivar, Ensiling Storage Length, and Microbial Inoculation on Fermentation Profile, N Fractions, Ruminal in Situ Starch Disappearance and Aerobic Stability of Whole-Plant Sorghum Silage. Anim. Feed Sci. Technol. 2020, 266, 114535. [Google Scholar] [CrossRef]
- Lin, W.; Yang, J.; Zheng, Y.; Huang, C.; Yong, Q. Understanding the Effects of Different Residual Lignin Fractions in Acid-Pretreated Bamboo Residues on Its Enzymatic Digestibility. Biotechnol. Biofuels 2021, 14, 143. [Google Scholar] [CrossRef]
- Huang, C.; Lin, W.; Lai, C.; Li, X.; Jin, Y.; Yong, Q. Coupling the Post-Extraction Process to Remove Residual Lignin and Alter the Recalcitrant Structures for Improving the Enzymatic Digestibility of Acid-Pretreated Bamboo Residues. Bioresour. Technol. 2019, 285, 121355. [Google Scholar] [CrossRef]
- Nsereko, V.L.; Smiley, B.K.; Rutherford, W.M.; Spielbauer, A.; Forrester, K.J.; Hettinger, G.H.; Harman, E.K.; Harman, B.R. Influence of Inoculating Forage with Lactic Acid Bacterial Strains That Produce Ferulate Esterase on Ensilage and Ruminal Degradation of Fiber. Anim. Feed Sci. Technol. 2008, 145, 122–135. [Google Scholar] [CrossRef]
- Krueger, N.A.; Adesogan, A.T.; Staples, C.R.; Krueger, W.K.; Dean, D.B.; Littell, R.C. The Potential to Increase Digestibility of Tropical Grasses with a Fungal, Ferulic Acid Esterase Enzyme Preparation. Anim. Feed Sci. Technol. 2008, 145, 95–108. [Google Scholar] [CrossRef]
- Addah, W.; Baah, J.; Okine, E.K.; Mcallister, T.A. A Third-Generation Esterase Inoculant Alters Fermentation Pattern and Improves Aerobic Stability of Barley Silage and the Effi Ciency of Body Weight Gain of Growing Feedlot Cattle 1. J. Anim. Sci. 2012, 90, 1541–1552. [Google Scholar] [CrossRef]
- Li, F.; Ding, Z.; Ke, W.; Xu, D.; Zhang, P.; Bai, J.; Mudassar, S.; Muhammad, I.; Guo, X. Ferulic Acid Esterase-Producing Lactic Acid Bacteria and Cellulase Pretreatments of Corn Stalk Silage at Two Different Temperatures: Ensiling Characteristics, Carbohydrates Composition and Enzymatic Saccharification. Bioresour. Technol. 2019, 282, 211–221. [Google Scholar] [CrossRef]
- Del Pilar Anzola-Rojas, M.; da Fonseca, S.G.; da Silva, C.C.; de Oliveira, V.M.; Zaiat, M. The Use of the Carbon/Nitrogen Ratio and Specific Organic Loading Rate as Tools for Improving Biohydrogen Production in Fixed-Bed Reactors. Biotechnol. Rep. 2015, 5, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.; Lourenc, M.; Díaz, R.F.; Castro, A.; Fievez, V. Effect of Combined Ensiling of Sorghum and Soybean with or without Molasses and Lactobacilli on Silage Quality and In Vitro Rumen Fermentation. Anim. Feed Sci. Technol. 2010, 155, 122–131. [Google Scholar] [CrossRef]
- Harbers, L.H.; Bolsen, K.K.; Hartadi, H. Evaluation of Interseeded Grain Sorghum and Soybeans as a Silage Crop. Kansas Agric. Exp. Stn. Res. Rep. 1992, 108–110. [Google Scholar] [CrossRef] [Green Version]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the Fermentation Quality and Microbial Community of the Mixed Silage of Forage Soybean with Crop Corn or Sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef]
- Bell, L.W.; Moore, A.D. Integrated Crop-Livestock Systems in Australian Agriculture: Trends, Drivers and Implications. Agric. Syst. 2012, 111, 1–12. [Google Scholar] [CrossRef]
- Gawęda, D.; Nowak, A.; Haliniarz, M.; Woźniak, A. Yield and Economic Effectiveness of Soybean Grown Under Different Cropping Systems. Int. J. Plant Prod. 2020, 14, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Sulc, R.M.; Tracy, B.F. Integrated Crop-Livestock Systems in the U.S. Corn Belt. Agron. J. 2007, 99, 335–345. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Wang, Z.; Gao, Y.; Zhao, H.; Li, K.; Li, F.; Malhi, S.S. Effects of Planting Soybean in Summer Fallow on Wheat Grain Yield, Total N and Zn in Grain and Available N and Zn in Soil on the Loess Plateau of China. Eur. J. Agron. 2014, 58, 63–72. [Google Scholar] [CrossRef]
- Zhang, Q.; Bell, L.W.; Shen, Y.; Whish, J.P.M. Indices of Forage Nutritional Yield and Water Use Efficiency amongst Spring-Sown Annual Forage Crops in North-West China. Eur. J. Agron. 2018, 93, 1–10. [Google Scholar] [CrossRef]
- Xu, D.; Ding, Z.; Bai, J.; Ke, W.; Zhang, Y.; Li, F.; Guo, X. Evaluation of the Effect of Feruloyl Esterase-Producing Lactobacillus Plantarum and Cellulase Pretreatments on Lignocellulosic Degradation and Cellulose Conversion of Co-Ensiled Corn Stalk and Potato Pulp. Bioresour. Technol. 2020, 310, 123476. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Thomas, T.A. An Automated Procedure for the Determination of Soluble Carbohydrates in Herbage. J. Sci. Food Agric. 1977, 28, 639–642. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; van Soest, P.J. Standardization of Procedures for Nitrogen Fractionation of Ruminant Feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Mcdonald, P.; Henderson, R. Buffering Capacity of Harbage Samples as a Factor in Ensilage. J. Sci. Food Agric. 1962, 13, 395–400. [Google Scholar] [CrossRef]
- AOAC. Official Methods of the Official Analytical Chemists, 17th ed.; Horwitz, W., Ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2002. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Higgs, R.J.; Chase, L.E.; Ross, D.A.; van Amburgh, M.E. Updating the Cornell Net Carbohydrate and Protein System Feed Library and Analyzing Model Sensitivity to Feed Inputs. J. Dairy Sci. 2015, 98, 6340–6360. [Google Scholar] [CrossRef]
- Desta, S.T.; Yuan, X.J.; Li, J.; Shao, T. Ensiling Characteristics, Structural and Nonstructural Carbohydrate Composition and Enzymatic Digestibility of Napier Grass Ensiled with Additives. Bioresour. Technol. 2016, 221, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Yao, S.; Ou, S.; Lin, J.; Wang, Y.; Peng, X.; Li, A.; Yu, B. Preparation of Ferulic Acid from Corn Bran: Its Improved Extraction and Purification by Membrane Separation. Food Bioprod. Process. 2014, 92, 309–313. [Google Scholar] [CrossRef]
- Nelson, M.L. Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part 11. A New Infrared Ratio for Estimation of Crystallinity in Celluloses I and 11. J. Appl. Plym. Sci. 1964, 8, 1325–1341. [Google Scholar] [CrossRef]
- Resch, M.G.; Baker, J.O.; Decker, S.R. Low Solids Enzymatic Saccharification of Lignocellulosic Biomass: Laboratory Analytical Procedure (LAP); National Renewable Energy Laboratory: Golden, CO, USA, 2015. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Wang, M.; Gao, R.; Franco, M.; Hannaway, D.B.; Ke, W.; Ding, Z.; Yu, Z.; Guo, X. Effect of Mixing Alfalfa with Whole-Plant Corn in Different Proportions on Fermentation Characteristics and Bacterial Community of Silage. Agriculture 2021, 11, 174. [Google Scholar] [CrossRef]
- Kung, L.J.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage Review: Interpretation of Chemical, Microbial, and Organoleptic Components of Silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage Review: Factors Affecting Dry Matter and Quality Losses in Silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Ding, W.; Ke, W.; Li, F.; Zhang, P.; Guo, X. Modulation of Metabolome and Bacterial Community in Whole Crop Corn Silage by Inoculating Homofermentative Lactobacillus Plantarumand Heterofermentative Lactobacillus Buchneri. Front. Microbiol. 2019, 10, 3299. [Google Scholar] [CrossRef] [Green Version]
- Muck, R.E.; Kung, L.J. Effects of Silage Additives on Ensiling. In Silage: Field to Feedbunk. Proceedings of the North American Conference, Hershey, PA, USA, 11–13 February 1997; NRAES Series; Northeast Regional Agricultural Engineering Service, Cooperative Extension: Ithaca, NY, USA, 1997. [Google Scholar]
- Moreira, N.L.; dos Santos, L.F.; Soccol, C.R.; Suguimoto, H.H. Dynamics of Ethanol Production from Deproteinized Whey by Kluyveromyces Marxianus: An Analysis about Buffering Capacity, Thermal and Nitrogen Tolerance. Braz. Arch. Biol. Technol. 2015, 58, 454–461. [Google Scholar] [CrossRef] [Green Version]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of Lactic Acid Bacteria and Molasses Additives on the Microbial Community and Fermentation Quality of Soybean Silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Gandra, J.R.; del Valle, T.A.; Takiya, C.S.; Oliveira, E.R.; Goes, R.H.T.B.; Batista, J.D.O.; Acosta, A.P.; Noia, I.Z.; Antônio, G.; Urio, G.S.; et al. Soybean Silage in Dairy Heifers’ Diets: Ruminal Fermentation, Intake and Digestibility of Nutrients. N. Z. J. Agric. Res. 2020, 1–11. [Google Scholar] [CrossRef]
- Mielenz, J.R.; Bardsley, J.S.; Wyman, C.E. Fermentation of Soybean Hulls to Ethanol While Preserving Protein Value. Bioresour. Technol. 2009, 100, 3532–3539. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Alavi, S.; Vadlani, P.; Amanor-Boadu, V. Thermo-Mechanical Extrusion Pretreatment for Conversion of Soybean Hulls to Fermentable Sugars. Bioresour. Technol. 2011, 102, 7583–7590. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.M.; Li, H.Y. Application and Conversion of Soybean Hulls. In Soybean—The Basis of Yield, Biomass and Productivity; InTechOpen: London, UK, 2017; pp. 111–132. [Google Scholar]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Elferink, S.J.W.H.O.; Spoelstra, S.F.; Buxton, D.R.; Harrison, J.H. Microbiology of Ensiling. In Silage Science and Technology; Agronomy Monographs; Buxton, D.R., Muck, R.E., Holmes, H.J., Eds.; American Society of Agronomy, Inc. Publishers: Madison, WI, USA, 2003; Volume 42, pp. 31–93. [Google Scholar]
- Mcdonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe: Marlow, UK, 1991. [Google Scholar]
- Mohnen, D. Pectin Structure and Biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Peng, P.; Xu, F.; Sun, R.C. Fractional Purification and Bioconversion of Hemicelluloses. Biotechnol. Adv. 2012, 30, 879–903. [Google Scholar] [CrossRef]
- Vanholme, R.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin Engineering. Curr. Opin. Plant Biol. 2008, 11, 278–285. [Google Scholar] [CrossRef]
- Karimi, K.; Taherzadeh, M.J. A Critical Review of Analytical Methods in Pretreatment of Lignocelluloses: Composition, Imaging, and Crystallinity. Bioresour. Technol. 2016, 200, 1008–1018. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Sun, W.; Yan, Z.; Zhang, Y.; Wang, Z.; Song, B.; Zheng, Y.; Li, J. Bioaugmentation of Sweet Sorghum Ensiling with Rumen Fluid: Fermentation Characteristics, Chemical Composition, Microbial Community, and Enzymatic Digestibility of Silages. J. Clean. Prod. 2021, 294, 126308. [Google Scholar] [CrossRef]
- Zhipei, Y.; Jihong, L.; Sandra, C.; Ting, C.; Yan, J.; Menghui, Y.; Lei, Z.; Gang, Z.; Panlun, Q.; Shizhong, L. Lignin Relocation Contributed to the Alkaline Pretreatment Efficiency of Sweet Sorghum Bagasse. Fuel 2015, 158, 152–158. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Yu, J.; Zhang, X.; Tan, T. The Effects of Four Different Pretreatments on Enzymatic Hydrolysis of Sweet Sorghum Bagasse. Bioresour. Technol. 2011, 102, 4585–4589. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, Y.; Kitamoto, H.K. Ethanol Production from Ensiled Rice Straw and Whole-Crop Silage by the Simultaneous Enzymatic Saccharification and Fermentation Process. J. Biosci. Bioeng. 2011, 111, 320–325. [Google Scholar] [CrossRef] [PubMed]
Item | Soybean Inclusion | SEM | p-Values | |||
---|---|---|---|---|---|---|
0% | 25% | 50% | Linear | Quadratic | ||
TN | 11.38 | 13.83 | 16.50 | 0.45 | <0.001 | 0.863 |
NFC | 364.27 | 420.05 | 462.88 | 8.19 | <0.001 | 0.564 |
WSC | 182.26 | 142.23 | 116.25 | 4.78 | 0.001 | 0.316 |
NDF | 579.06 | 520.83 | 467.87 | 7.58 | <0.001 | 0.799 |
ADF | 349.75 | 293.51 | 258.23 | 5.14 | <0.001 | 0.164 |
ADL | 72.24 | 36.13 | 38.41 | 3.46 | <0.000 | 0.006 |
Hemicellulose | 229.30 | 227.32 | 209.64 | 2.74 | 0.002 | 0.074 |
Cellulose | 277.51 | 257.39 | 219.82 | 4.00 | <0.001 | 0.133 |
Holocellulose | 506.82 | 484.70 | 429.46 | 5.14 | <0.001 | 0.033 |
BC (mEq g kg−1 DM) | 25.22 | 40.53 | 43.91 | 1.72 | <0.001 | 0.022 |
Item | Inoculation (I) | Soybean Inclusion (SI) | SEM | p-Values | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0% | 25% | 50% | I | SI-L | SI-Q | SI-L × I | SI-Q × I | |||
pH | Uninoculated | 4.31 | 4.21 | 4.13 | 0.02 | <0.001 | <0.001 | 0.286 | <0.001 | 0.774 |
Inoculated | 3.97 | 3.94 | 3.80 | |||||||
LA (g kg−1 DM) | Uninoculated | 29.03 | 85.22 | 86.37 | 5.20 | <0.001 | <0.001 | 0.777 | <0.001 | <0.001 |
Inoculated | 84.78 | 97.64 | 158.61 | |||||||
AA (g kg−1 DM) | Uninoculated | 25.43 | 41.05 | 43.98 | 1.44 | 0.008 | <0.001 | 0.001 | 0.021 | 0.069 |
Inoculated | 13.03 | 21.98 | 38.49 | |||||||
PA (g kg−1 DM) | Uninoculated | 8.93 | 8.15 | 6.81 | 1.70 | 0.936 | 0.103 | 0.850 | 0.421 | 0.904 |
Inoculated | 10.44 | 7.50 | 6.31 | |||||||
LA/AA | Uninoculated | 1.15 | 2.08 | 1.96 | 0.23 | <0.001 | 0.648 | 0.512 | <0.001 | <0.001 |
Inoculated | 6.51 | 4.58 | 4.16 |
Item | Inoculation (I) | Soybean Inclusion (SI) | SEM | p-Values | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0% | 25% | 50% | I | SI-L | SI-Q | I × SI-L | I × SI-Q | |||
TN (g kg−1 DM) | Uninoculated | 11.41 | 14.38 | 18.50 | 0.20 | <0.001 | <0.001 | 0.147 | <0.001 | 0.054 |
Inoculated | 12.59 | 15.94 | 19.32 | |||||||
NPN (g kg−1 TN) | Uninoculated | 467.66 | 573.13 | 380.72 | 16.18 | <0.001 | <0.001 | <0.001 | 0.020 | <0.001 |
Inoculated | 417.66 | 419.46 | 282.24 | |||||||
AA-N (g kg−1 TN) | Uninoculated | 164.11 | 155.62 | 119.82 | 11.92 | 0.055 | 0.115 | 0.407 | 0.028 | 0.405 |
Inoculated | 135.09 | 102.60 | 135.98 | |||||||
NH3-N (g kg−1 TN) | Uninoculated | 83.24 | 93.14 | 80.58 | 3.88 | <0.001 | 0.975 | 0.769 | 0.708 | 0.080 |
Inoculated | 70.435 | 57.74 | 72.70 |
Item | Inoculation (I) | Soybean Inclusion (SI) | SEM | p-Values | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0% | 25% | 50% | I | SI-L | SI-Q | I × SI-L | I × SI-Q | |||
NFC | Uninoculated | 412.63 | 435.74 | 467.01 | 9.01 | <0.001 | <0.001 | 0.162 | 0.005 | 0.124 |
Inoculated | 401.78 | 452.58 | 448.85 | |||||||
WSC | Uninoculated | 70.55 | 51.73 | 25.49 | 4.88 | <0.001 | <0.001 | 0.628 | 0.101 | 0.209 |
Inoculated | 95.19 | 73.11 | 71.35 | |||||||
Glucose | Uninoculated | 23.63 | 12.99 | 15.91 | 0.64 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Inoculated | 22.61 | 17.89 | 27.54 | |||||||
Sucrose | Uninoculated | 25.37 | 21.78 | 16.61 | 0.26 | <0.001 | <0.001 | 0.565 | <0.001 | <0.001 |
Inoculated | 7.17 | 11.04 | 33.04 | |||||||
Fructose | Uninoculated | 19.86 | 11.96 | 9.20 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Inoculated | 9.82 | 6.05 | 5.97 |
Item | Inoculation (I) | Soybean Inclusion (SI) | SEM | p-Values | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0% | 25% | 50% | I | SI-L | SI-Q | I × SI-L | I × SI-Q | |||
NDF | Uninoculated | 489.69 | 435.71 | 397.32 | 2.69 | 0.482 | <0.001 | 0.070 | 0.158 | 0.017 |
Inoculated | 487.61 | 443.81 | 385.50 | |||||||
ADF | Uninoculated | 283.45 | 259.92 | 227.37 | 2.95 | <0.001 | <0.000 | 0.291 | 0.006 | 0.248 |
Inoculated | 249.50 | 243.44 | 214.40 | |||||||
ADL | Uninoculated | 53.67 | 50.20 | 43.90 | 2.25 | 0.000 | 0.012 | 0.648 | 0.204 | 0.307 |
Inoculated | 42.89 | 38.18 | 39.66 | |||||||
Hemicellulose | Uninoculated | 206.24 | 175.79 | 169.95 | 5.22 | 0.001 | <0.001 | 0.113 | 0.020 | 0.450 |
Inoculated | 238.11 | 200.37 | 171.10 | |||||||
Cellulose | Uninoculated | 229.78 | 209.72 | 183.46 | 4.32 | 0.009 | <0.001 | 0.621 | 0.168 | 0.204 |
Inoculated | 206.61 | 205.27 | 174.74 | |||||||
Holocellulose | Uninoculated | 436.02 | 385.51 | 353.41 | 3.53 | 0.030 | <0.001 | 0.056 | 0.040 | 0.0017 |
Inoculated | 444.72 | 405.63 | 345.84 | |||||||
Potential biodegradability | Uninoculated | 8.14 | 7.76 | 8.07 | 0.56 | 0.001 | 0.938 | 0.677 | 0.178 | 0.220 |
Inoculated | 10.69 | 10.84 | 8.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usman, S.; Li, F.; An, D.; Shou, N.; Deng, J.; Zhang, Y.; Guo, X.; Shen, Y. Lignocellulose Degradation and Enzymatic Hydrolysis of Soybean Incorporated Sorghum Silage Inoculated with Feruloyl-Esterase Producing Lactobacillus plantarum. Fermentation 2022, 8, 70. https://doi.org/10.3390/fermentation8020070
Usman S, Li F, An D, Shou N, Deng J, Zhang Y, Guo X, Shen Y. Lignocellulose Degradation and Enzymatic Hydrolysis of Soybean Incorporated Sorghum Silage Inoculated with Feruloyl-Esterase Producing Lactobacillus plantarum. Fermentation. 2022; 8(2):70. https://doi.org/10.3390/fermentation8020070
Chicago/Turabian StyleUsman, Samaila, Fuhou Li, Dong An, Na Shou, Jianqiang Deng, Yixin Zhang, Xusheng Guo, and Yuying Shen. 2022. "Lignocellulose Degradation and Enzymatic Hydrolysis of Soybean Incorporated Sorghum Silage Inoculated with Feruloyl-Esterase Producing Lactobacillus plantarum" Fermentation 8, no. 2: 70. https://doi.org/10.3390/fermentation8020070
APA StyleUsman, S., Li, F., An, D., Shou, N., Deng, J., Zhang, Y., Guo, X., & Shen, Y. (2022). Lignocellulose Degradation and Enzymatic Hydrolysis of Soybean Incorporated Sorghum Silage Inoculated with Feruloyl-Esterase Producing Lactobacillus plantarum. Fermentation, 8(2), 70. https://doi.org/10.3390/fermentation8020070