Wild Saccharomyces Produced Differential Aromas of Fermented Sauvignon Blanc Must
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Fermentation Experiments
2.3. Preparation of SPME Fibers
2.4. Qualitative Analysis of Unfermented SB Must
2.5. Quantitative Analysis of Fermented SB
2.6. Statistical Analysis
3. Results
3.1. Selection and Identification of Saccharomyces Strains
3.2. Determination of Volatile Compounds before Fermentation
3.3. Determination of Volatile Compounds after Fermentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hyma, K.E.; Saerens, S.M.; Verstrepen, K.J.; Fay, J.C. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae. FEMS Yeast Res. 2011, 11, 540–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrau, F.M.; Medina, K.; Farina, L.; Boido, E.; Henschke, P.A.; Dellacassa, E. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: Effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res. 2008, 8, 1196–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, C.; Lage, P.; Vilela, A.; Mendes-Faia, A.; Mendes-Ferreira, A. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts. AMB Express 2014, 4, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, V.; Lopez, R. The actual and potential aroma of winemaking grapes. Biomolecules 2019, 9, 818. [Google Scholar] [CrossRef] [Green Version]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its Importance to Wine Aroma—A Review. South Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.M.; Liu, W.Q.; Liti, G.; Wang, S.A.; Bai, F.Y. Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol. Ecol. 2012, 21, 5404–5417. [Google Scholar] [CrossRef]
- Knight, S.; Klaere, S.; Fedrizzi, B.; Goddard, M.R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 2015, 5, 14233. [Google Scholar] [CrossRef] [Green Version]
- Lappa, I.K.; Kachrimanidou, V.; Pateraki, C.; Koulougliotis, D.; Eriotou, E.; Kopsahelis, N. Indigenous yeasts: Emerging trends and challenges in winemaking. Curr. Opin. Food Sci. 2020, 32, 133–143. [Google Scholar] [CrossRef]
- Blanco, P.; Castrillo, D.; Graña, M.J.; Lorenzo, M.J.; Soto, E. Evaluation of autochthonous non-saccharomyces yeasts by sequential fermentation for wine differentiation in galicia (Nw spain). Fermentation 2021, 7, 183. [Google Scholar] [CrossRef]
- Palladini, L.A.; Brighenti, A.F.; de Souza, A.L.K.; da Silva, A.L. Potencial de Variedades de Uvas Viníferas nas Regiões de Altitude de Santa Catarina; Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina: Florianópolis, SC, Brazil, 2021; Available online: https://repositorio.ufsc.br/handle/123456789/229431 (accessed on 1 March 2022)ISBN 9786599074523.
- Roberto, P.; Guedes, N. Indicações geográficas seção IV. Rev. Propriedade Ind. 2021, 2634, 21–52. [Google Scholar]
- Mendes, S.D.C.; Ramírez-Castrillón, M.; Feldberg, N.P.; Bertoldi, F.C.; Valente, P. Environmental yeast communities in vineyards in the mountains of Santa Catarina State, Brazil. World J. Microbiol. Biotechnol. 2017, 33, 128. [Google Scholar] [CrossRef]
- Ramírez-Castrillón, M.; Mendes, S.D.C.; Inostroza-Ponta, M.; Valente, P. (GTG)5 MSP-PCR Fingerprinting as a Technique for Discrimination of Wine Associated Yeasts? PLoS ONE 2014, 9, e105870. [Google Scholar] [CrossRef]
- Muir, A.; Harrison, E.; Wheals, A. A multiplex set of species-specific primers for rapid identification of members of the genus Saccharomyces. FEMS Yeast Res. 2011, 11, 552–563. [Google Scholar] [CrossRef]
- De Barros Lopes, M.; Soden, A.; Henschke, P.A.; Langridge, P. PCR differentiation of commercial yeast strains using intron splice site primers. Appl. Environ. Microbiol. 1996, 62, 4514–4520. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, L. Aplicação Foliar de Nitrogênio na Qualidade da uva e na Composição de Ésteres do Vinho de Sauvignon Blanc em Região de Altitude de Santa Catarina; Masther in Plant Genetic Resources, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil. 2021. Available online: https://repositorio.ufsc.br/handle/123456789/226925 (accessed on 1 March 2022).
- Arcari, S.G.; Caliari, V.; Sganzerla, M.; Godoy, H.T. Volatile composition of Merlot red wine and its contribution to the aroma: Optimization and validation of analytical method. Talanta 2017, 174, 752–766. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Schauberger, P.; Walker, A. openxlsx: Read, Write and Edit xlsx Files. R Package Version 2020, 4. Available online: https://CRAN.R-project.org/package=openxlsx (accessed on 1 March 2022).
- Warnes, G.R.; Bolker, B.; Gorjanc, G.; Grothendieck, G.; Korosec, A.; Lumley, T.; MacQueen, D.; Magnusson, A.; Rogers, J. gdata: Various R programming tools for data manipulation. R Package Version 2012, 2, 35. [Google Scholar]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Escudero, A.; Campo, E.; Fariña, L.; Cacho, J.; Ferreira, V. Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines. J. Agric. Food Chem. 2007, 55, 4501–4510. [Google Scholar] [CrossRef]
- Welke, J.E.; Zanus, M.; Lazzarotto, M.; Alcaraz Zini, C. Quantitative analysis of headspace volatile compounds using comprehensive two-dimensional gas chromatography and their contribution to the aroma of Chardonnay wine. Food Res. Int. 2014, 59, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Revi, M.; Badeka, A.; Kontakos, S.; Kontominas, M.G. Effect of packaging material on enological parameters and volatile compounds of dry white wine. Food Chem. 2014, 152, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, D.; Xu, Y. Characterization of odor-active compounds in sweet-type chinese rice wine by aroma extract dilution analysis with special emphasis on sotolon. J. Agric. Food Chem. 2013, 61, 9712–9718. [Google Scholar] [CrossRef] [PubMed]
- García-Carpintero, E.G.; Sánchez-Palomo, E.; Gallego, M.A.G.; González-Viñas, M.A. Volatile and sensory characterization of red wines from cv. Moravia Agria minority grape variety cultivated in La Mancha region over five consecutive vintages. Food Res. Int. 2011, 44, 1549–1560. [Google Scholar] [CrossRef]
- Peng, C.T.; Wen, Y.; Tao, Y.S.; Lan, Y.Y. Modulating the formation of Meili wine aroma by prefermentative freezing process. J. Agric. Food Chem. 2013, 61, 1542–1553. [Google Scholar] [CrossRef] [PubMed]
- Gambetta, J.M.; Schmidtke, L.M.; Wang, J.; Cozzolino, D.; Bastian, S.E.P.; Jeffery, D.W. Relating expert quality ratings of Australian chardonnay wines to volatile composition and production method. Am. J. Enol. Vitic. 2017, 68, 39–48. [Google Scholar] [CrossRef]
- Pereira, V.; Cacho, J.; Marques, J.C. Volatile profile of Madeira wines submitted to traditional accelerated ageing. Food Chem. 2014, 162, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Noguerol-Pato, R.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Quantitative determination and characterisation of the main odourants of Mencía monovarietal red wines. Food Chem. 2009, 117, 473–484. [Google Scholar] [CrossRef]
- Coelho, E.; Perestrelo, R.; Neng, N.R.; Câmara, J.S.; Coimbra, M.A.; Nogueira, J.M.F.; Rocha, S.M. Optimisation of stir bar sorptive extraction and liquid desorption combined with large volume injection-gas chromatography-quadrupole mass spectrometry for the determination of volatile compounds in wines. Anal. Chim. Acta 2008, 624, 79–89. [Google Scholar] [CrossRef]
- Comuzzo, P.; Tat, L.; Tonizzo, A.; Battistutta, F. Yeast derivatives (extracts and autolysates) in winemaking: Release of volatile compounds and effects on wine aroma volatility. Food Chem. 2006, 99, 217–230. [Google Scholar] [CrossRef]
- Pherobase. Available online: https://www.pherobase.com/database/compound/compounds-index.php (accessed on 24 March 2022).
- The Good Scents Company Information System. Available online: http://www.thegoodscentscompany.com/ (accessed on 24 March 2022).
- Flavor & Fragrance. Available online: http://leffingwell.com/ (accessed on 24 March 2022).
- Šuranská, H.; Vránová, D.; Omelková, J. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains. Braz. J. Microbiol. 2016, 47, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Libkind, D.; Hittinger, C.T.; Valério, E.; Gonçalves, C.; Dover, J.; Johnston, M.; Gonçalves, P.; Sampaio, J.P. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc. Natl. Acad. Sci. USA 2011, 108, 14539–14544. [Google Scholar] [CrossRef] [Green Version]
- Engel, S.R.; Cherry, J.M. The new modern era of yeast genomics: Community sequencing and the resulting annotation of multiple Saccharomyces cerevisiae strains at the Saccharomyces Genome Database. Database 2013, 2013, bat012. [Google Scholar] [CrossRef]
- Berna, A.Z.; Troewell, S.; Cliffor, D.; Cynkar, W.; Cozzolino, D. Geographical origin of Sauvignon Blanc wines predicted by mass spectrometry and metal oxide based electronic nose. Anal. Chim. Acta 2009, 648, 146–156. [Google Scholar] [CrossRef]
- Gambetta, J.M.; Cozzolino, D.; Bastian, S.E.P.; Jeffery, D.W. Exploring the effects of geographical origin on the chemical composition and quality grading of Vitis vinifera L. Cv. chardonnay grapes. Molecules 2017, 22, 218. [Google Scholar] [CrossRef] [Green Version]
- Almeida, P.; Gonçalves, C.; Teixeira, S.; Libkind, D.; Bontrager, M.; Masneuf-Pomarède, I.; Albertin, W.; Durrens, P.; Sherman, D.J.; Marullo, P.; et al. A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum. Nat. Commun. 2014, 5, 4044. [Google Scholar] [CrossRef] [Green Version]
- De-La-Fuente-Blanco, A.; Sáenz-Navajas, M.P.; Ferreira, V. On the effects of higher alcohols on red wine aroma. Food Chem. 2016, 210, 107–114. [Google Scholar] [CrossRef]
- Carpena, M.; Fraga-Corral, M.; Otero, P.; Nogueira, R.A.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Secondary aroma: Influence of wine microorganisms in their aroma profile. Foods 2021, 10, 51. [Google Scholar] [CrossRef]
- Falcão, L.D.; De Revel, G.; Perello, M.C.; Moutsiou, A.; Zanus, M.C.; Bordignon-Luiz, M.T. A survey of seasonal temperatures and vineyard altitude influences on 2-methoxy-3-isobutylpyrazine, C13-norisoprenoids, and the sensory profile of Brazilian Cabernet Sauvignon wines. J. Agric. Food Chem. 2007, 55, 3605–3612. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.Q.; Shen, J.Y.; Duan, C.Q.; Yan, G.L. Use of indigenous Hanseniaspora vineae and Metschnikowia pulcherrima Co-fermentation with Saccharomyces cerevisiae to improve the aroma diversity of Vidal blanc icewine. Front. Microbiol. 2018, 9, 2303. [Google Scholar] [CrossRef]
- Vilanova, M.; Campo, E.; Escudero, A.; Graña, M.; Masa, A.; Cacho, J. Volatile composition and sensory properties of Vitis vinifera red cultivars from north west Spain: Correlation between sensory and instrumental analysis. Anal. Chim. Acta 2012, 720, 104–111. [Google Scholar] [CrossRef]
- Katarína, F.; Katarína, M.; Katarína, Ď.; Ivan, Š.; Fedor, M. Influence of yeast strain on aromatic profile of Gewürztraminer wine. LWT—Food Sci. Technol. 2014, 59, 256–262. [Google Scholar] [CrossRef]
- Tomasino, E.; Bolman, S. The potential effect of β-ionone and β-damascenone on sensory perception of pinot noir wine aroma. Molecules 2021, 26, 1288. [Google Scholar] [CrossRef] [PubMed]
- Escudero, A.; Asensio, E.; Cacho, J.; Ferreira, V. Sensory and chemical changes of young white wines stored under oxygen. An assessment of the role played by aldehydes and some other important odorants. Food Chem. 2002, 77, 325–331. [Google Scholar] [CrossRef]
Retention Time | Compound | Selected Ions | Estimated LTPRI ** | LTPRI from Literature | Identification Method | Odor Descriptor | Perception Threshold (µg L−1) |
---|---|---|---|---|---|---|---|
7592 | Ethyl acetate | 61, 88 | 891 | 890 e | STD ***, MS **** | Solvent a,b, fruity c,d, balsamic d | 12,000 e |
10,937 | Ethyl isobutanoate | 116, 88, 71 | 966 | 968 e | STD, MS | Fruity, banana h | 15 e |
17,674 | Ethyl pentanoate | 88, 57, 85 | 1126 | 1132 e | STD, MS | Fruity, apple e | 5 e |
18,193 | 1-Butanol | 39, 57, 72 | 1159 | 1165 e | MS | Medicinal e | 150,000 e |
18,262 | Thioacetic acid | 43,61, 42 | 1167 | 1163 j | MS | Toasted j, onion, garlic j | Nf |
19,012 | 3-Hexen-2-one | 83, 55, 43 | 1182 | 1211 n | MS | Boiled vegetables, metal j | Nf |
21,544 | 2 6-Dimethyl-4-heptanone (isovalerone) | 57, 85, 41 | 1195 | Nf | MS | Nf * | Nf |
24,320 | 3-Methyl-1-butanol | 42, 55, 70 | 1202 | 1205 j | STD, MS | Burnt, alcohol c,h, nail polish, whiskey d | 30,000 l |
25,217 | 2-Hexanol | 45, 69, 41 | 1217 | 1238 n | MS | Nf | Nf |
34,006 | 1-Hexanol | 56, 69, 84 | 1369 | 1372 l | STD, MS | Herbaceous, greasy i, resinous; floral, green, cut grass d,h | 110 e |
34,592 | (E)-3-Hexen-1-ol | 41, 67 | 1376 | 1379 n | MS | Herbaceous j | 70 o |
35,861 | (Z)-3-Hexen-1-ol | 67, 41 | 1394 | 1401 n | MS | Herbaceous, bitter, fatty e | 1000 e |
36,653 | 2,4-Hexadienal | 81, 39, 41 | 1402 | 1407 n | MS | Vegetable j | 60 o |
37,351 | Isocitronellol | 83, 55, 41 | 1459 | 1488 j | STD, MS | Candy, roses j | 40 o |
41,250 | Linalool oxide | 59, 43 | 1480 | 1484 n | MS | Candy, floral, woody j | 500 e |
43,139 | Benzaldehyde | 51, 77, 106 | 1493 | 1529 e | MS | Almonds e | 2000 e |
43,587 | Isovaleric acid | 60, 43, 41 | 1666 | 1660 e | STD, MS | Candy, cheese k, rancidity e | 3000 e |
43,921 | Ethyl decanoate | 88, 101, 29 | 1668 | 1651 e | STD, MS | Fruity, grape e | 200 l |
44,040 | Diethyl succinate | 101, 129, 29 | 1691 | 1690 e | STD, MS | Wine c,d,h, toffee f, fruity d | 200,000 l |
44,734 | Acetophenone | 105, 77, 51 | 1692 | 1690 j | MS | Floral, almonds j | 65 o |
44,946 | α-Terpineol | 81, 136, 43 | 1711 | 1713 e | STD, MS | Floral, candy e, anise, mint j | 250 l |
44,959 | 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) | 142, 159, 172 | 1697 | 1714 n | MS | Liqueur n | 540 m |
45,552 | 1-Decanol | 70, 55, 56 | 1722 | 1735 n | MS | Candy, fatty e | 400 e |
46,065 | Verbenone | 107, 91, 39 | 1725 | 1742 n | MS | Mint, spices n | Nf |
47,829 | 1-Undecanol | 55, 69, 41 | 1737 | 1738 e | MS | Fruity e, tangerine j | 41 e |
61,241 | α-Ionone | 136, 121, 93 | 1808 | 1829 n | STD, MS | Fruity, floral, raspberry, violet h | 2,6 l |
61,925 | β-Damascenone | 190, 121, 69 | 1815 | 1842 e | STD, MS | Baked apple l, floral, honey d,l | 0,05 l |
62,388 | Ethyl laurate | 88, 101 | 1838 | 1856 n | STD, MS | Candy, floral e, waxy, soap h | 1500 e |
63,044 | Hexanoic acid | 60, 73, 41 | 1869 | 1863 e | STD, MS | Cheese, greasy e | 420 l |
63,759 | Decyl isobutyrate | 43, 89, 71 | 1870 | Nf | MS | Nf | Nf |
64,386 | Benzyl alcohol | 79, 108, 107 | 1871 | 1874 n | MS | Candy, fruity e | 200,000 l |
66,097 | 2-Phenylethanol | 65, 91, 92 | 1931 | 1939 n | STD, MS | Roses, honey e,k | 14,000 l |
70,677 | Phenol | 94, 66, 65 | 1968 | 1962 n | MS | Phenolic, medicinal n | 5900 o |
71,382 | β-Ionone | 177, 192, 91 | 1985 | 1975n | STD, MS | Violet d,h,i, balsamic, roses d | 0,09 l |
72,105 | Isopropyl myristate | 43, 102, 60 | 1999 | 2017 n | MS | Nf | 800 e |
72,695 | Ethyl myristate | 88, 101, 43 | 2025 | 2044 n | MS | Lily j | Nf |
72,881 | γ-Nonalactone | 85, 29, 41 | 2032 | 2044 n | STD, MS | Coconut, peach b,g,j | 30 l |
73,384 | Octanoic acid | 60, 73, 43 | 2048 | 2055 n | STD, MS | Rancidity d,k, candy, cheese c, animal, spices f, unpleasant d | 500 l |
80,756 | Ethyl cinnamate | 103, 131, 176 | 2140 | 2139 j | STD, MS | Honey, cinnamon c,f, floral, strawberry, plum f | 1,1 l |
82,127 | Ethyl palmitate | 88, 101 | 2234 | 2250 j | MS | Waxy, greasy e | 1500 e |
83,100 | Decanoic acid | 60, 129, 172 | 2279 | 2287 e | STD, MS | Unpleasant d,k, rancid fat c, animal f | 1000 e |
83,273 | Ethyl-9- hexadecenoate | 55, 88, 69 | 2279 | 2265 j | MS | Nf | Nf |
87,629 | 2-Hexadecanol | 55, 69, 83 | 2310 | 2302 e | MS | Nf | Nf |
96,623 | Hexyl cinnamaldehyde | 129, 117, 91 | 2512 | 2526 j | MS | Nf | Nf |
Sample | Isovaleric Acid | Propanonic Acid | Butanoic Acid | Pentanoic Acid | Hexanoic Acid | Isobutyric Acid | Octanoic Acid | Nonanoic Acid | Decanoic Acid |
---|---|---|---|---|---|---|---|---|---|
Unfermented SB must | 3.15 ± 0.00 ** b | nd | nd | nd | 19.24 ± 4.85 cd | nd | 19.60 ± 0.02 d | nd | 10.67 ± 0.00 c |
01PP | 418.07 ± 7.40 a | nd | nd | 115.95 ± 15.67 a | 204.49 ± 20.83 abc | 2469.61 ± 942.96 b | 35,294.01 ± 7207.02 bc | 22.68 ± 3.11 cd | 313.82 ± 103.16 a |
06CE | nd | 61.95 ± 25.65 a | 22.9 ± 0.97 c | nd | 514.82 ± 201.34 a | nd | 1939.97 ± 20.6 cd | 124.65 ± 0.98 ab | 7.26 ± 0.28 abc |
11CE | 3.15 ± 0.00 b | 18.18 ± 1.16 b | 78.25 ± 21.28 bc | nd | 383.73 ± 7.76 ab | nd | 656.85 ± 194.51c | 20.00 ± 1.75 d | 2.25 ± 0.26 c |
12M | 423.14 ± 41.13 a | 15.27 ± 1.57 b | 90.44 ± 26.58 bc | nd | 126.68 ± 38.38 abcd | 4668.82 ± 1139.40 b | 41,355.92 ± 7212.70 a | 60.64 ± 6.12 cd | 39.26 ± 0.03 ab |
13PP | 689.03 ± 75.02 a | 15.87 ± 0.63 b | 211.96 ± 15.52 a | nd | 225.58 ± 109.20 abc | 2709.97 ± 694,67 b | 4516.95 ± 437.15 cd | 74.55 ± 11.62 bc | 38.35 ± 13.68 ab |
26PP | nd | 74.53 ± 1.51 a | 141.72 ± 3.39 abc | 201.68 ± 18.64 a | 93.67 ± 6.18 abcd | 1,501,940 ± 442.93 a | 47,158.69 ± 1563.37 a | 17.23 ± 9.32 d | 3.59 ± 0.49 bc |
28AD | nd | 121.81 ± 22.46 a | nd | 14.66 ± 0.11 a | 7.24 ± 0.79 d | nd | 1144.48 ± 59.19 cd | 25.07 ± 11.36 cd | 0.33 ± 0.12 d |
33CE | nd | 11.25 ± 2.28 bc | nd | 15.48 ± 2.91 a | 100.40 ± 5.09 bcd | nd | 533.61 ± 220.57 cd | 18.19 ± 0.00 d | 0.30 ± 0.07 d |
41PP | 387.82 ± 53.47 a | 7.31 ± 0.32 c | 91.48 ± 1.03 bc | 187.10 ± 44.34 a | 351.77 ± 14.98 ab | 3554.93 ± 163.85 b | 47,297.21 ± 9350.84 a | 87.31 ± 5.72 bc | 53.92 ± 5.71 a |
SC2048 | nd | nd | 170.37 ± 24.46 ab | 68.03 ± 6.28 a | 121.15 ± 17.15 bcd | 2439.60 ± 40.93 b | 17,624.72 ± 1071.05 ab | 130.01 ± 16.83 a | 51.87 ± 0.46 a |
Mean * | 174.94 ± 53.15 | 29.65 ± 8.51 | 73.37 ± 16.12 | 54.81 ± 16.61 | 195.34 ± 36.87 | 2805.66 ± 920.47 | 17,958.36 ± 4365.11 | 52.76 ± 9.62 | 47.42 ± 20.11 |
p-Value | <0.0001 | <0.0001 | 0.0050 | 0.3165 | 0.0013 | 0.0002 | <0.0001 | <0.0001 | <0.0001 |
Sample | Ethyl Isobutanoate | Ethyl Butanoate | Ethyl 2-Methylbutanoate | Ethyl Isovalerate | Ethyl Hexanoate | Ethyl Heptanoate | Ethyl Octanoate | Ethyl Decanoate | Diethyl Succinate | Ethyl Undecanoate | Ethyl Laurate | Ethyl Lactate | Ethyl Cinnamate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unfermented SB must | 50.24 ± 0.46 b | nd | nd | nd | nd | nd | nd | nd | 9.95 ± 0.39 c | nd | nd | nd | 4.36 ± 0.00 a |
01PP | 62.81 ± 2.80 b | 31.69 ± 4.39 cd | nd | 65.25 ± 11.62 b | 54.14 ± 21.52 ab | nd | 299.63 ± 31.31 a | nd | 13,394.20 ± 1138.25 a | nd | nd | 3662.88 ± 841.64 a | 3.05 ± 1.31 a |
06CE | 114.53 ± 12.92 b | 14.98 ± 0.72 ef | nd | 50.97 ± 15.81 b | 4.37 ± 0.03 b | 0.24 ± 0.02 c | 10.00 ± 1.52 a | 7.42 ± 2.65 ab | 1600.93 ± 540.20 bc | 1.06 ± 0.15 bc | 7.58 ± 0.71 ab | 7691.16 ± 333.83 a | 13.01 ± 2.91 a |
11CE | 20.28 ± 0.28 b | nd | 9.31 ± 0.00 ** c | 49.40 ± 13.04 b | 0.11 ± 0.00 c | 0.29 ± 0.28 b | 0.14 ± 0.00 b | 1.83 ± 0.83 abc | 400.96 ± 107.15 c | 0.21 ± 0.15 bc | nd | 11,490.42 ± 3910.71 a | 4.36 ± 0.00 a |
12M | 92.07 ± 33.33 ab | 53.06 ± 8.13 bc | nd | 134.30 ± 76.67 b | nd | 193.64 ± 92.04 a | 865.29 ± 464.55 a | 5.22 ± 1.41 a | 11,968.00 ± 4026.20 ab | 3.23 ± 0.68 a | 9.30 ± 0.20 a | 7368.24 ± 170.89 a | 4.36 ± 0.00 a |
13PP | 97.12 ± 13.90 ab | 57.44 ± 1.40 abc | 12.83 ± 0.57 b | 464.22 ± 87.49 a | nd | 24.50 ± 4.43 a | 214.34 ± 79.12 a | nd | 3261.78 ± 114.68 abc | 2.00 ± 0.10 ab | nd | 4461.40 ± 215.54 a | 4.35 ± 0.01 a |
26PP | 46.12 ± 12.5 b | 90.10 ± 3.30 a | 111.13 ± 12.97 a | 96.87 ± 44.16 ab | 162.88 ± 27.39 a | nd | 1025.26 ± 376.89 a | nd | 26,709.35 ± 712.21 a | nd | nd | 39,063.35 ± 8671.66 a | 4.57 ± 0.46 a |
28AD | 30.59 ± 0.46 b | 7.88 ± 1.36 f | nd | 68.07 ± 10.39 ab | 5.74 ± 2.60 b | 2.58 ± 0.05 a | 15.47 ± 0.36 a | 0.74 ± 0.11 bcd | 393.49 ± 53.44 c | nd | 6.49 ± 0.00 b | 1618.32 ± 198.99 a | nd |
33CE | 38.11 ± 16.82 b | 7.58 ± 1.57 f | nd | 51.94 ± 2.41 b | 6.87 ± 0.04 b | nd | 0.185 ± 0.06 b | 0.58 ± 0.10 cd | 352.81 ± 119.04 c | 0.09 ± 0.03 c | 6.79 ± 0.23 ab | 1138.68 ± 25.63 a | nd |
41PP | 360.28 ± 5.63 a | 85.22 ± 10.20 ab | 91.90 ± 2.70 a | 157.16 ± 27.02 ab | 117.28 ± 15.11 ab | nd | 873.51 ± 272.29 a | 2.51 ± 0.66 ab | 13,859.32 ± 1514.52 a | 0.60 ± 0.19 bc | nd | 2382.97 ± 539.76 a | 1.43 ± 0.00a |
SC2048 | 60.87 ± 3.54 b | 23.51 ± 2.49 de | nd | 74.49 ± 14.21 b | 23.76 ± 1.67 b | nd | 526.43 ± 12.23 a | 0.46 ± 0.04 d | 7186.51 ± 1142.79 abc | nd | nd | 14,727.44 ± 1852.39 a | nd |
Mean * | 88.45 ± 19.94 | 33.77 ± 6.92 | 20.47 ± 8.48 | 110.24 ± 27.38 | 34.10 ± 11.87 | 20.11 ± 13.51 | 348.20 ± 94.93 | 1.71 ± 0.55 | 7194.30 ± 1797.07 | 0.65 ± 0.23 | 2.74 ± 0.81 | 8509.53 ± 2399.36 | 3.59 ± 0.80 |
p-Value | 0.0036 | <0.0001 | <0.0001 | 0.0258 | <0.0001 | <0.0001 | <0.0001 | 0.0025 | 0.0001 | 0.0041 | 0.0309 | 0.1668 | 0.6426 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, S.D.C.; Arcari, S.G.; Werner, S.S.; Valente, P.; Ramirez-Castrillon, M. Wild Saccharomyces Produced Differential Aromas of Fermented Sauvignon Blanc Must. Fermentation 2022, 8, 177. https://doi.org/10.3390/fermentation8040177
Mendes SDC, Arcari SG, Werner SS, Valente P, Ramirez-Castrillon M. Wild Saccharomyces Produced Differential Aromas of Fermented Sauvignon Blanc Must. Fermentation. 2022; 8(4):177. https://doi.org/10.3390/fermentation8040177
Chicago/Turabian StyleMendes, Sandra D. C., Stefany Grützmann Arcari, Simone Silmara Werner, Patricia Valente, and Mauricio Ramirez-Castrillon. 2022. "Wild Saccharomyces Produced Differential Aromas of Fermented Sauvignon Blanc Must" Fermentation 8, no. 4: 177. https://doi.org/10.3390/fermentation8040177
APA StyleMendes, S. D. C., Arcari, S. G., Werner, S. S., Valente, P., & Ramirez-Castrillon, M. (2022). Wild Saccharomyces Produced Differential Aromas of Fermented Sauvignon Blanc Must. Fermentation, 8(4), 177. https://doi.org/10.3390/fermentation8040177