Effect of Yeast Derivatives and β-Glucanases on Ageing over Lees Process of Tempranillo Red Sparkling Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adjuvants
2.2. Vinification Process
2.3. Chemical Reagents
2.4. Physicochemical Analyses of Sparkling Wines
2.5. Foaming Properties
2.6. Analysis of Volatile Organic Compounds (VOCs)
2.7. Sensory Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Oenological Parameters
3.2. Total Polysaccharides, Total Proteins and Free Amino Nitrogen
3.3. Phenolic Composition
3.4. Influence on Foaming Properties
3.5. Evolution of VOCs
3.6. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cravero, M.C. Innovations in Sparkling Wine Production: A Review on the Sensory Aspects and the Consumer’s Point of View. Beverages 2023, 9, 80. [Google Scholar] [CrossRef]
- Cava, C.R.D.O. Pliego de Condiciones Denominación de Origen Protegida “CAVA”; BOE-A-2021-9993; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2021.
- Pérez-Magariño, S.; Bueno-Herrera, M.; López de la Cuesta, P.; González-Lázaro, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. Volatile Composition, Foam Characteristics and Sensory Properties of Tempranillo Red Sparkling Wines Elaborated Using Different Techniques to Obtain the Base Wines. Eur. Food Res. Technol. 2019, 245, 1047–1059. [Google Scholar] [CrossRef]
- González-Lázaro, M.; Martínez-Lapuente, L.; Palacios, A.; Guadalupe, Z.; Ayestarán, B.; Bueno-Herrera, M.; de la Cuesta, P.L.; Pérez-Magariño, S. Effects of Different Oenological Techniques on the Elaboration of Adequate Base Wines for Red Sparkling Wine Production: Phenolic Composition, Sensory Properties and Foam Parameters. J. Sci. Food Agric. 2019, 99, 4580–4592. [Google Scholar] [CrossRef] [PubMed]
- González-Lázaro, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestaran, B.; Bueno-Herrera, M.; López de la Cuesta, P.; Pérez-Magariño, S. Evaluation of Grape Ripeness, Carbonic Maceration and Pectolytic Enzymes to Improve the Chemical and Sensory Quality of Red Sparkling Wines. J. Sci. Food Agric. 2020, 100, 2618–2629. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gamboa, G.; Zheng, W.; de Toda, F.M. Current Viticultural Techniques to Mitigate the Effects of Global Warming on Grape and Wine Quality: A Comprehensive Review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef]
- Palliotti, A.; Panara, F.; Famiani, F.; Sabbatini, P.; Howell, G.S.; Silvestroni, O.; Poni, S. Postveraison Application of Antitranspirant Di-1-p-Menthene to Control Sugar Accumulation in Sangiovese Grapevines. Am. J. Enol. Vitic. 2013, 64, 378–385. [Google Scholar] [CrossRef]
- Schmitt, M.; Christmann, M. Alcohol Reduction by Physical Methods. In Advances in Grape and Wine Biotechnology; IntechOpen: London, UK, 2019; ISBN 978-1-78984-613-3. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Mireles, M.S.; Harwood, E.D. Chemical and Sensory Effects of Saignée, Water Addition, and Extended Maceration on High Brix Must. Am. J. Enol. Vitic. 2009, 60, 450–460. [Google Scholar] [CrossRef]
- Rousserie, P.; Lacampagne, S.; Vanbrabant, S.; Rabot, A.; Geny-Denis, L. Influence of Berry Ripeness on Seed Tannins Extraction in Wine. Food Chem. 2020, 315, 126307. [Google Scholar] [CrossRef]
- Varela, J.; Varela, C. Microbiological Strategies to Produce Beer and Wine with Reduced Ethanol Concentration. Curr. Opin. Biotechnol. 2019, 56, 88–96. [Google Scholar] [CrossRef]
- Barros, A.P.A.; Silva, I.S.; Correa, L.C.; Biasoto, A.C.T. Effect of the Cold Pre-Fermentative Maceration and Aging on Lees Times on the Phenolic Compound Profile, Antioxidant Capacity and Colour of Red Sparkling Wines. J. Food Sci. Technol. 2022, 59, 3245–3255. [Google Scholar] [CrossRef]
- Muratore, G.; Asmundo, C.N.; Lanza, C.M.; Caggia, C.; Licciardello, F.; Restuccia, C. Influence of Saccharomyces uvarum on Volatile Acidity, Aromatic and Sensory Profile of Malvasia Delle Lipari Wine. Food Technol. Biotechnol. 2007, 45, 101–106. [Google Scholar]
- Röcker, J.; Strub, S.; Ebert, K.; Grossmann, M. Usage of Different Aerobic Non-Saccharomyces Yeasts and Experimental Conditions as a Tool for Reducing the Potential Ethanol Content in Wines. Eur. Food Res. Technol. 2016, 242, 2051–2070. [Google Scholar] [CrossRef]
- Resolution OIV-OENO 394A-2012; Dealcoholisation of Wines Paris, France. International Organisation of Vine and Wine: Paris, France, 2012.
- Calvo, J.I.; Asensio, J.; Sainz, D.; Zapatero, R.; Carracedo, D.; Fernández-Fernández, E.; Prádanos, P.; Palacio, L.; Hernández, A. Membrane Dialysis for Partial Dealcoholization of White Wines. Membranes 2022, 12, 468. [Google Scholar] [CrossRef]
- Ubeda, C.; Kania-Zelada, I.; del Barrio-Galán, R.; Medel-Marabolí, M.; Gil, M.; Peña-Neira, Á. Study of the Changes in Volatile Compounds, Aroma and Sensory Attributes during the Production Process of Sparkling Wine by Traditional Method. Food Res. Int. 2019, 119, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, V.; Tufariello, M.; Berbegal, C.; Fragasso, M.; De Simone, N.; Spano, G.; Russo, P.; Venerito, P.; Bozzo, F.; Grieco, F. Microbial Resources and Sparkling Wine Differentiation: State of the Arts. Fermentation 2022, 8, 275. [Google Scholar] [CrossRef]
- Di Gianvito, P.; Perpetuini, G.; Tittarelli, F.; Schirone, M.; Arfelli, G.; Piva, A.; Patrignani, F.; Lanciotti, R.; Olivastri, L.; Suzzi, G.; et al. Impact of Saccharomyces cerevisiae Strains on Traditional Sparkling Wines Production. Food Res. Int. 2018, 109, 552–560. [Google Scholar] [CrossRef]
- Martínez-García, R.; Mauricio, J.C.; García-Martínez, T.; Peinado, R.A.; Moreno, J. Towards a Better Understanding of the Evolution of Odour-Active Compounds and the Aroma Perception of Sparkling Wines during Ageing. Food Chem. 2021, 357, 129784. [Google Scholar] [CrossRef] [PubMed]
- Tufariello, M.; Palombi, L.; Rizzuti, A.; Musio, B.; Capozzi, V.; Gallo, V.; Mastrorilli, P.; Grieco, F. Volatile and Chemical Profiles of Bombino Sparkling Wines Produced with Autochthonous Yeast Strains. Food Control 2023, 145, 109462. [Google Scholar] [CrossRef]
- Pons-Mercadé, P.; Giménez, P.; Vilomara, G.; Conde, M.; Cantos, A.; Rozès, N.; Ferrer, S.; Canals, J.M.; Zamora, F. Monitoring Yeast Autolysis in Sparkling Wines from Nine Consecutive Vintages Produced by the Traditional Method. Aust. J. Grape Wine Res. 2022, 28, 347–357. [Google Scholar] [CrossRef]
- Tofalo, R.; Perpetuini, G.; Rossetti, A.P.; Gaggiotti, S.; Piva, A.; Olivastri, L.; Cichelli, A.; Compagnone, D.; Arfelli, G. Impact of Saccharomyces Cerevisiae and Non-Saccharomyces Yeasts to Improve Traditional Sparkling Wines Production. Food Microbiol. 2022, 108, 104097. [Google Scholar] [CrossRef]
- la Gatta, B.; Picariello, G.; Rutigliano, M.; Lopriore, G.; Petrella, G.; Rusco, G.; Tremonte, P.; Di Luccia, A. Addition of Lees from Base Wine in the Production of Bombino Sparkling Wine. Eur. Food Res. Technol. 2016, 242, 1307–1317. [Google Scholar] [CrossRef]
- Blanco-Huerta, C.; Fernández-Fernández, E.; Vila-Crespo, J.; Ruipérez, V.; Moyano, R.; Rodríguez-Nogales, J.M. Impact of Ageing on Ultrasound-Treated Lees on Volatile Composition and Sensory Properties of Red Sparkling Base Wine. Beverages 2023, 9, 23. [Google Scholar] [CrossRef]
- Lambert-Royo, M.I.; Ubeda, C.; Barrio-Galán, R.D.; Sieczkowski, N.; Canals, J.M.; Peña-Neira, Á.; i Cortiella, M.G. The Diversity of Effects of Yeast Derivatives during Sparkling Wine Aging. Food Chem. 2022, 390, 133174. [Google Scholar] [CrossRef] [PubMed]
- Ruipérez, V.; Rodríguez-Nogales, J.M.; Fernández-Fernández, E.; Vila-Crespo, J. Impact of β-Glucanases and Yeast Derivatives on Chemical and Sensory Composition of Long-Aged Sparkling Wines. J. Food Compos. Anal. 2022, 107, 104385. [Google Scholar] [CrossRef]
- Rodriguez-Nogales, J.M.; Fernández-Fernández, E.; Gómez, M.; Vila-Crespo, J. Antioxidant Properties of Sparkling Wines Produced with β-Glucanases and Commercial Yeast Preparations. J. Food Sci. 2012, 77, 1005–1010. [Google Scholar] [CrossRef]
- Hidalgo Togores, J. Tratado de Enología: Tomo I; Mundi-Prensa: Madrid, Spain, 2019; ISBN 3207253. [Google Scholar]
- International Organisation of Vine and Wine. OIV Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Paris, France, 2009; pp. 154–196. [Google Scholar]
- Betés-Saura, C.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M. Phenolics in White Free Run Juices and Wines from Penedès by High-Performance Liquid Chromatography: Changes during Vinification. J. Agric. Food Chem. 1996, 44, 3040–3046. [Google Scholar] [CrossRef]
- Barceló, J.G. Técnicas Analíticas Para Vinos. Cap 1-6; GAB: Barcelona, Spain, 1990; ISBN 8440478275. [Google Scholar]
- Murphey, J.M.; Powers, J.R.; Spayd, S.E. Estimation of Soluble Protein Concentration of White Wines Using Coomassie Brilliant Blue G-250. Am. J. Enol. Vitic. 1989, 40, 189–193. [Google Scholar] [CrossRef]
- Llaudy, M.C.; Canals, R.; Canals, J.M.; Rozés, N.; Arola, L.; Zamora, F. New Method for Evaluating Astringency in Red Wine. J. Agric. Food Chem. 2004, 52, 742–746. [Google Scholar] [CrossRef]
- Hidalgo Togores, J. Tratado de Enología: Tomo II; Ediciones Mundi-Prensa: Madrid, Spain, 2019. [Google Scholar]
- Maujean, A.; Poinsaut, P.; Dantan, H.; Brissonnet, F.; Cossiez, E. Etude de La Tenue et de La Qualité de Mousse Des Vins Effervescents: II- Mise Au Point d’une Technique de Mesure de La Moussabilité, de La Tenue et de La Stabilité Des Vins Effervescents. Bull. De L’oiv 1990, 711, 405–427. [Google Scholar]
- Massera, A.; Assof, M.; Sturm, M.E.; Sari, S.; Jofré, V.; Cordero-Otero, R.; Combina, M. Selection of Indigenous Saccharomyces cerevisiae Strains to Ferment Red Musts at Low Temperature. Ann. Microbiol. 2012, 62, 367–380. [Google Scholar] [CrossRef]
- Sánchez, R.; Rodríguez-Nogales, J.M.; Fernández-Fernández, E.; González, M.R.; Medina-Trujillo, L.; Martín, P. Volatile Composition and Sensory Properties of Wines from Vineyards Affected by Iron Chlorosis. Food Chem. 2022, 369, 130850. [Google Scholar] [CrossRef] [PubMed]
- Sieiro, C.; Villa, T.G.; da Silva, A.F.; García-Fraga, B.; Vilanova, M. Albariño Wine Aroma Enhancement through the Use of a Recombinant Polygalacturonase from Kluyveromyces marxianus. Food Chem. 2014, 145, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Ayestarán, B.; Martínez-Lapuente, L.; Guadalupe, Z.; Canals, C.; Adell, E.; Vilanova, M. Effect of the Winemaking Process on the Volatile Composition and Aromatic Profile of Tempranillo Blanco Wines. Food Chem. 2019, 276, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Lawless, H.T.; Heymann, H. Acceptance Testing. In Sensory Evaluation of Food: Principles and Practices; Lawless: New York, NY, USA, 2010; pp. 325–347. ISBN 978-1-4419-6488-5. [Google Scholar]
- ISO 8589:2007; Sensory Analysis—General Guidance for the Design of Test Rooms. International Standardization Organization: Geneva, Switzerland, 2007.
- Rodriguez-Nogales, J.M.; Fernández-Fernández, E.; Vila-Crespo, J. Effect of the Addition of β-Glucanases and Commercial Yeast Preparations on the Chemical and Sensorial Characteristics of Traditional Sparkling Wine. Eur. Food Res. Technol. 2012, 235, 729–744. [Google Scholar] [CrossRef]
- Sartor, S.; Toaldo, I.M.; Panceri, C.P.; Caliari, V.; Luna, A.S.; de Gois, J.S.; Bordignon-Luiz, M.T. Changes in Organic Acids, Polyphenolic and Elemental Composition of Rosé Sparkling Wines Treated with Mannoproteins during over-Lees Aging. Food Res. Int. 2019, 124, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Gnoinski, G.B.; Close, D.C.; Schmidt, S.A.; Kerslake, F.L. Towards Accelerated Autolysis? Dynamics of Phenolics, Proteins, Amino Acids and Lipids in Response to Novel Treatments and during Ageing of Sparkling Wine. Beverages 2021, 7, 50. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Amines, Amino Acids, and Proteins. In Understanding Wine Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 40–50. ISBN 9781118730720. [Google Scholar]
- Ribéreau-Gayon, P. Handbook of Enology. Volume 2, The Chemistry of Wine Stabilization and Treatments, 2nd ed.; John Wiley: Chichester, UK, 2006; ISBN 1-280-44870-9. [Google Scholar]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Acids. In Understanding Wine Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 19–33. ISBN 9781118730720. [Google Scholar]
- Alexandre, H.; Guilloux-Benatier, M. Yeast Autolysis in Sparkling Wine—A Review. Aust. J. Grape Wine Res. 2006, 12, 119–127. [Google Scholar] [CrossRef]
- Marquez, A.; Serratosa, M.P.; Merida, J. Pyranoanthocyanin Derived Pigments in Wine: Structure and Formation during Winemaking. J. Chem. 2013, 2013, 713028. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and Grape Polyphenols—A Chemical Perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Sartor, S.; Burin, V.M.; Panceri, C.P.; dos Passos, R.R.; Caliari, V.; Bordignon-Luiz, M.T. Rosé Sparkling Wines: Influence of Winemaking Practices on the Phytochemical Polyphenol During Aging on Lees and Commercial Storage. J. Food Sci. 2018, 83, 2790–2801. [Google Scholar] [CrossRef]
- Rinaldi, A.; Gonzalez, A.; Moio, L.; Gambuti, A. Commercial Mannoproteins Improve the Mouthfeel and Colour of Wines Obtained by Excessive Tannin Extraction. Molecules 2021, 26, 4133. [Google Scholar] [CrossRef] [PubMed]
- Torresi, S.; Frangipane, M.T.; Garzillo, A.M.V.; Massantini, R.; Contini, M. Effects of a β-Glucanase Enzymatic Preparation on Yeast Lysis during Aging of Traditional Sparkling Wines. Food Res. Int. 2014, 55, 83–92. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Pérez-Magariño, S. Role of Major Wine Constituents in the Foam Properties of White and Rosé Sparkling Wines. Food Chem. 2015, 174, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Arribas, V.; Pueyo, E.; Nieto, F.J.; Martín-Álvarez, P.J.; Polo, M.C. Influence of the Polysaccharides and the Nitrogen Compounds on Foaming Properties of Sparkling Wines. Food Chem. 2000, 70, 309–317. [Google Scholar] [CrossRef]
- Coelho, E.; Reis, A.; Domingues, M.R.M.; Rocha, S.M.; Coimbra, M.A. Synergistic Effect of High and Low Molecular Weight Molecules in the Foamability and Foam Stability of Sparkling Wines. J. Agric. Food Chem. 2011, 59, 3168–3179. [Google Scholar] [CrossRef]
- Gallardo-Chacón, J.; Vichi, S.; López-Tamames, E.; Buxaderas, S. Analysis of Sparkling Wine Lees Surface Volatiles by Optimized Headspace Solid-Phase Microextraction. J. Agric. Food Chem. 2009, 57, 3279–3285. [Google Scholar] [CrossRef] [PubMed]
- Rigou, P.; Mekoue, J.; Sieczkowski, N.; Doco, T.; Vernhet, A. Impact of Industrial Yeast Derivative Products on the Modification of Wine Aroma Compounds and Sensorial Profile. A Review. Food Chem. 2021, 358, 129760. [Google Scholar] [CrossRef] [PubMed]
- Torchio, F.; Segade, S.R.; Gerbi, V.; Cagnasso, E.; Giordano, M.; Giacosa, S.; Rolle, L. Changes in Varietal Volatile Composition during Shelf-Life of Two Types of Aromatic Red Sweet Brachetto Sparkling Wines. Food Res. Int. 2012, 48, 491–498. [Google Scholar] [CrossRef]
- Comuzzo, P.; Tat, L.; Liessi, A.; Brotto, L.; Battistutta, F.; Zironi, R. Effect of Different Lysis Treatments on the Characteristics of Yeast Derivatives for Winemaking. J. Agric. Food Chem. 2012, 60, 3211–3222. [Google Scholar] [CrossRef]
- Sawyer, S.; Longo, R.; Solomon, M.; Nicolotti, L.; Westmore, H.; Merry, A.; Gnoinski, G.; Ylia, A.; Dambergs, R.; Kerslake, F. Autolysis and the Duration of Ageing on Lees Independently Influence the Aroma Composition of Traditional Method Sparkling Wine. Aust. J. Grape Wine Res. 2022, 28, 146–159. [Google Scholar] [CrossRef]
- Martín-Garcia, A.; Abarca-Rivas, C.; Riu-Aumatell, M.; López-Tamames, E. Comparison of Volatile Compounds during Biological Ageing and Commercial Storage of Cava (Spanish Sparkling Wine): The Role of Lees. Heliyon 2023, 9, e19306. [Google Scholar] [CrossRef] [PubMed]
Parameters | AT | YW | YWT | BG | MN | IY | C | AT | T | AT × T |
---|---|---|---|---|---|---|---|---|---|---|
Alcoholic strength | 9 | 12.25 ± 0.86 | 12.65 ± 1.32 | 12.65 ± 1.44 | 12.60 ± 1.27 | 12.40 ± 1.38 | 12.65 ± 1.55 | ns | ns | ns |
21 | 11.50 ± 0.00 | 11.20 ± 0.00 | 11.50 ± 0.00 | 11.50 ± 0.00 | 11.50 ± 0.00 | 11.50 ± 0.00 | ||||
Reducing sugars | 9 | 1.42 ± 0.43 | 1.72 ± 0.48 | 1.32 ± 0.75 | 1.55 ± 0.31 | 1.75 ± 0.45 | 1.12 ± 0.62 | ns | ns | ns |
21 | 1.55 ± 0.33 | 1.22 ± 0.68 | 1.97 ± 0.61 | 1.67 ± 0.93 | 1.32 ± 0.53 | 1.45 ± 0.52 | ||||
Volatile acidity | 9 | 0.31 ± 0.03 | 0.29 ± 0.02 | 0.30 ± 0.06 | 0.27 ± 0.03 | 0.30 ± 0.01 | 0.27 ± 0.04 | * | ns | * |
21 | 0.41 ± 0.07 | 0.32 ± 0.05 | 0.29 ± 0.02 | 0.29 ± 0.03 | 0.39 ± 0.09 | 0.40 ± 0.03 | ||||
pH | 9 | 3.76 ± 0.06 a | 3.82 ± 0.00 bc | 3.76 ± 0.04 ab | 3.77 ± 0.04 ab | 3.84 ± 0.02 bc | 3.82 ± 0.02 bc | * | ns | ns |
21 | 3.87 ± 0.22 | 3.90 ± 0.09 | 3.94 ± 0.13 | 3.93 ± 0.11 | 3.92 ± 0.13 | 3.92 ± 0.10 | ||||
Total acidity | 9 | 4.00 ± 0.14 a | 4.02 ± 0.15 ab | 4.30 ± 0.18 de | 4.27 ± 0.15 cde | 4.52 ± 0.26 e | 4.25 ± 0.12 abc | * | ns | ns |
21 | 4.69 ± 0.18 | 4.52 ± 0.14 | 4.97 ± 0.60 | 4.82 ± 0.33 | 4.73 ± 0.47 | 4.43 ± 0.27 |
Parameters | AT | YW | YWT | BG | MN | IY | C | AT | T | AT × T |
---|---|---|---|---|---|---|---|---|---|---|
Total polysaccharides | 9 | 3.70 ± 0.22 | 2.77 ± 1.11 | 3.62 ± 0.38 | 3.68 ± 1.59 | 4.28 ± 0.75 | 3.66 ± 1.47 | * | ns | ns |
21 | 4.71 ± 1.36 | 4.76 ± 1.94 | 5.73 ± 0.86 | 5.16 ± 1.20 | 7.50 ± 0.42 | 5.97 ± 1.96 | ||||
Total proteins | 9 | 145.32 ± 8.76 | 141.11 ± 4.14 | 152.33 ± 5.36 | 147.42 ± 9.93 | 143.68 ± 5.78 | 137.14 ± 35.94 | * | ns | ns |
21 | 152.61 ± 5.65 | 152.17 ± 4.71 | 152.55 ± 6.27 | 150.86 ± 11.99 | 157.23 ± 8.61 | 154.89 ± 7.20 | ||||
Free amino nitrogen | 9 | 56.00 ± 1.20 a | 70.00 ± 0.06 b | 84.00 ± 0.31 c | 70.00 ± 0.61 b | 70.00 ± 0.93 b | 63.00 ± 9.89 ab | * | * | * |
21 | 65.33 ± 6.60 | 58.33 ± 8.73 | 56.00 ± 0.00 | 60.66 ± 6.98 | 58.33 ± 9.85 | 64.86 ± 4.62 |
Parameters | AT | YW | YWT | BG | MN | IY | C | AT | T | AT × T |
---|---|---|---|---|---|---|---|---|---|---|
Total polyphenol index | 9 | 30.58 ± 3.58 | 28.55 ± 2.51 | 29.23 ± 4.05 | 27.88 ± 2.84 | 27.28 ± 1.74 | 28.83 ± 1.67 | * | ns | ns |
21 | 26.5 ± 2.38 | 28.5 ± 4.65 | 26.25 ± 2.50 | 24.50 ± 3.42 | 24.00 ± 3.46 | 25.00 ± 1.15 | ||||
Hydroxycinnamic acids | 9 | 11.68 ± 1.04 | 10.8 ± 0.98 | 11.45 ± 1.32 | 10.75 ± 0.50 | 10.65 ± 0.79 | 10.85 ± 0.60 | ns | ns | ns |
21 | 11.25 ± 3.20 | 11.5 ± 3.70 | 11.00 ± 2.16 | 10.00 ± 0.82 | 10.00 ± 0.82 | 10.50 ± 1.73 | ||||
Flavonols | 9 | 4.65 ± 0.35 | 4.20 ± 0.29 | 4.53 ± 0.51 | 4.33 ± 0.33 | 4.13 ± 0.39 | 4.18 ± 0.36 | * | ns | ns |
21 | 3.95 ± 0.92 | 4.08 ± 0.94 | 3.97 ± 0.77 | 3.75 ± 0.57 | 3.86 ± 0.38 | 3.66 ± 0.62 | ||||
Total anthocyanins | 9 | 141.97 ± 9.99 | 128.63 ± 7.36 | 115.72 ± 28.15 | 136.94 ± 8.76 | 121.19 ± 12.43 | 142.84 ± 9.54 | * | ns | * |
21 | 75.47 ± 3.14 a | 68.91 ± 1.94 b | 76.78 ± 2.3 a | 69.34 ± 2.61 b | 65.84 ± 1.49 bc | 60.16 ± 3.74 c | ||||
Tannins | 9 | 1.06 ± 0.17 | 1.13 ± 0.31 | 0.99 ± 0.29 | 0.98 ± 0.28 | 0.89 ± 0.24 | 1.01 ± 0.23 | * | ns | ns |
21 | 0.82 ± 0.10 a | 0.83 ± 0.06 a | 0.71 ± 0.21 b | 0.81 ± 0.10 ab | 0.71 ± 0.09 ab | 0.81 ± 0.10 ab |
Parameters | AT | BG | YWT | MN | IY | YW | C | AT | T | AT × T |
---|---|---|---|---|---|---|---|---|---|---|
Foamability | 9 | 3.50 ± 0.00 d | 2.10 ± 0.14 a | 3.30 ± 0.42 cd | 3.15 ± 0.21 bc | 3.40 ± 0.28 cd | 2.90 ± 0.14 b | * | * | * |
21 | 35.50 ± 0.71 d | 27.50 ± 2.12 ab | 31.50 ± 0.70 c | 28.50 ± 0.70 b | 27.00 ± 1.41 a | 26.50 ± 0.70 a | ||||
Foam persistence | 9 | 1.85 ± 0.07 b | 1.50 ± 0.00 a | 1.95 ± 0.35 bc | 1.90 ± 0.14 bc | 2.00 ± 0.00 bc | 2.05 ± 0.07 c | * | * | * |
21 | 17.5 ± 0.70 a | 20.00 ± 0.00 c | 19.50 ± 0.70 bc | 20.00 ± 0.00 c | 18.50 ± 2.12 ab | 17.50 ± 0.70 a | ||||
Foam stability time | 9 | 95.50 ± 10.60 cd | 80.00 ± 7.07 ab | 97.50 ± 12.02 d | 93.00 ± 24.04 bcd | 81.00 ± 7.07 abc | 76.50 ± 6.36 a | * | * | ns |
21 | 35.50 ± 0.70 e | 27.00 ± 0.00 c | 33.50 ± 0.70 d | 22.50 ± 0.70 a | 24.50 ± 2.12 b | 23.50 ± 0.70 ab |
Compounds | AT | BG | YWT | MN | IY | YW | C | AT | T | AT × T |
---|---|---|---|---|---|---|---|---|---|---|
Propan-1-ol | 9 | 0.29 ± 0.03 | 0.30 ± 0.03 | 0.25 ± 0.02 | 0.30 ± 0.01 | 0.24 ± 0.05 | 0.27 ± 0.01 | * | ns | ns |
21 | 0.11 ± 0.00 | 0.11 ± 0.00 | 0.14 ± 0.01 | 0.11 ± 0.02 | 0.10 ± 0.01 | 0.11 ± 0.02 | ||||
2-Methylpropan-1-ol | 9 | 3.41 ± 0.23 | 3.74 ± 0.21 | 3.39 ± 0.24 | 3.58 ± 0.14 | 3.64 ± 0.13 | 3.29 ± 0.20 | * | ns | ns |
21 | 1.16 ± 0.0 | 1.31 ± 0.08 | 1.71 ± 0.32 | 1.26 ± 0.19 | 1.20 ± 0.13 | 1.21 ± 0.19 | ||||
3-Methylbutan-1-ol | 9 | 46.15 ± 2.89 | 50.45 ± 1.29 | 46.61 ± 1.80 | 47.73 ± 2.65 | 49.80 ± 1.08 | 47.88 ± 0.21 | * | ns | ns |
21 | 26.40 ± 1.36 | 29.35 ± 2.44 | 34.09 ± 5.41 | 28.28 ± 3.41 | 28.13 ± 2.81 | 27.06 ± 4.06 | ||||
Hexan-1-ol | 9 | 1.69 ± 0.04 | 2.08 ± 0.12 | 1.56 ± 0.57 | 1.84 ± 0.19 | 2.05 ± 0.08 | 2.02 ± 0.08 | * | ns | ns |
21 | 0.92 ± 0.04 | 1.03 ± 0.04 | 1.15 ± 0.18 | 0.97 ± 0.09 | 1.03 ± 0.08 | 0.93 ± 0.14 | ||||
Heptan-1-ol | 9 | 0.28 ± 0.03 | 0.35 ± 0.04 | 0.32 ± 0.00 | 0.30 ± 0.05 | 0.33 ± 0.02 | 0.34 ± 0.02 | * | ns | ns |
21 | 0.18 ± 0.00 | 0.21 ± 0.00 | 0.24 ± 0.03 | 0.20 ± 0.01 | 0.19 ± 0.01 | 0.18 ± 0.02 | ||||
Octan-1-ol | 9 | 0.15 ± 0.01 a | 0.22 ± 0.01 ab | 0.24 ± 0.00 ab | 0.19 ± 0.02 ab | 0.23 ± 0.00 ab | 0.28 ± 0.04 b | * | * | * |
21 | 0.09 ± 0.00 | 0.11 ± 0.00 | 0.11 ± 0.02 | 0.09 ± 0.02 | 0.08 ± 0.01 | 0.09 ± 0.00 | ||||
2-Phenylethanol | 9 | 35.21 ± 0.64 | 37.53 ± 2.30 | 34.63 ± 0.41 | 34.89 ± 1.64 | 37.45 ± 0.53 | 37.10 ± 4.02 | * | ns | ns |
21 | 19.06 ± 1.91 | 21.35 ± 0.08 | 23.88 ± 1.03 | 20.86 ± 5.06 | 17.77 ± 1.45 | 18.56 ± 0.04 | ||||
3-Methylsulfanylpropan-1-ol | 9 | 0.50 ± 0.04 | 0.57 ± 0.01 | 0.51 ± 0.00 | 0.51 ± 0.01 | 0.62 ± 0.01 | 0.59 ± 0.09 | * | ns | ns |
21 | 0.16 ± 0.00 | 0.17 ± 0.01 | 0.18 ± 0.00 | 0.18 ± 0.10 | 0.19 ± 0.03 | 0.13 ± 0.02 | ||||
(Z)-Hex-3-en-1-ol | 9 | 0.20 ± 0.02 | 0.21 ± 0.00 | 0.18 ± 0.00 | 0.21 ± 0.03 | 0.22 ± 0.00 | 0.22 ± 0.01 | * | ns | ns |
21 | 0.09 ± 0.00 | 0.09 ± 0.01 | 0.0 ± 0.01 | 0.09 ± 0.02 | 0.08 ± 0.01 | 0.07 ± 0.00 | ||||
Hexanoic acid | 9 | 1.47 ± 0.07 | 1.65 ± 0.15 | 1.41 ± 0.04 | 1.40 ± 0.17 | 1.62 ± 0.06 | 1.51 ± 0.28 | * | ns | ns |
21 | 0.59 ± 0.06 | 0.67 ± 0.01 | 0.80 ± 0.07 | 0.66 ± 0.19 | 0.48 ± 0.06 | 0.52 ± 0.05 | ||||
Octanoic acid | 9 | 3.69 ± 0.39 | 4.34 ± 0.58 | 3.76 ± 0.24 | 3.43 ± 0.38 | 4.34 ± 0.00 | 4.88 ± 1.88 | * | ns | ns |
21 | 1.57 ± 0.10 | 1.78 ± 0.20 | 2.09 ± 0.22 | 2.09 ± 0.38 | 1.43 ± 0.10 | 1.57 ± 0.12 | ||||
Ethyl acetate | 9 | 3.26 ± 0.19 | 3.43 ± 0.08 | 3.03 ± 0.24 | 3.10 ± 0.04 | 3.26 ± 0.14 | 3.06 ± 0.12 | * | ns | ns |
21 | 1.69 ± 0.01 | 2.01 ± 0.27 | 2.07 ± 0.40 | 1.85 ± 0.19 | 2.03 ± 0.09 | 1.84 ± 0.27 | ||||
3-Methylbutyl acetate | 9 | 4.13 ± 0.25 | 7.61 ± 0.82 | 6.47 ± 1.90 | 5.04 ± 1.21 | 7.41 ± 0.50 | 5.27 ± 1.11 | * | ns | ns |
21 | 4.86 ± 0.28 | 4.28 ± 0.22 | 5.93 ± 1.20 | 4.98 ± 0.18 | 5.45 ± 0.67 | 5.64 ± 0.25 | ||||
2-Phenylethyl acetate | 9 | 1.80 ± 0.09 | 4.30 ± 0.41 | 3.56 ± 1.34 | 2.81 ± 1.19 | 4.21 ± 0.01 | 3.48 ± 0.10 | * | ns | * |
21 | 1.88 ± 0.25 | 1.55 ± 0.35 | 2.21 ± 0.38 | 1.76 ± 0.18 | 1.55 ± 0.37 | 2.00 ± 0.51 | ||||
Ethyl 2-hydroxypropanoate | 9 | 3.00 ± 0.17 | 3.09 ± 0.15 | 2.66 ± 0.13 | 3.04 ± 0.26 | 3.16 ± 0.02 | 2.88 ± 0.13 | * | ns | ns |
21 | 0.80 ± 0.04 | 0.93 ± 0.09 | 0.96 ± 0.06 | 0.89 ± 0.08 | 0.88 ± 0.04 | 0.81 ± 0.12 | ||||
Ethyl butanoate | 9 | 0.28 ± 0.01 | 0.36 ± 0.03 | 0.31 ± 0.01 | 0.30 ± 0.01 | 0.31 ± 0.06 | 0.29 ± 0.08 | * | ns | ns |
21 | 0.17 ± 0.01 | 0.20 ± 0.01 | 0.22 ± 0.05 | 0.18 ± 0.01 | 0.18 ± 0.01 | 0.17 ± 0.03 | ||||
Diethyl butanedioate | 9 | 20.80 ± 0.59 | 22.13 ± 0.60 | 20.45 ± 0.47 | 20.62 ± 1.20 | 22.38 ± 0.18 | 21.83 ± 1.39 | * | ns | * |
21 | 6.67 ± 0.21 | 8.95 ± 0.51 | 8.35 ± 0.76 | 7.55 ± 1.64 | 6.02 ± 0.86 | 6.64 ± 0.25 | ||||
Ethyl hexanoate | 9 | 6.86 ± 0.57 | 8.75 ± 0.42 | 8.51 ± 0.29 | 7.55 ± 1.24 | 8.92 ± 0.68 | 8.12 ± 1.13 | * | * | ns |
21 | 2.75 ± 0.08 | 3.23 ± 0.37 | 4.10 ± 0.71 | 3.09 ± 0.00 | 3.63 ± 0.51 | 3.09 ± 0.30 | ||||
Ethyl octanoate | 9 | 27.64 ± 2.75 | 31.12 ± 2.06 | 33.55 ± 0.37 | 28.66 ± 0.06 | 33.62 ± 2.54 | 34.33 ± 3.48 | * | * | ns |
21 | 5.31 ± 0.85 a | 7.50 ± 0.19 ab | 10.09 ± 0.92 b | 7.36 ± 1.34 ab | 5.85 ± 1.41 a | 6.80 ± 0.25 ab | ||||
Ethyl decanoate | 9 | 5.20 ± 0.13 | 5.91 ± 0.57 | 6.47 ± 1.05 | 4.82 ± 1.59 | 5.61 ± 0.25 | 8.99 ± 0.85 | * | * | * |
21 | 1.64 ± 0.20 ab | 2.07 ± 0.11 ab | 2.37 ± 0.36 ab | 2.54 ± 0.17 b | 1.30 ± 0.48 a | 2.19 ± 0.14 ab | ||||
Ethyl dec-9-enoate | 9 | 1.56 ± 0.05 b | 2.44 ± 0.11 d | 2.06 ± 0.13 cd | 1.17 ± 0.04 a | 2.11 ± 0.13 cd | 1.90 ± 0.05 bc | * | * | * |
21 | 0.56 ± 0.09 | 0.61 ± 0.01 | 0.81 ± 0.00 | 0.86 ± 0.22 | 0.43 ± 0.14 | 0.64 ± 0.02 | ||||
Ethyl dodecanoate | 9 | 1.17 ± 0.31 a | 0.89 ± 0.24 a | 1.96 ± 0.04 a | 0.71 ± 0.31 a | 0.72 ± 0.01 a | 3.73 ± 0.93 b | * | * | * |
21 | 0.53 ± 0.00 | 0.71 ± 0.03 | 0.38 ± 0.01 | 0.58 ± 0.30 | 0.31 ± 0.09 | 0.39 ± 0.09 | ||||
Ethyl tetradecanoate | 9 | 0.75 ± 0.00 a | 1.60 ± 0.39 a | 2.37 ± 0.38 ab | 0.74 ± 0.05 a | 0.97 ± 0.19 a | 4.09 ± 1.33 b | * | * | * |
21 | 0.42 ± 0.10 | 0.35 ± 0.01 | 0.32 ± 0.01 | 0.31 ± 0.07 | 0.35 ± 0.12 | 0.35 ± 0.03 | ||||
Ethyl hexadecanoate | 9 | 3.19 ± 0.00 | 4.06 ± 0.09 | 3.76 ± 0.03 | 3.06 ± 0.01 | 4.41 ± 0.21 | 4.59 ± 0.40 | * | * | * |
21 | 0.57 ± 0.03 a | 0.83 ± 0.06 abc | 0.96 ± 0.02 bc | 1.03 ± 0.09 c | 0.65 ± 0.10 ab | 0.92 ± 0.13 bc | ||||
Benzaldehyde | 9 | 0.91 ± 0.30 | 0.61 ± 0.05 | 1.02 ± 0.24 | 0.59 ± 0.07 | 0.58 ± 0.00 | 0.68 ± 0.04 | * | ns | ns |
21 | 0.57 ± 0.54 | 0.22 ± 0.00 | 0.21 ± 0.01 | 0.19 ± 0.01 | 0.19 ± 0.02 | 0.21 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moyano-Gracia, R.; Vila-Crespo, J.; Ruipérez, V.; Rodríguez-Nogales, J.M.; Fernández-Fernández, E. Effect of Yeast Derivatives and β-Glucanases on Ageing over Lees Process of Tempranillo Red Sparkling Wine. Fermentation 2023, 9, 1012. https://doi.org/10.3390/fermentation9121012
Moyano-Gracia R, Vila-Crespo J, Ruipérez V, Rodríguez-Nogales JM, Fernández-Fernández E. Effect of Yeast Derivatives and β-Glucanases on Ageing over Lees Process of Tempranillo Red Sparkling Wine. Fermentation. 2023; 9(12):1012. https://doi.org/10.3390/fermentation9121012
Chicago/Turabian StyleMoyano-Gracia, Raúl, Josefina Vila-Crespo, Violeta Ruipérez, José Manuel Rodríguez-Nogales, and Encarnación Fernández-Fernández. 2023. "Effect of Yeast Derivatives and β-Glucanases on Ageing over Lees Process of Tempranillo Red Sparkling Wine" Fermentation 9, no. 12: 1012. https://doi.org/10.3390/fermentation9121012
APA StyleMoyano-Gracia, R., Vila-Crespo, J., Ruipérez, V., Rodríguez-Nogales, J. M., & Fernández-Fernández, E. (2023). Effect of Yeast Derivatives and β-Glucanases on Ageing over Lees Process of Tempranillo Red Sparkling Wine. Fermentation, 9(12), 1012. https://doi.org/10.3390/fermentation9121012