Greenhouse Gas Emission Reduction Potential of Lavender Meal and Essential Oil for Dairy Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Composition of Diets
2.2. Extraction and Characterization of Lavender Essential Oil
2.3. In Vitro Gas Production and Fermentation Characteristics
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, P.; Singh, J.; Kumar, A.; Wadhwa, M. Sustainable Utilization of Aloe Vera Waste in the Diet of Lactating Cows for Improvement of Milk Production Performance and Reduction of Carbon Footprint. J. Clean. Prod. 2021, 288, 125118. [Google Scholar] [CrossRef]
- Palangi, V.; Taghizadeh, A.; Abachi, S.; Lackner, M. Strategies to Mitigate Enteric Methane Emissions in Ruminants: A Review. Sustainability 2022, 14, 13229. [Google Scholar] [CrossRef]
- Kader Esen, V.; Palangi, V.; Esen, S. Genetic Improvement and Nutrigenomic Management of Ruminants to Achieve Enteric Methane Mitigation: A Review. Methane 2022, 1, 342–354. [Google Scholar] [CrossRef]
- Bačėninaitė, D.; Džermeikaitė, K.; Antanaitis, R. Global Warming and Dairy Cattle: How to Control and Reduce Methane Emission. Animals 2022, 12, 2687. [Google Scholar] [CrossRef]
- Pszczola, M.; Calus, M.P.L.; Strabel, T. Short Communication: Genetic Correlations between Methane and Milk Production, Conformation, and Functional Traits. J. Dairy Sci. 2019, 102, 5342–5346. [Google Scholar] [CrossRef]
- Mammi, L.M.E.; Guadagnini, M.; Mechor, G.; Cainzos, J.M.; Fusaro, I.; Palmonari, A.; Formigoni, A. The Use of Monensin for Ketosis Prevention in Dairy Cows during the Transition Period: A Systematic Review. Animals 2021, 11, 1988. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited Review: Current Enteric Methane Mitigation Options. J. Dairy Sci. 2022, 9297–9326. [Google Scholar] [CrossRef]
- Honan, M.; Feng, X.; JM, T.; Kebreab, E. Feed Additives as a Strategic Approach to Reduce Enteric Methane Production in Cattle. AFMA Matrix 2022, 31, 52–56. [Google Scholar] [CrossRef]
- Zeru, A.E.; Hassen, A.; Apostolides, Z.; Tjelele, J. Relationships between Agronomic Traits of Moringa Accessions and In Vitro Gas Production Characteristics of a Test Feed Incubated with or without Moringa Plant Leaf Extracts. Plants 2022, 11, 2901. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Liu, Z.B.; He, W.F.; Yu, S.B.; Gao, G.; Wang, J.K. Intermittent feeding of citrus essential oils as a potential strategy to decrease methane production by reducing microbial adaptation. J. Clean. Prod. 2018, 194, 704–713. [Google Scholar] [CrossRef]
- Ugbogu, E.A.; Elghandour, M.M.M.Y.; Ikpeazu, V.O.; Buendía, G.R.; Molina, O.M.; Arunsi, U.O.; Emmanuel, O.; Salem, A.Z.M. The Potential Impacts of Dietary Plant Natural Products on the Sustainable Mitigation of Methane Emission from Livestock Farming. J. Clean. Prod. 2019, 213, 915–925. [Google Scholar] [CrossRef]
- Fouts, J.Q.; Honan, M.C.; Roque, B.M.; Tricarico, J.M.; Kebreab, E. Enteric Methane Mitigation Interventions. Transl. Anim. Sci. 2022, 6, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ona, A.; Dan, V.; Muntean, L.; Rodica, V.; Stoie, A. Current Trends for Lavender (Lavandula angustifolia Mill.) Crops and Products with Emphasis on Essential Oil Quality. Plants 2023, 12, 357. [Google Scholar] [CrossRef]
- Wells, R.; Truong, F.; Adal, A.M.; Sarker, L.S.; Mahmoud, S.S. Lavandula Essential Oils: A Current Review of Applications in Medicinal, Food, and Cosmetic Industries of Lavender. Nat. Prod. Commun. 2018, 13, 1403–1417. [Google Scholar] [CrossRef] [Green Version]
- Ratiarisoa, R.V.; Magniont, C.; Ginestet, S.; Oms, C.; Escadeillas, G. Assessment of Distilled Lavender Stalks as Bioaggregate for Building Materials: Hygrothermal Properties, Mechanical Performance and Chemical Interactions with Mineral Pozzolanic Binder. Constr. Build. Mater. 2016, 124, 801–815. [Google Scholar] [CrossRef]
- Bhatt, R.S.; Sarkar, S.; Sahoo, A.; Sharma, P.; Soni, L.; Saxena, V.K.; Soni, A. Dietary Inclusion of Mature Lemon Grass and Curry Leaves Affects Nutrient Utilization, Methane Reduction and Meat Quality in Finisher Lambs. Anim. Feed Sci. Technol. 2021, 278, 114979. [Google Scholar] [CrossRef]
- Bhatt, R.S.; Sahoo, A.; Sarkar, S.; Kumar, V.; Soni, L.; Sharma, P.; Gadekar, Y.P. Dietary Inclusion of Nonconventional Roughages for Lowering Enteric Methane Production and Augmenting Nutraceutical Value of Meat in Cull Sheep. Anim. Feed Sci. Technol. 2021, 273, 114832. [Google Scholar] [CrossRef]
- Mavandi, P.; Abbaszadeh, B.; Emami Bistgani, Z.; Barker, A.V.; Hashemi, M. Biomass, Nutrient Concentration and the Essential Oil Composition of Lavender (Lavandula Angustifolia Mill.) Grown with Organic Fertilizers. J. Plant Nutr. 2021, 44, 3061–3071. [Google Scholar] [CrossRef]
- González-rivera, J.; Duce, C.; Falconieri, D.; Ferrari, C.; Ghezzi, L.; Piras, A.; Rosaria, M. Coaxial Microwave Assisted Hydrodistillation of Essential Oils from Fi ve Different Herbs (Lavender, Rosemary, Sage, Fennel Seeds and Clove Buds): Chemical Composition and Thermal Analysis. Innov. Food Sci. Emerg. Technol. 2016, 33, 308–318. [Google Scholar] [CrossRef]
- Muscles, B.; Activity, A.; Responses, I.; Amer, S.A.; Abdel-Wareth, A.A.A.; Gouda, A.; Saleh, G.K.; Nassar, A.H.; Sherief, W.R.I.A.; Albogami, S.; et al. Impact of Dietary Lavender Essential Oil on the Growth and Fatty Acid Profile of Breast Muscles, Antioxidant Activity, and Inflammatory Responses in Broiler Chickens. Antioxidants 2022, 11, 1798. [Google Scholar] [CrossRef]
- Büyükkılıç Beyzi, S. Effect of Lavender and Peppermint Essential Oil on In Vitro Methanogenesis and Fermentation of Feed with Buffalo Rumen Liquor. Buffalo Bull. 2020, 39, 311–321. [Google Scholar]
- Yadeghari, S.; Malecky, M.; Banadaky, M.D.; Navidshad, B. Evaluating in Vitro Dose-Response Effects of Lavandula Officinalis Essential Oil on Rumen Fermentation Characteristics, Methane Production and Ruminal Acidosis. Vet. Res. Forum. 2015, 6, 285–293. [Google Scholar] [PubMed]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- ISO 10520; Determination of Starch Content—Ewers Polarimetric Method. ISO: Geneva, Switzerland, 2000; pp. 1–8.
- Manzur, M.; Luciardi, C.; Bl, M.A.; Alberto, R.; Cartagena, E. Citrus Sinensis Essential Oils an Innovative Antioxidant and Antipathogenic Dual Strategy in Food Preservation against Spoliage Bacteria. Antioxidants 2023, 12, 246. [Google Scholar] [CrossRef]
- Riu-Aumatell, M.; Castellari, M.; López-Tamames, E.; Galassi, S.; Buxaderas, S. Characterisation of Volatile Compounds of Fruit Juices and Nectars by HS/SPME and GC/MS. Food Chem. 2004, 87, 627–637. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Goel, G.; Makkar, H.P.S.; Becker, K. Pycnocephalus Leaves and Fenugreek (Trigonella foenum-Graecum L.) Seeds and Their Extracts on Partitioning of Nutrients from Roughage- and Concentrate-Based Feeds to Methane. Anim. Feed. Sci. Technol. 2008, 147, 72–89. [Google Scholar] [CrossRef]
- Bağcık, C.; Koç, F.; Erten, K.; Esen, S.; Palangi, V.; Lackner, M. Lentilactobacillus buchneri Preactivation Affects the Mitigation of Methane Emission in Corn Silage Treated with or without Urea. Fermentation 2022, 8, 747. [Google Scholar] [CrossRef]
- Menke, B.Y.K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Laleva, S.; Yordanova, D.; Kalaydzhiev, G.; Karabashev, V.; Ivanov, N.; Angelova, T.; Vasilev, V. Influence of Some Biologically Active Substances on Gas Production, Digesitibility, and Metabolic Energy in Different Feeds. J. Hyg. Eng. Des. 2022, 39, 3–8. [Google Scholar]
- Broudiscou, L.P.; Papon, Y.; Broudiscou, A.F. Effects of Dry Plant Extracts on Fermentation and Methanogenesis in Continuous Culture of Rumen Microbes. Anim. Feed Sci. Technol. 2000, 87, 263–277. [Google Scholar] [CrossRef]
- Nunes, H.P.B.; Dias, C.S.A.M.M.; Borba, A.E.S. Heliyon Bioprospecting Essential Oils of Exotic Species as Potential Mitigations of Ruminant Enteric Methanogenesis. Heliyon 2023, 9, e12786. [Google Scholar] [CrossRef]
- Cieslak, A.; Szumacher-Strabel, M.; Stochmal, A.; Oleszek, W. Plant Components with Specific Activities against Rumen Methanogens. Animal 2013, 7 (Suppl. 2), 253–265. [Google Scholar] [CrossRef] [PubMed]
- Sinz, S.; Marquardt, S.; Soliva, C.R.; Braun, U.; Liesegang, A.; Kreuzer, M. Phenolic Plant Extracts Are Additive in Their Effects against in Vitro Ruminal Methane and Ammonia Formation. Asian-Australas. J. Anim. Sci. 2019, 32, 966–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saksrithai, K.; King, A.J. Controlling Hydrogen Sulfide Emissions during Poultry Productions. J. Anim. Res. Nutr. 2018, 03, 1–14. [Google Scholar] [CrossRef]
- Santillán, M.K.G.; Khusro, A.; Salem, A.Z.M.; Pliego, A.B.; Elghandour, M.M.M.Y. Potential and Valorization of Salix Babylonica Waste Leaf Extract to Mitigate Equine Fecal Production of Methane, Carbon Monoxide, and Hydrogen Sulfide. Waste Biomass Valorization 2022. [Google Scholar] [CrossRef]
- Alvarado, T.D.; Elghandour, M.M.M.Y.; Ekanem, N.J.; Alcala-Canto, Y.; Velázquez, A.E.; Pacheco, E.B.F.; Purba, R.A.P.; Salem, A.Z.M. Influence of Azadirachta Indica and Cnidoscolus Angustidens Dietary Extracts on Equine Fecal Greenhouse Gas Emissions. J. Equine Vet. Sci. 2022, 116, 104049. [Google Scholar] [CrossRef] [PubMed]
- Elghandour, M.M.Y.; Vallejo, L.H.; Salem, A.Z.M.; Mellado, M.; Camacho, L.M.; Cipriano, M.; Olafadehan, O.A.; Olivares, J.; Rojas, S. Moringa Oleifera Leaf Meal as an Environmental Friendly Protein Source for Ruminants: Biomethane and Carbon Dioxide Production, and Fermentation Characteristics. J. Clean. Prod. 2017, 165, 1229–1238. [Google Scholar] [CrossRef]
- Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. The Sustainable Mitigation of Ruminal Methane and Carbon Dioxide Emissions by Co-Ensiling Corn Stalk with Neolamarckia Cadamba Leaves for Cleaner Livestock Production. J. Clean. Prod. 2021, 311, 127680. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R.; Zawiślak, G. Chemical Composition and Antioxidant Activity of Lavender (Lavandula angustifolia Mill.) Aboveground Parts. Acta Sci. Pol. Hortorum Cultus 2016, 15, 225–241. [Google Scholar]
Item | g/kg (Dry Matter Basis) |
---|---|
Dry matter (g/kg fresh matter basis) | 898.7 |
Crude protein | 203.8 |
Ash | 74.0 |
Ether extract | 31.3 |
Acid detergent fiber | 105.3 |
Neutral detergent fiber | 254.3 |
Starch | 260.3 |
Number | R. Time | Area | Area% | Compounds |
---|---|---|---|---|
1 | 13.685 | 101,576 | 0.15 | DL-Limonene |
2 | 13.742 | 212,507 | 0.32 | 1,8-Cineole |
3 | 13.900 | 57,827 | 0.09 | Geranyl tiglate |
4 | 14.342 | 1,085,072 | 1.61 | α-Pinene |
5 | 14.600 | 54,210 | 0.08 | Farnesene |
6 | 14.931 | 1,487,834 | 2.21 | Ocimene |
7 | 17.663 | 25,783,120 | 38.30 | Linalool |
8 | 18.338 | 525,190 | 0.78 | Octenyl acetate |
9 | 18.925 | 103,882 | 0.15 | 3-Octyl acetate |
10 | 19.136 | 830,531 | 1.24 | Alloocimene |
11 | 19.619 | 236,533 | 0.35 | Camphor |
12 | 20.723 | 339,739 | 0.51 | Borneol |
13 | 20.920 | 591,330 | 0.88 | Lavandulol |
14 | 21.269 | 3,496,970 | 5.20 | 4-Terpinyl acetate |
15 | 21.899 | 506,098 | 0.75 | Linalyl propionate |
16 | 24.722 | 21,628,616 | 32.10 | Linalyl acetate |
17 | 25.859 | 94,018 | 0.14 | Fenchyl acetate |
18 | 26.101 | 3,243,132 | 4.82 | Neryl acetate |
19 | 29.534 | 359,315 | 0.53 | Geranyl acetate |
20 | 29.632 | 192,137 | 0.29 | Hexyl hexanoate |
21 | 29.816 | 92,161 | 0.14 | Zingiberene |
22 | 30.669 | 40,808 | 0.06 | trans-α-Bergamotene |
23 | 30.852 | 2,533,028 | 3.77 | Caryophyllene |
24 | 31.211 | 87,501 | 0.13 | Isocaryophyllene |
25 | 31.400 | 87,541 | 0.13 | α-Bergamotene |
26 | 32.088 | 3,006,736 | 4.47 | β-Farnesene |
27 | 32.959 | 127,795 | 0.19 | Germacrene D |
28 | 33.075 | 33,468 | 0.05 | β-Sesquiphellandrene |
29 | 34.046 | 46,148 | 0.07 | Eudesma-3,7(11)-diene |
30 | 36.250 | 237,195 | 0.35 | Caryophyllene oxide |
Total | - | 67,222,018 | 100 | - |
Form | Dosage | 3 h, mL | 6 h, mL | 12 h, mL | 24 h, mL | 48 h, mL |
---|---|---|---|---|---|---|
WL | 0% | 16.00 | 29.00 | 36.00 | 58.23 | 62.23 |
0.05% | 13.50 | 26.00 | 33.00 | 57.35 | 61.35 | |
0.10% | 12.00 | 26.50 | 33.50 | 56.78 | 60.78 | |
LM | 0% | 16.00 | 29.00 | 36.00 | 58.23 | 62.23 |
0.05% | 14.00 | 26.00 | 35.00 | 59.47 | 62.97 | |
0.10% | 12.95 | 24.95 | 31.95 | 54.08 | 58.08 | |
LEO | 0% | 16.00 | 29.00 | 36.00 | 58.23 | 62.23 |
0.05% | 10.00 | 22.00 | 30.00 | 50.36 | 53.86 | |
0.10% | 11.00 | 24.00 | 32.00 | 54.13 | 56.63 | |
SEM | 0.83 | 1.34 | 1.26 | 1.76 | 2.19 | |
p-value | 0.2142 | 0.5261 | 0.2930 | 0.1176 | 0.2856 | |
Main effect (Lavender form) | ||||||
WL | 13.83 ab | 27.17 | 34.17 | 57.45 | 61.45 | |
LM | 14.32 a | 26.65 | 34.32 | 57.26 | 61.09 | |
LEO | 12.33 b | 25.00 | 32.67 | 54.24 | 57.57 | |
SEM | 0.48 | 0.78 | 0.73 | 1.01 | 1.27 | |
p-value | 0.0417 | 0.1751 | 0.2587 | 0.0914 | 0.1089 | |
Main effect (Lavender dosage) | ||||||
0% | 16.00 a | 29.00 a | 36.00 a | 58.23 | 62.23 | |
0.05% | 12.50 b | 24.67 b | 32.67 b | 55.73 | 59.39 | |
0.10% | 11.98 b | 25.15 b | 32.48 b | 55.00 | 58.49 | |
SEM | 0.48 | 0.78 | 0.73 | 1.01 | 1.27 | |
p-value | 0.0004 | 0.0063 | 0.0125 | 0.1140 | 0.1495 |
Form | Dosage | c | a | b | a + b | ME | NEL | OMD |
---|---|---|---|---|---|---|---|---|
WL | 0% | 0.074 | 4.61 | 60.53 | 65.15 | 10.20 | 6.38 | 67.95 |
0.05% | 0.070 | 1.83 | 63.13 | 64.96 | 10.00 | 6.23 | 65.88 | |
0.10% | 0.075 | 0.37 | 63.41 | 63.78 | 9.92 | 6.16 | 65.37 | |
LM | 0% | 0.074 | 4.61 | 60.53 | 65.15 | 10.20 | 6.38 | 67.95 |
0.05% | 0.074 | 0.91 | 65.59 | 66.50 | 10.29 | 6.47 | 67.77 | |
0.10% | 0.072 | 1.87 | 59.36 | 61.24 | 9.55 | 5.85 | 62.97 | |
LEO | 0% | 0.074 | 4.61 | 60.53 | 65.15 | 10.20 | 6.38 | 67.95 |
0.05% | 0.073 | 0.00 | 56.89 | 56.89 | 9.05 | 5.43 | 59.66 | |
0.10% | 0.076 | 0.00 | 59.85 | 59.85 | 9.56 | 5.86 | 63.01 | |
SEM | 0.003 | 0.51 | 1.95 | 2.28 | 0.23 | 0.18 | 1.49 | |
p-value | 0.7830 | 0.1561 | 0.1658 | 0.2741 | 0.0966 | 0.0806 | 0.0953 | |
Main effect (Lavender form) | ||||||||
WL | 0.073 | 2.27 | 62.36 | 64.63 | 10.04 | 6.26 | 66.40 | |
LM | 0.073 | 2.46 | 61.83 | 64.29 | 10.02 | 6.23 | 66.23 | |
LEO | 0.074 | 1.54 | 59.09 | 60.63 | 9.60 | 5.89 | 63.54 | |
SEM | 0.002 | 0.29 | 1.12 | 1.32 | 0.13 | 0.11 | 0.86 | |
p-value | 0.8250 | 0.1133 | 0.1428 | 0.1101 | 0.0765 | 0.0648 | 0.0755 | |
Main effect (Lavender dosage) | ||||||||
0% | 0.074 | 4.61 a | 60.53 | 65.15 | 10.20 a | 6.38 a | 67.95 a | |
0.05% | 0.072 | 0.91 b | 61.87 | 62.78 | 9.78 ab | 6.04 ab | 64.44 b | |
0.10% | 0.074 | 0.75 b | 60.87 | 61.62 | 9.68 b | 5.96 b | 63.78 b | |
SEM | 0.002 | 0.292 | 1.12 | 1.32 | 0.13 | 0.11 | 0.86 | |
p-value | 0.7142 | <0.0001 | 0.6937 | 0.2100 | 0.0446 | 0.0486 | 0.0157 |
Form | Dosage | CH4, mL | CO2, mL | NH3, ppm | H2S, ppm |
---|---|---|---|---|---|
WL | 0% | 7.01 | 38.60 abc | 150.6 ab | 1373.8 a |
0.05% | 6.90 | 42.16 a | 150.7 ab | 1288.1 a | |
0.10% | 7.23 | 41.60 ab | 176.0 ab | 1415.5 a | |
LM | 0% | 7.01 | 38.60 abc | 150.6 ab | 1373.8 a |
0.05% | 5.92 | 32.27 c | 129.9 b | 1069.2 ab | |
0.10% | 6.83 | 37.86 abc | 177.0 ab | 1279.3 a | |
LEO | 0% | 7.01 | 38.60 abc | 150.6 ab | 1373.8 a |
0.05% | 5.51 | 32.74 bc | 192.2 a | 1024.7 ab | |
0.10% | 6.41 | 31.93 c | 176.6 ab | 837.7 b | |
SEM | 0.27 | 1.63 | 9.4 | 69.9 | |
p-value | 0.2058 | 0.0329 | 0.0448 | 0.0180 | |
Main effect (Lavender form) | |||||
WL | 7.04 a | 40.78 a | 159.1 | 1359.1 a | |
LM | 6.58 ab | 36.24 b | 152.5 | 1240.8 a | |
LEO | 6.31 b | 34.42 b | 173.1 | 1078.8 b | |
SEM | 0.15 | 0.94 | 5.4 | 40.3 | |
p-value | 0.0241 | 0.0028 | 0.0652 | 0.0028 | |
Main effect (Lavender dosage) | |||||
0% | 7.01 a | 38.60 | 150.6 b | 1373.8 a | |
0.05% | 6.11 b | 35.72 | 157.6 ab | 1127.3 b | |
0.10% | 6.82 a | 37.13 | 176.5 a | 1177.5 b | |
SEM | 0.15 | 0.94 | 5.4 | 40.3 | |
p-value | 0.0063 | 0.1522 | 0.0214 | 0.0045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coşkuntuna, L.; Lackner, M.; Erten, K.; Gül, S.; Palangi, V.; Koç, F.; Esen, S. Greenhouse Gas Emission Reduction Potential of Lavender Meal and Essential Oil for Dairy Cows. Fermentation 2023, 9, 253. https://doi.org/10.3390/fermentation9030253
Coşkuntuna L, Lackner M, Erten K, Gül S, Palangi V, Koç F, Esen S. Greenhouse Gas Emission Reduction Potential of Lavender Meal and Essential Oil for Dairy Cows. Fermentation. 2023; 9(3):253. https://doi.org/10.3390/fermentation9030253
Chicago/Turabian StyleCoşkuntuna, Levend, Maximilian Lackner, Kadir Erten, Sevilay Gül, Valiollah Palangi, Fisun Koç, and Selim Esen. 2023. "Greenhouse Gas Emission Reduction Potential of Lavender Meal and Essential Oil for Dairy Cows" Fermentation 9, no. 3: 253. https://doi.org/10.3390/fermentation9030253
APA StyleCoşkuntuna, L., Lackner, M., Erten, K., Gül, S., Palangi, V., Koç, F., & Esen, S. (2023). Greenhouse Gas Emission Reduction Potential of Lavender Meal and Essential Oil for Dairy Cows. Fermentation, 9(3), 253. https://doi.org/10.3390/fermentation9030253