A Machine Learning-Assisted Three-Dimensional Image Analysis for Weight Estimation of Radish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Photographic Environment and Data Acquisition Methods
2.3. Color Information Collection
2.4. Shape Information Collection
2.5. Three-Dimensional Structure Reconstruction from Contour Information
2.6. Volume Information Collection
2.7. Modeling with Random Forests
3. Results
3.1. Time-Series Changes in Root Color and Volume of Radish
3.2. Modeling Result
3.3. Model Interpretation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kato, K.; Sato, K.; Kanazawa, T.; Shono, H.; Kobayashi, N.; Tatsuzawa, F. Relationship between Root Colors and Anthocyanins from Radishes (Raphanus sativus L.). Hortic. Res. 2013, 12, 229–234. [Google Scholar] [CrossRef]
- Iwata, H.; Niikura, S.; Matsuura, S.; Takano, Y.; Ukai, Y. Evaluation of variation of root shape of Japanese radish (Raphanus sativus L.) based on image analysis using elliptic Fourier descriptors. Euphytica 1998, 102, 143–149. [Google Scholar] [CrossRef]
- Kang, Y.; Wan, S. Effect of soil water potential on radish (Raphanus sativus L.) growth and water use under drip irrigation. Sci. Hortic. 2005, 106, 275–292. [Google Scholar] [CrossRef]
- Basnet, B.; Aryal, A.; Neupane, A.; Bishal, K.C.; Rai, N.H.; Adhikari, S.; Khanal, P.; Basnet, M. Effect of integrated nutrient management on growth and yield of radish. J. Agric. Nat. Resour. 2021, 4, 167–174. [Google Scholar] [CrossRef]
- Fukuda, S.; Spreer, W.; Yasunaga, E.; Yuge, K.; Sardsud, V.; Müller, J. Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes. Agric. Water Manag. 2013, 116, 142–150. [Google Scholar] [CrossRef]
- Öz, A.T.; Akyol, B. Effects of calcium chloride plus coating in modified-atmosphere packaging storage on whole-radish postharvest quality. J. Sci. Food Agric. 2020, 100, 3942–3949. [Google Scholar] [CrossRef] [PubMed]
- Utai, K.; Nagle, M.; Hämmerle, S.; Spreer, W.; Mahayothee, B.; Müller, J. Mass estimation of mango fruits (Mangifera indica L., cv. ‘Nam Dokmai’) by linking image processing and artificial neural network. Eng. Agric. Environ. Food 2019, 12, 103–110. [Google Scholar] [CrossRef]
- Spreer, W.; Müller, J. Estimating the mass of mango fruit (Mangifera indica, cv. Chok Anan) from its geometric dimensions by optical measurement. Comput. Electron. Agric. 2021, 75, 125–131. [Google Scholar] [CrossRef]
- Fahad, L.G.; Tahir, S.F.; Rasheed, U.; Saqib, H.; Hassan, M.; Alquhayz, H. Fruits and Vegetables Freshness Categorization Using Deep Learning. Comput. Mater. Contin. 2022, 71, 5083–5098. [Google Scholar] [CrossRef]
- Moon, E.J.; Kim, Y.; Xu, Y.; Na, Y.; Giaccia, A.J.; Lee, J.H. Evaluation of Salmon, Tuna, and Beef Freshness Using a Portable Spectrometer. Sensors 2020, 20, 4299. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Yasunaga, E.; Nagle, M.; Yuge, K.; Sardsud, V.; Spreer, W.; Müller, J. Modelling the relationship between peel colour and the quality of fresh mango fruit using Random Forests. J. Food Eng. 2014, 131, 7–17. [Google Scholar] [CrossRef]
- Caruso, G.; Palai, G.; Marra, F.P.; Caruso, T. High-Resolution UAV Imagery for Field Olive (Olea europaea L.) Phenotyping. Horticulturae 2021, 7, 258. [Google Scholar] [CrossRef]
- Kamiwaki, Y.; Fukuda, S. Modeling the Relationship between Root Color, Root Shape, and Weight of Radish using Machine Learning. Jxiv Preprint. [CrossRef]
- Victorino, G.; Poblete-Echeverría, C.; Lopes, C.M. A Multicultivar Approach for Grape Bunch Weight Estimation Using Image Analysis. Horticulturae 2022, 8, 233. [Google Scholar] [CrossRef]
- Amaral, M.H.; Walsh, K.B. In-Orchard Sizing of Mango Fruit: 2. Forward Estimation of Size at Harvest. Horticulturae 2023, 9, 54. [Google Scholar] [CrossRef]
- Wang, X.; Feng, H.; Chen, T.; Zhao, S.; Zhang, J.; Zhang, X. Gas sensor technologies and mathematical modelling for quality sensing in fruit and vegetable cold chains: A review. Trends Food Sci. Technol. 2021, 110, 483–492. [Google Scholar] [CrossRef]
- Chopin, J.; Laga, H.; Miklavcic, S.J. A new method for accurate, high-throughput volume estimation from three 2D projective images. Int. J. Food Prop. 2017, 20, 2344–2357. [Google Scholar] [CrossRef]
- Nyalala, I.; Okinda, C.; Chao, Q.; Mecha, P.; Korohou, T.; Yi, Z.; Nyalala, S.; Jiayu, Z.; Chao, L.; Kunjie, C. Weight and volume estimation of single and occluded tomatoes using machine vision. Int. J. Food Prop. 2021, 24, 818–832. [Google Scholar] [CrossRef]
- Huynh, T.; Tran, L.; Dao, S. Real-Time Size and Mass Estimation of Slender Axi-Symmetric Fruit/Vegetable Using a Single Top View Image. Sensors 2020, 20, 5406. [Google Scholar] [CrossRef]
- Itakura, K.; Hosoi, F. Automatic Leaf Segmentation for Estimating Leaf Area and Leaf Inclination Angle in 3D Plant Images. Sensors 2018, 18, 3576. [Google Scholar] [CrossRef]
- Itakura, K.; Kamakura, I.; Hosoi, F. Three-Dimensional Monitoring of Plant Structural Parameters and Chlorophyll Distribution. Sensors 2019, 19, 413. [Google Scholar] [CrossRef] [PubMed]
- Tzutalin, D. LabelImg. Available online: https://github.com/tzutalin/labelImg (accessed on 24 January 2024).
- Motonaga, Y.; Kameoka, T.; Hashimoto, A. Constructing Color Image Processing System for Managing the Surface Color of Agricultural Products. J. Jpn. Soc. Agric. Mach. 1997, 59, 13–22. [Google Scholar] [CrossRef]
- Cokelaer, T. Colormap. Available online: https://github.com/cokelaer/colormap (accessed on 24 January 2024).
- Kuhl, F.P.; Giardina, C.R. Elliptic Fourier features of a closed contour. Comput. Graph. Image Process. 1982, 18, 236–258. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2021, 12, 2825–2830. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Con-ference on Neural Information Processing Systems (NIPS’17), New York, NY, USA, 4–9 December 2017; pp. 4768–4777. Available online: https://dl.acm.org/doi/10.5555/3295222.3295230 (accessed on 27 December 2023).
- Hahn, F.; Sanchez, S. Carrot Volume Evaluation using Imaging Algorithms. J. Agric. Eng. Res. 2000, 75, 243–249. [Google Scholar] [CrossRef]
- Nyalala, I.; Okinda, C.; Nyalala, L.; Makange, N.; Chao, Q.; Chao, L.; Yousaf, K.; Chen, K. Tomato volume and mass estimation using computer vision and machine learning algorithms: Cherry tomato model. J. Food Eng. 2019, 263, 288–298. [Google Scholar] [CrossRef]
- Jadhav, T.; Singh, K.; Abhyankar, A. Volumetric estimation using 3D reconstruction method for grading of fruits. Multimedia Tools Appl. 2019, 78, 1613–1634. [Google Scholar] [CrossRef]
- Omid, M.; Khojastehnazhand, M.; Tabatabaeefar, A. Estimating volume and mass of citrus fruits by image processing technique. J. Food Eng. 2010, 100, 315–321. [Google Scholar] [CrossRef]
- Gálvez, L.; Palmero, D. Incidence and Etiology of Postharvest Fungal Diseases Associated with Bulb Rot in Garlic (Alllium sativum) in Spain. Foods 2021, 10, 1063. [Google Scholar] [CrossRef] [PubMed]
- Cömert, E.D.; Mogol, B.A.; Gökmen, V. Relationship between color and antioxidant capacity of fruits and vegetables. Curr. Res. Food Sci. 2020, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
Models | Explanatory Variables | |||||||
---|---|---|---|---|---|---|---|---|
Cultivar | Irrigation | RGB | HSL | HSV | EFD | Volume_bbox | Volume_convex hull | |
RGB | * | * | * | |||||
RGB+EFD | * | * | * | * | ||||
RGB+3D_bbox | * | * | * | * | ||||
RGB+3D_convex hull | * | * | * | * | ||||
HSL | * | * | * | |||||
HSL+EFD | * | * | * | * | ||||
HSL+3D_bbox | * | * | * | * | ||||
HSL+3D_convex hull | * | * | * | * | ||||
HSV | * | * | * | |||||
HSV+EFD | * | * | * | * | ||||
HSV+3D_bbox | * | * | * | * | ||||
HSV+3D_convex hull | * | * | * | * | ||||
EFD | * | * | * | |||||
EFD+3D_bbox | * | * | * | * | ||||
EFD+3D_convex hull | * | * | * | * |
Model Name | COR | NSE | RMSE |
---|---|---|---|
RGB | 0.829 ± 0.0580 | 0.648 ± 0.126 | 1.62 ± 0.321 |
RGB+EFD | 0.905 ± 0.0582 | 0.793 ± 0.109 | 1.21 ± 0.261 |
RGB+3D_bbox | 0.961 ± 0.0274 | 0.915 ± 0.0557 | 0.765 ± 0.217 |
RGB+3D_convex hull | 0.980 ± 0.0109 | 0.955 ± 0.0234 | 0.571 ± 0.147 |
HSL | 0.856 ± 0.0582 | 0.701 ± 0.113 | 1.49 ± 0.325 |
HSL+EFD | 0.908 ± 0.0574 | 0.798 ± 0.106 | 1.20 ± 0.268 |
HSL+3D_bbox | 0.970 ± 0.0218 | 0.935 ± 0.0449 | 0.671 ± 0.201 |
HSL+3D_convex hull | 0.984 ± 0.00867 | 0.963 ± 0.0196 | 0.519 ± 0.140 |
HSV | 0.870 ± 0.0571 | 0.726 ± 0.112 | 1.42 ± 0.318 |
HSV+EFD | 0.912 ± 0.0561 | 0.806 ± 0.103 | 1.18 ± 0.262 |
HSV+3D_bbox | 0.972 ± 0.0213 | 0.939 ± 0.0437 | 0.645 ± 0.198 |
HSV+3D_convex hull | 0.984 ± 0.00846 | 0.964 ± 0.0188 | 0.509 ± 0.137 |
EFD | 0.887 ± 0.0679 | 0.761 ± 0.138 | 1.30 ± 0.297 |
EFD+3D_bbox | 0.963 ± 0.0235 | 0.918 ± 0.0492 | 0.760 ± 0.218 |
EFD+3D_convex hull | 0.980 ± 0.00966 | 0.953 ± 0.0233 | 0.585 ± 0.159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamiwaki, Y.; Fukuda, S. A Machine Learning-Assisted Three-Dimensional Image Analysis for Weight Estimation of Radish. Horticulturae 2024, 10, 142. https://doi.org/10.3390/horticulturae10020142
Kamiwaki Y, Fukuda S. A Machine Learning-Assisted Three-Dimensional Image Analysis for Weight Estimation of Radish. Horticulturae. 2024; 10(2):142. https://doi.org/10.3390/horticulturae10020142
Chicago/Turabian StyleKamiwaki, Yuto, and Shinji Fukuda. 2024. "A Machine Learning-Assisted Three-Dimensional Image Analysis for Weight Estimation of Radish" Horticulturae 10, no. 2: 142. https://doi.org/10.3390/horticulturae10020142
APA StyleKamiwaki, Y., & Fukuda, S. (2024). A Machine Learning-Assisted Three-Dimensional Image Analysis for Weight Estimation of Radish. Horticulturae, 10(2), 142. https://doi.org/10.3390/horticulturae10020142