Determining Moisture Content of Basil Using Handheld Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Spectral Data Acquisition
2.2. Moisture Measurement
2.3. Data Processing and Model Development
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, X.; Sun, J.; Mao, H.; Wu, X.; Zhang, X.; Yang, N. Visualization Research of Moisture Content in Leaf Lettuce Leaves Based on WT-PLSR and Hyperspectral Imaging Technology. J. Food Process Eng. 2018, 41, e12647. [Google Scholar] [CrossRef]
- de Fraiture, C.; Molden, D.; Wichelns, D. Investing in Water for Food, Ecosystems, and Livelihoods: An Overview of the Comprehensive Assessment of Water Management in Agriculture. Agric. Water Manag. 2010, 97, 495–501. [Google Scholar] [CrossRef]
- Vitalis, F.; Muncan, J.; Anantawittayanon, S.; Kovacs, Z.; Tsenkova, R. Aquaphotomics Monitoring of Lettuce Freshness during Cold Storage. Foods 2023, 12, 258. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.; Zhang, G. Rapid Determination of Leaf Water Content Using VIS/NIR Spectroscopy Analysis with Wavelength Selection. Spectroscopy 2012, 27, 93–105. [Google Scholar] [CrossRef]
- Dubey, R.S. Photosynthesis in Plants under Stressful Conditions. In Handbook of Photosynthesis, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 629–649. [Google Scholar] [CrossRef]
- Yoshizumi, Y.; Li, M.S.; Akihiro, I. Assessment of Photochemical Reflectance Index as a Tool for Evaluation of Chlorophyll Fluorescence Parameters in Cotton and Peanut Cultivars Under Water Stress Condition. Agric. Sci. China 2010, 9, 662–670. [Google Scholar] [CrossRef]
- Norman, S.M.; Maier, V.P.; Pon, D.L. Abscisic Acid Accumulation and Carotenoid and Chlorophyll Content in Relation to Water Stress and Leaf Age of Different Types of Citrus. J. Agric. Food Chem. 1990, 38, 1326–1334. [Google Scholar] [CrossRef]
- Abioye, E.A.; Hensel, O.; Esau, T.J.; Elijah, O.; Abidin, M.S.Z.; Ayobami, A.S.; Yerima, O.; Nasirahmadi, A. Precision Irrigation Management Using Machine Learning and Digital Farming Solutions. AgriEngineering 2022, 4, 70–103. [Google Scholar] [CrossRef]
- Prananto, J.A.; Minasny, B.; Weaver, T. Near Infrared (NIR) Spectroscopy as a Rapid and Cost-Effective Method for Nutrient Analysis of Plant Leaf Tissues. Adv. Agron. 2020, 164, 1–49. [Google Scholar] [CrossRef]
- Ozaki, Y.; Huck, C.; Tsuchikawa, S.; Engelsen, S.B. Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–593. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, Z.; Mao, H.; Gao, H.; Zuo, Z.; Souza Da Silva, L.; Dal’Col Lucio, A. A Lettuce Moisture Detection Method Based on Terahertz Time-Domain Spectroscopy. Ciência Rural. 2021, 52, e20210002. [Google Scholar] [CrossRef]
- Ahaddi, A.; Al-Husseini, Z. The Use of Hyperspectral Sensors for Quality Assessment: A Quantitative Study of Moisture Content in Indoor Vertical Farming. Student Thesis, Mälardalen University, Västerås, Sweden, 2023. [Google Scholar]
- Zahir, S.A.D.M.; Omar, A.F.; Jamlos, M.F.; Azmi, M.A.M.; Muncan, J. A Review of Visible and Near-Infrared (Vis-NIR) Spectroscopy Application in Plant Stress Detection. Sens. Actuators A Phys. 2022, 338, 113468. [Google Scholar] [CrossRef]
- Ma, L.; Peng, Y.; Pei, Y.; Zeng, J.; Shen, H.; Cao, J.; Qiao, Y.; Wu, Z. Systematic Discovery about NIR Spectral Assignment from Chemical Structural Property to Natural Chemical Compounds. Sci. Rep. 2019, 9, 1. [Google Scholar] [CrossRef]
- Chaudhry, M.M.A. Innovative and Non-Destructive Technologies to Evaluate Quality of Rocket Leaves for Ready to Eat Salads. Ph.D. Thesis, University of Foggia, Foggia, Italy, 2019. [Google Scholar]
- Corti, M.; Marino Gallina, P.; Cavalli, D.; Cabassi, G. Hyperspectral Imaging of Spinach Canopy under Combined Water and Nitrogen Stress to Estimate Biomass, Water, and Nitrogen Content. Biosyst. Eng. 2017, 158, 38–50. [Google Scholar] [CrossRef]
- Kizil, Ü.; Genc, L.; Inalpulat, M.; Şapolyo, D.; Mirik, M. Lettuce (Lactuca sativa L.) Yield Prediction under Water Stress Using Artificial Neural Network (ANN) Model and Vegetation Indices. Zemdirb.-Agric. 2012, 99, 409–418. [Google Scholar]
- Liaros, S.; Botsis, K.; Xydis, G. Technoeconomic Evaluation of Urban Plant Factories: The Case of Basil (Ocimum basilicum). Sci. Total Environ. 2016, 554–555, 218–227. [Google Scholar] [CrossRef]
- Al Abbasy, D.W.; Pathare, N.; Al-Sabahi, J.N.; Khan, S.A. Chemical Composition and Antibacterial Activity of Essential Oil Isolated from Omani Basil (Ocimum basilicum Linn.). Asian Pac. J. Trop. Dis. 2015, 5, 645–649. [Google Scholar] [CrossRef]
- Carrubba, A.; Catalano, C.; Carrubba, A. Essential Oil Crops for Sustainable Agriculture—A Review. In Climate Change, Intercropping, Pest. Control and Beneficial Microorganisms; Springer: Dordrecht, The Netherlands, 2009; pp. 137–187. [Google Scholar] [CrossRef]
- De Doctorado, P.; Recursos, E.N.; Agrarias, Y.T.; Alimentarias, A.Y.; Ali, H.; Zaeddi, S. El Effects of Irrigation Dose, Plant, Application of Organic Acids, and Harvest Date on the quality and Yield of Commercial Aromatic Plants. Foods 2018, 5, 41. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives. Foods 2022, 11, 1465. [Google Scholar] [CrossRef]
- Karla, Y.P. Handbook of Reference Methods for Plant Analysis, 1st ed.; Karla, Y.P., Ed.; CRC Press LLC: Boca Raton, FL, USA, 1997; ISBN 9780367802233. [Google Scholar]
- Sun, J.; Zhou, X.; Wu, X.; Zhang, X.; Li, Q. Identification of Moisture Content in Tobacco Plant Leaves Using Outlier Sample Eliminating Algorithms and Hyperspectral Data. Biochem. Biophys. Res. Commun. 2016, 471, 226–232. [Google Scholar] [CrossRef]
- Gallagher, N.; O’Sullivan, D. Selection of Representative Learning and Test Sets Using the Onion Method; Eigenvector Research: Manson, WA, USA, 2020. [Google Scholar]
- Geladi, P.; MacDougall, D.; Martens, H. Linearization and Scatter-Correction for Near-Infrared Reflectance Spectra of Meat. Appl. Spectrosc. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs. Comput. Stat. 1996, 24, 372–373. [Google Scholar] [CrossRef]
- Wold, S.; Johansson, E.; Cocchi, M. PLS: Partial Least Squares Projections to Latent Structures. In 3D QSAR in Drug Design: Theory, Methods and Applications; Kluwer ESCOM Science Publisher: Leiden, The Netherlands, 1993; pp. 523–550. ISBN 9789072199140. [Google Scholar]
- Zheng, B. Database Selection and Feature Extraction for Neural Networks. In Handbook of Medical Imaging; SPIE Press: Bellingham, WA, USA, 2000; pp. 311–322. [Google Scholar] [CrossRef]
- Mahieu, B.; Qannari, E.M.; Jaillais, B. Extension and Significance Testing of Variable Importance in Projection (VIP) Indices in Partial Least Squares Regression and Principal Components Analysis. Chemom. Intell. Lab. Syst. 2023, 242, 104986. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, L.X.; Zheng, P.; Li, Y.; Rivera, M.; Main, D.; Greene, S.L. Identification of Loci Associated with Drought Resistance Traits in Heterozygous Autotetraploid Alfalfa (Medicago sativa L.) Using Genome-Wide Association Studies with Genotyping by Sequencing. PLoS ONE 2015, 10, e0138931. [Google Scholar] [CrossRef]
- Bravo, A.G.; Johnson, J.B. Rapid Prediction of Leaf Water Content in Eucalypt Leaves Using a Handheld NIRS Instrument. Eng 2023, 4, 1198–1209. [Google Scholar] [CrossRef]
- Lapcharoensuk, R.; Danupattanin, K.; Kanjanapornprapa, C.; Inkawee, T. Combination of NIR Spectroscopy and Machine Learning for Monitoring Chili Sauce Adulterated with Ripened Papaya. In Proceedings of the 13th Thai Society of Agricultural Engineering International Conference (TSAE 2020), Nakhon Rakchasima, Thailand, 30–31 July 2020; Volume 187, p. 04001. [Google Scholar] [CrossRef]
- Seelig, H.D.; Hoehn, A.; Stodieck, L.S.; Klaus, D.M.; Adams, W.W.; Emery, W.J. The Assessment of Leaf Water Content Using Leaf Reflectance Ratios in the Visible, near-, and Short-Wave-Infrared. Int. J. Remote Sens. 2008, 29, 3701–3713. [Google Scholar] [CrossRef]
- Lacaze, B.; Joffre, R. Extracting Biochemical Information from Visible and Near Infrared Reflectance Spectroscopy of Fresh and Dried Leaves. J. Plant Physiol. 1994, 144, 277–281. [Google Scholar] [CrossRef]
- Rambo, M.K.D.; Amorim, E.P.; Ferreira, M.M.C. Potential of Visible-near Infrared Spectroscopy Combined with Chemometrics for Analysis of Some Constituents of Coffee and Banana Residues. Anal. Chim. Acta 2013, 775, 41–49. [Google Scholar] [CrossRef]
- IAACC. Near-Infrared Methods: Guidelines for Model Development and Maintenance-AACC Method 39-00. In Approved Methods of the American Association of Cereal Chemists; IAACC: Zaragoza, Spain, 1999. [Google Scholar]
- Abdi, H. Partial Least Squares Regression and Projection on Latent Structure Regression (PLS Regression). Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 97–106. [Google Scholar] [CrossRef]
- Gowen, A.A.; Downey, G.; Esquerre, C.; O’Donnell, C.P. Preventing Over-Fitting in PLS Calibration Models of near-Infrared (NIR) Spectroscopy Data Using Regression Coefficients. J. Chemom. 2011, 25, 375–381. [Google Scholar] [CrossRef]
- Fu, X.P.; Ying, Y.B.; Zhou, Y.; Xie, L.J.; Xu, H.R. Application of NIR Spectroscopy for Firmness Evaluation of Peaches. J. Zhejiang Univ. Sci. B 2008, 9, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Pham, H. Springer Handbook of Engineering Statistics; Springer: London, UK, 2023. [Google Scholar] [CrossRef]
- Dietterich, T.G.; Kong, E.B. Machine Learning Bias, Statistical Bias, and Statistical Variance of Decision Tree Algorithms. 1995. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=893b204890394d1bf4f3332b4b902bfdb30a9a13 (accessed on 12 November 2023).
- Geladi, P.; Hadjiiski, L.; Hopke, P. Multiple Regression for Environmental Data: Nonlinearities and Prediction Bias. Chemom. Intell. Lab. Syst. 1999, 47, 165–173. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, G.Z.; Rita-Cindy, S.A.A. Quantification of Water, Protein and Soluble Sugar in Mulberry Leaves Using a Handheld Near-Infrared Spectrometer and Multivariate Analysis. Molecules 2019, 24, 4439. [Google Scholar] [CrossRef] [PubMed]
- Deivakani, M.; Singh, C.; Bhadane, J.R.; Ramachandran, G.; Sanjeev Kumar, N. ANN Algorithm Based Smart Agriculture Cultivation for Helping the Farmers. In Proceedings of the 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 7–9 October 2021. [Google Scholar] [CrossRef]
- Fu, L.; He, L.; Zhang, Q. Neural Networks for Smart Agriculture. In Encyclopedia of Smart Agriculture Technologies; Springer: Cham, Switzerland, 2023; pp. 1–11. [Google Scholar] [CrossRef]
- Kujawa, S.; Niedbała, G. Artificial Neural Networks in Agriculture. Agriculture 2021, 11, 497. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.E.; Arshad, H. State-of-the-Art in Artificial Neural Network Applications: A Survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef]
Metric | Initial Model with Raw Data | Model Including the All Samples | Final Model after Removing Extreme Values |
---|---|---|---|
Number of Latent Variables | 4 | 7 | 8 |
RMSEC | 8.4902 | 4.906 | 2.9908 |
RMSECV | 8.5456 | 5.1150 | 3.2368 |
RMSEP | 5.8949 | 6.3540 | 2.4675 |
Calibration Bias | 0.2997 | 4.2633 × 10−14 | 2.8422 × 10−14 |
CV Bias | 0.2949 | −0.0183 | −0.0198 |
Prediction Bias | −0.4765 | −0.1930 | −0.5421 |
R2C | 0.818 | 0.945 | 0.829 |
R2CV | 0.816 | 0.940 | 0.80 |
R2P | 0.706 | 0.880 | 0.860 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorji, R.; Skvaril, J.; Odlare, M. Determining Moisture Content of Basil Using Handheld Near-Infrared Spectroscopy. Horticulturae 2024, 10, 336. https://doi.org/10.3390/horticulturae10040336
Gorji R, Skvaril J, Odlare M. Determining Moisture Content of Basil Using Handheld Near-Infrared Spectroscopy. Horticulturae. 2024; 10(4):336. https://doi.org/10.3390/horticulturae10040336
Chicago/Turabian StyleGorji, Reyhaneh, Jan Skvaril, and Monica Odlare. 2024. "Determining Moisture Content of Basil Using Handheld Near-Infrared Spectroscopy" Horticulturae 10, no. 4: 336. https://doi.org/10.3390/horticulturae10040336
APA StyleGorji, R., Skvaril, J., & Odlare, M. (2024). Determining Moisture Content of Basil Using Handheld Near-Infrared Spectroscopy. Horticulturae, 10(4), 336. https://doi.org/10.3390/horticulturae10040336