Identification, Nutrient Composition, and Evaluation of a Wild Pleurotus citrinopileatus Strain (X21156) from Tibet for Antioxidant and Cytotoxic Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Collection
2.2. Isolation and Culture
2.3. Morphological and Molecular Identification
2.4. Optomization of Culture Conditions
2.5. Mycelial Growth Rate
2.6. Mushroom Domestication
2.7. Nutrient Analysis
2.8. Antioxidant Activity of P. citrinopileatus Polysaccharides
2.8.1. ABTS Free Radical Scavenging Capacity Assay
2.8.2. DPPH Free Radical Scavenging Capacity Assay
2.8.3. Hydroxyl Free Radical Scavenging Capacity Assay
2.8.4. Ferric Ion Reducing Antioxidant Power (FRAP) Assay
2.9. Cytotoxic Effect of P. citrinopileatus Polysaccharides
2.10. Statistical Analysis
3. Results
3.1. Identification of Wild Mushroom Species from Tibet
3.1.1. Morphological Identification
3.1.2. Molecular Identification
3.2. Optimization of Culture Conditions
3.3. Domestication and Cultivation of Mushrooms
3.4. Nutrient Analysis
3.4.1. Conventional Nutrient Analysis Results
3.4.2. Amino Acid Content
3.5. Antioxidant Activity of P. citrinopileatus Polysaccharides
3.6. Cytotoxic Effect of P. citrinopileatus Polysaccharides
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kai, W.; Yu-bing, B.; Yuan, L.; Yun-yue, Z.; Lin, Z. Pleurotus Citrinopieatus Sing Composite Fruit Juice Drink Development. Beverage Ind. 2018, 21, 44–47. [Google Scholar]
- Tao, Z.; Zheng, Q. Examining the Cultivation, Degradation Characteristics and Health Effects of the Golden Oyster Mushroom Pleurotus citrinopileatus (Agaricomycetes): A Review. Int. J. Med. Mushrooms 2023, 25, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Brito, D.R.; Carbonero, E.R.; Viana, S.R.; Silva, E.V.; Ruthes, A.C.; Lião, L.M.; Iacomini, M. Partially methylated galactans containing different proportions of 3-O-methyl-galactose from Pleurotus citrinopileatus. Carbohydr. Res. 2018, 458–459, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Minato, K.I.; Laan, L.C.; van Die, I.; Mizuno, M. Pleurotus citrinopileatus polysaccharide stimulates an-ti-inflammatory properties during monocyte-to-macrophage differentiation. Int. J. Biol. Macromol. 2018, 122, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Zhao, C.; Zheng, S.; Mei, X.; Huang, K.; Wang, G.; He, X. Anti-obesity and hypolipidemic effect of water extract from Pleurotus citrinopileatus in C57BL/6J mice. Food Sci. Nutr. 2019, 7, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, S.; Seino, T.; Inobe, M.; Jutanom, M.; Matsumoto, S.; Kinoshita, M. Polar Lipid Fraction from Golden Oyster Mushrooms (Pleurotus citrinopileatus) Suppresses Colon Injuries from Inflammatory Stresses in vivo and in vitro. J. Oleo Sci. 2020, 69, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Niu, L.L.; Liu, H.P.; Wu, Y.R.; Li, M.Y.; Jia, Q. Structural characterization of a novel polysaccharide from Pleu-rotus citrinopileatus and its antitumor activity on H22 tumor-bearing mice. Int. J. Biol. Macromol. Struct. Funct. Interact. 2021, 168, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Hui-Jun, W.; Guo-Jie, L.; Rui-Lin, Z. Artificial cultivation and nutrition analysis of Pleurotus placentodes wild strain. Mycosystema 2018, 37, 606–616. [Google Scholar]
- Liu, Y.; Huang, L.; Hu, H.; Cai, M.; Liang, X.; Li, X.; Zhang, Z.; Xie, Y.; Xiao, C.; Chen, S.; et al. Whole-genome assembly of Ganoderma leucocontextum (Ganodermataceae, Fungi) discovered from the Tibetan Plateau of China. G3 2021, 11, jkab337. [Google Scholar] [CrossRef] [PubMed]
- Li, B.-B.; Jiang, S.-P.; Xu, A.-G.; Dorji, P.; Wang, W.-J.; Wang, X.-L.; Wei, T.-Z.; Zhang, Z.-T.; Yao, Y.-J. New Germplasms of the Culinary-Medicinal Button Mushroom, Agaricus bisporus (Agaricomycetes): Two Wild Strains from the Tibetan Plateau (China). Int. J. Med. Mushrooms 2017, 19, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.N. Chinese Illustrated Catalogue of Macrofungi in Primary Colours (Collection Edition); China Agriculture Press: Beijing, China, 1998. [Google Scholar]
- Wei, J.C. Fungal Identification Manual; Science and Technology Press: Shanghai, China, 1979. [Google Scholar]
- Lai, W.; Murni, M.S.; Fauzi, D.; Mazni, O.A.; Saleh, N. Optimal Culture Conditions for Mycelial Growth of Lignosus rhinocerus. Mycobiology 2011, 39, 92–95. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International; Latimer, G., Ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Guo, X.; Shang, X.; Zhou, X.; Zhao, B.; Zhang, J. Ultrasound-assisted extraction of polysaccharides from Rhododendron aganniphum: Antioxidant activity and rheological properties. Ultrason. Sonochem. 2017, 38, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A Novel Method for Measuring Antioxidant Capacity and its Application to Monitoring the Antioxidant Status in Premature Neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Saiga, A.I.; Tanabe, S.; Nishimura, T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 2003, 51, 3661–3667. [Google Scholar] [CrossRef] [PubMed]
- Winterbourn, C.C.; Button, H.C. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: Catalytic requirements and oxygen dependence. Arch. Biochem. Biophys. 1984, 235, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Latronico, T.; Pati, I.; Ciavarella, R.; Fasano, A.; Mengoni, F.; Lichtner, M.; Vullo, V.; Mastroianni, C.M.; Liuzzi, G.M. In vitro effect of antiretroviral drugs on cultured primary astrocytes: Analysis of neurotoxicity and matrix metalloproteinase inhibition. J. Neurochem. 2017, 144, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Jun, J.; Yanqing, H. Effects of different cultivation substrates on the nutritional composition of Agaricus blazei. Jiangsu Agric. Sci. 2013, 41, 273–274. [Google Scholar] [CrossRef]
- Publication of Volume 1 and 2 of the 6th edition of the Standard Edition of the Chinese Food Composition List %. J. Acta Nutr. Sin. 2019, 41, 426.
- Xing-Yong, Y.; Yang, X.; Yan-Ping, L. The studies of nonvolatile taste compounds of edible fungi. China Condiment 2008, 5, 32–35+47. [Google Scholar] [CrossRef]
- Landeweert, R.; Leeflang, P.; Kuyper, T.W.; Hoffland, E.; Rosling, A.; Wernars, K.; Smit, E. Molecular Identification of Ectomycorrhizal Mycelium in Soil Horizons. Appl. Environ. Microbiol. 2003, 69, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Chun-Yu, W.; Ming, X.; Yun-Li, Y.; Jiao, Z.; Kun, N.; Jian, Z. Research Progress on Nutritional Components and Value Evaluation of Wild Edible Fungi in China. Edible Fungi China 2021, 40, 1–10+20. [Google Scholar] [CrossRef]
- Hai-yang, Z.; Ting-ting, Y.; Yan-jiao, X.; Cheng-qun, C. Nutritional Analysis on Edible Mushroom and Algae. Edible Fungi China 2016, 35, 69–72. [Google Scholar]
- Wu-Li, Y.; Lin-Jing, W. Measuration of mineral elements and nutritional evaluation of edible mushrooms. Food Sci. Technol. 2010, 35, 81–84. [Google Scholar] [CrossRef]
- Lu, Z.; Zhi-qing, G.; Wen-liang, W.; Hui, C.; Man-man, Y.; Lin-li, G. Analysis of flavor components and evaluation on umami of seven kinds of edible fungi. Food Sci. Technol. 2017, 42, 274–278+283. [Google Scholar]
- Maity, G.N.; Maity, P.; Khatua, S.; Acharya, K.; Dalai, S.; Mondal, S. Structural features and antioxidant activity of a new galactoglucan from edible mushroom Pleurotus djamor. Int. J. Biol. Macromol. 2020, 168, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.-Q.; Zhang, Y.; Yang, J.-H.; Sun, P.-L. Structural elucidation of a novel heteropolysaccharide from the fruiting bodies of Pleurotus eryngii. Carbohydr. Polym. 2013, 92, 2239–2244. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.F.; Sui, K.Y.; Guo, C.; Liu, C.Z. Improved production and antitumor activity of intracellular protein-polysaccharide from Trametes versicolor by the quorum sensing molecule-tyrosol. J. Funct. Foods 2017, 37, 90–96. [Google Scholar] [CrossRef]
- Cui, F.; Zan, X.; Li, Y.; Sun, W.; Yang, Y.; Ping, L. Grifola frondosa Glycoprotein GFG-3a Arrests S phase, Alters Proteome, and Induces Apoptosis in Human Gastric Cancer Cells. Nutr. Cancer 2015, 68, 267–279. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, Q.; Zhao, T.; Hu, R.; Zhang, K.; Li, Z. In vitro antioxidant activity of acetylated and benzoylated derivatives of poly-saccharide extracted from Ulva pertusa (Chlorophyta). Bioorg. Med. Chem. Lett. 2006, 16, 2441–2445. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, Y.; Xu, R.; Jia, X.; Li, X.; Huo, C.; Wang, X. Astragalus polysaccharide alleviates H2O2-triggered oxidative injury in human umbilical vein endothelial cells via promoting KLF2. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2188–2195. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.-X.; Liu, L.; Sha, X.-Y.; Wu, Y.-N.; Chen, M.-T. Lycium barbarum polysaccharides protects retinal ganglion cells against oxidative stress injury. Neural Regen. Res. 2020, 15, 1526–1531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xue, H.; Zhou, P.; Liu, L.; Yu, J.; Dai, P.; Qu, M. RETRACTED: Angelica polysaccharide alleviates oxidative response damage in HaCaT cells through up-regulation of miR-126. Exp. Mol. Pathol. 2019, 110, 104281. [Google Scholar] [CrossRef] [PubMed]
- McCauley, J.; Zivanovic, A.; Skropeta, D. Bioassays for anticancer activities. In Metabolomics Tools for Natural Product Discovery; Springer: Berlin/Heidelberg, Germany, 2013; pp. 191–205. [Google Scholar] [CrossRef]
Nutrient Composition | Content (g/100 g) | |
---|---|---|
Pleurotus citrinopileatus | Egg [22] | |
Moisture (g) (fresh) | 91.7 ↑ | 75.2 |
Moisture (g) (dry) | 11.4 ↑ | - |
Crude protein (g) | 28.5 ↑ | 12.04 |
Ash (g) | 10.2 ↑ | 0.9 |
Fat(g) | 1.4 | 8.6 |
Total sugar (g) | 4.5 ↑ | 0.7 |
Dietary fiber (g) | 34.0 ↑ | 0 |
Na (mg) | 13.0 | 131.5 |
Amino Acid Composition | Content (g/100 g) | ||
---|---|---|---|
Pleurotus citrinopileatus | Egg [23] | ||
EAA | IIe | 0.49 | 0.65 |
Val | 0.93 ↑ | 0.64 | |
Lys | 1.16 ↑ | 0.85 | |
Met | - | 0.33 | |
Leu | 1.02 | 1.05 | |
Phe | 0.69 ↑ | 0.65 | |
Thr | 0.93 ↑ | 0.59 | |
Trp | - | 0.19 | |
NEAA | Arg | 0.89 ↑ | 0.74 |
His | 0.41 ↑ | 0.27 | |
Try | 0.40 | 0.50 | |
Ala | 1.14 ↑ | 0.66 | |
Pro | 0.78 ↑ | 0.34 | |
Ser | 1.08 ↑ | 0.91 | |
Glu | 3.81 ↑ | 1.59 | |
Gly | 0.99 ↑ | 0.39 | |
Asp | 1.74 ↑ | 1.21 | |
Cys | - | 0.50 | |
EAA NEAA TAA E/T E/N | 5.22 ↑ | 4.93 | |
11.18 ↑ | 7.11 | ||
16.40 ↑ | 12.04 | ||
0.32 | 0.41 | ||
0.44 | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Li, Y.; Li, X.; Hu, X.; Zhang, J.; Wu, X.; Fu, J. Identification, Nutrient Composition, and Evaluation of a Wild Pleurotus citrinopileatus Strain (X21156) from Tibet for Antioxidant and Cytotoxic Activities. Horticulturae 2024, 10, 377. https://doi.org/10.3390/horticulturae10040377
Xiao X, Li Y, Li X, Hu X, Zhang J, Wu X, Fu J. Identification, Nutrient Composition, and Evaluation of a Wild Pleurotus citrinopileatus Strain (X21156) from Tibet for Antioxidant and Cytotoxic Activities. Horticulturae. 2024; 10(4):377. https://doi.org/10.3390/horticulturae10040377
Chicago/Turabian StyleXiao, Xiaoshan, Yun Li, Xiaomin Li, Xin Hu, Junli Zhang, Xiaoping Wu, and Junsheng Fu. 2024. "Identification, Nutrient Composition, and Evaluation of a Wild Pleurotus citrinopileatus Strain (X21156) from Tibet for Antioxidant and Cytotoxic Activities" Horticulturae 10, no. 4: 377. https://doi.org/10.3390/horticulturae10040377
APA StyleXiao, X., Li, Y., Li, X., Hu, X., Zhang, J., Wu, X., & Fu, J. (2024). Identification, Nutrient Composition, and Evaluation of a Wild Pleurotus citrinopileatus Strain (X21156) from Tibet for Antioxidant and Cytotoxic Activities. Horticulturae, 10(4), 377. https://doi.org/10.3390/horticulturae10040377