The Variability and Trend of Harvest Dates of Table and Pisco Grapes in Northern Chile Are Independently Influenced by Bioclimatic Indices †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites, Plant Material, and Experimental Design
2.2. Harvest Criteria for Table and Pisco Grapes
2.3. Climate Data Collection and Bioclimatic Indices Calculation
2.4. Statistical Analysis
3. Results
3.1. Descriptive Analysis of the Influence of Bioclimatic Indices on Harvest Date
3.2. Correlations Between Harvest Date and Bioclimatic Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muñoz-Robredo, P.; Robledo, P.; Manríquez, D.; Molina, R.; Defilippi, B.G. Characterization of Sugars and Organic Acids in Commercial Varieties of Table Grapes. Chil. J. Agric. Res. 2011, 71, 452–458. [Google Scholar] [CrossRef]
- Verdugo-Vásquez, N.; Villalobos-Soublett, E.; Gutiérrez-Gamboa, G.; Araya-Alman, M. Spatial Variability of Production and Quality in Table Grapes ‘Flame Seedless’ Growing on a Flat Terrain and Slope Site. Horticulturae 2021, 7, 254. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Liu, S.Y.; Pszczólkowski, P. Resurgence of Minority and Autochthonous Grapevine Varieties in South America: A Review of Their Oenological Potential. J. Sci. Food Agric. 2020, 100, 465–482. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, C.; Barlow, E.; Darbyshire, R.; Eckard, R.; Goodwin, I. Relationship between Viticultural Climatic Indices and Grape Maturity in Australia. Int. J. Biometeorol. 2017, 61, 1849–1862. [Google Scholar] [CrossRef]
- Verdugo-Vásquez, N.; Acevedo-Opazo, C.; Valdés-Gómez, H.; Araya-Alman, M.; Ingram, B.; García de Cortázar-Atauri, I.; Tisseyre, B. Spatial Variability of Phenology in Two Irrigated Grapevine Cultivar Growing under Semi-Arid Conditions. Precis. Agric. 2016, 17, 218–245. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Current Viticultural Techniques to Mitigate the Effects of Global Warming on Grape and Wine Quality: A Comprehensive Review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef]
- Fraga, H.; de Atauri, I.G.C.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Viticulture in Portugal: A Review of Recent Trends and Climate Change Projections. OENO One 2017, 51, 61–69. [Google Scholar] [CrossRef]
- Travanic-Fuentes, Z.; Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y. The Variability of Berry Parameters Could Be an Indicator of the Potential Quality of the Vineyard. Plants 2024, 13, 2617. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y. Terroir and Typicity of Carignan from Maule Valley (Chile): The Resurgence of a Minority Variety. OENO One 2019, 53, 75–93. [Google Scholar] [CrossRef]
- Gashu, K.; Verma, P.K.; Acuña, T.; Agam, N.; Bustan, A.; Fait, A. Temperature Differences between Sites Lead to Altered Phenylpropanoid Metabolism in a Varietal Dependent Manner. Front. Plant Sci. 2023, 14, 1239852. [Google Scholar] [CrossRef]
- Sweetman, C.; Sadras, V.O.; Hancock, R.D.; Soole, K.L.; Ford, C.M. Metabolic Effects of Elevated Temperature on Organic Acid Degradation in Ripening Vitis Vinifera Fruit. J. Exp. Bot. 2014, 65, 5975–5988. [Google Scholar] [CrossRef] [PubMed]
- Rienth, M.; Torregrosa, L.; Sarah, G.; Ardisson, M.; Brillouet, J.M.; Romieu, C. Temperature Desynchronizes Sugar and Organic Acid Metabolism in Ripening Grapevine Fruits and Remodels Their Transcriptome. BMC Plant Biol. 2016, 16, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Verdugo-Vásquez, N.; Orrego, R.; Gutiérrez-Gamboa, G.; Reyes, M.; Zurita-Silva, A.; Balbontín, C.; Gaete, N.; Salazar-Parra, C. Climate Trends and Variability in the Chilean Viticultural Production Zones during 1985–2015. OENO One 2023, 57, 345–362. [Google Scholar] [CrossRef]
- Comte, V.; Schneider, L.; Calanca, P.; Rebetez, M. Effects of Climate Change on Bioclimatic Indices in Vineyards along Lake Neuchatel, Switzerland. Theor. Appl. Clim. 2022, 147, 423–436. [Google Scholar] [CrossRef]
- Gutiérrez Gamboa, G.; Palacios-Peralta, C.; López-Olivari, R.; Castillo, P.; Almonacid, M.; Narváez, R.; Morales-Salinas, L.; Verdugo-Vásquez, N.; Hidalgo, M.; Ribera-Fonseca, A.; et al. Growing Vines in the Mapuche Heartland: The First Report About the Vitiviniculture of the Araucanía Region. In Latin American Viticulture Adaptation to Climate Change; Gutiérrez-Gamboa, G., Fourment, M., Eds.; Springer: Cham, Switzerland, 2024; pp. 197–214. ISBN 978-3-031-51325-1. [Google Scholar]
- Jones, G.V. Climate Change in the Western United States Grape Growing Regions. Acta Hortic. 2005, 689, 41–60. [Google Scholar] [CrossRef]
- Hall, A.; Jones, G.V. Spatial Analysis of Climate in Winegrape-Growing Regions in Australia. Aust. J. Grape Wine Res. 2010, 16, 389–404. [Google Scholar] [CrossRef]
- Liles, C.; Verdon-Kidd, D.C. Refining the Growing Season Temperature Parameter for Use in Winegrape Suitability Analysis. Aust. J. Grape Wine Res. 2020, 26, 343–357. [Google Scholar] [CrossRef]
- Nesbitt, A.; Dorling, S.; Jones, R.; Smith, D.K.E.; Krumins, M.; Gannon, K.E.; Dorling, L.; Johnson, Z.; Conway, D. Climate Change Projections for UK Viticulture to 2040: A Focus on Improving Suitability for Pinot Noir. OENO One 2022, 56, 69–87. [Google Scholar] [CrossRef]
- Huglin, M.P. Nouveau Mode d’évaluation Des Possibilités Héliothermiques d’un Milieu Viticole. C R Acad. Agric. Fr. 1978, 64, 1117–1126. [Google Scholar]
- Gutiérrez-Gamboa, G.; Carrasco-Quiroz, M.; Martínez-Gil, A.M.; Pérez-Álvarez, E.P.; Garde-Cerdán, T.; Moreno-Simunovic, Y. Grape and Wine Amino Acid Composition from Carignan Noir Grapevines Growing under Rainfed Conditions in the Maule Valley, Chile: Effects of Location and Rootstock. Food Res. Int. 2018, 105, 344–352. [Google Scholar] [CrossRef]
- Tonietto, J.; Carbonneau, A. A Multicriteria Climatic Classification System for Grape-Growing Regions Worldwide. Agric. For. Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef]
- Morales-Castilla, I.; de Cortázar-Atauri, I.G.; Cook, B.I.; Lacombe, T.; Parker, A.; van Leeuwen, C.; Nicholas, K.A.; Wolkovich, E.M. Diversity Buffers Winegrowing Regions from Climate Change Losses. Proc. Natl. Acad. Sci. USA 2020, 117, 2864–2869. [Google Scholar] [CrossRef] [PubMed]
- Fourment, M.; Tachini, R.; Bonnardot, V.; Collins, C. Assessment of Albariño (Vitis vinifera sp.) Plasticity to Local Climate in the Atlantic Eastern Coastal Terroir of Uruguay. OENO One 2024, 58, 1–15. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Verdugo-Vásquez, N. Editorial: Advances in Viticulture: New Approaches towards the Vineyard of the Future. Front. Plant Sci. 2024, 15, 1475437. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gil, A.M.; Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Pérez-Álvarez, E.P.; Moreno-Simunovic, Y. Characterization of Phenolic Composition in Carignan Noir Grapes (Vitis vinifera L.) from Six Wine-Growing Sites in Maule Valley, Chile. J. Sci. Food Agric. 2018, 98, 274–282. [Google Scholar] [CrossRef]
- Sadras, V.O.; Petrie, P.R. Climate Shifts in South-Eastern Australia: Early Maturity of Chardonnay, Shiraz and Cabernet Sauvignon Is Associated with Early Onset Rather than Faster Ripening. Aust. J. Grape Wine Res. 2011, 17, 199–205. [Google Scholar] [CrossRef]
- Gashu, K.; Sikron Persi, N.; Drori, E.; Harcavi, E.; Agam, N.; Bustan, A.; Fait, A. Temperature Shift Between Vineyards Modulates Berry Phenology and Primary Metabolism in a Varietal Collection of Wine Grapevine. Front. Plant Sci. 2020, 11, 588739. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, F.; Pan, M.; Wu, X.; Zhang, W.; Han, S.; Xie, H.; Zhou, X.; Wang, M.; Ai, C.; et al. Comparative Phenotypic and Transcriptomic Analysis of Victoria and Flame Seedless Grape Cultivars during Berry Ripening. FEBS Open Bio 2020, 10, 2616–2630. [Google Scholar] [CrossRef]
- Alonso, F.; Chiamolera, F.M.; Hueso, J.J.; González, M.; Cuevas, J. Heat Unit Requirements of “Flame Seedless” Table Grape: A Tool to Predict Its Harvest Period in Protected Cultivation. Plants 2021, 10, 904. [Google Scholar] [CrossRef]
- Zarrouk, O.; Pinto, C.; Alarcón, M.V.; Flores-Roco, A.; Santos, L.; David, T.S.; Amancio, S.; Lopes, C.M.; Carvalho, L.C. Canopy Architecture and Sun Exposure Influence Berry Cluster–Water Relations in the Grapevine Variety Muscat of Alexandria. Plants 2024, 13, 1500. [Google Scholar] [CrossRef]
- Pallotti, L.; Silvestroni, O.; Dottori, E.; Lattanzi, T.; Lanari, V. Effects of Shading Nets as a Form of Adaptation to Climate Change on Grapes Production: A Review. OENO One 2023, 57, 467–476. [Google Scholar] [CrossRef]
- Villalobos-Soublett, E.; Gutiérrez-Gamboa, G.; Balbontín, C.; Zurita-Silva, A.; Ibacache, A.; Verdugo-Vásquez, N. Effect of Shading Nets on Yield, Leaf Biomass and Petiole Nutrients of a Muscat of Alexandria Vineyard Growing under Hyper-Arid Conditions. Horticulturae 2021, 7, 445. [Google Scholar] [CrossRef]
- Sanchez-Ballesta, T.M.; Tomaz, I.; Carbonell-Bejerano, P.; Fait, A.; Gashu, K.; Song, C.; Dubey, A.K.; Acuña, T.; Sagi, M.; Agam, N.; et al. The Effect of Topo-Climate Variation on the Secondary Metabolism of Berries in White Grapevine Varieties (Vitis vinifera). Front. Plant Sci. 2022, 13, 847268. [Google Scholar] [CrossRef]
- Matsui, S.; Ryugo, K.; Kliewer, W.M. Growth Inhibition of Thompson Seedless and Napa Gamay Berries by Heat Stress and Its Partial Reversibility by Applications of Growth Regulators. Am. J. Enol. Vitic. 1986, 37, 67–71. [Google Scholar] [CrossRef]
- Verdugo-Vásquez, N.; Pañitrur-De la Fuente, C.; Ortega-Farías, S. Model Development to Predict Phenological Scale of Table Grapes (Cvs. Thompson, Crimson and Superior Seedless and Red Globe) Using Growing Degree Days. OENO One 2017, 51, 277–288. [Google Scholar] [CrossRef]
- Clemente, N.; Santos, J.A.; Fontes, N.; Graça, A.; Gonçalves, I.; Fraga, H. Grapevine Sugar Concentration Model (GSCM): A Decision Support Tool for the Douro Superior Winemaking Region. Agronomy 2022, 12, 1404. [Google Scholar] [CrossRef]
- Tavernier, F.; Savoi, S.; Torregrosa, L.; Hugueney, P.; Baltenweck, R.; Segura, V.; Romieu, C. The Single-Berry Metabolomic Clock Paradigm Reveals New Stages and Metabolic Switches during Grapevine Berry Development. J. Exp. Bot. 2025, eraf038. [Google Scholar] [CrossRef]
- Skahill, B.; Berenguer, B.; Stoll, M. Temperature-Based Climate Projections of Pinot Noir Suitability in the Willamette Valley American Viticultural Area. OENO One 2022, 56, 209–225. [Google Scholar] [CrossRef]
- Parker, A.K.; García de Cortázar-Atauri, I.; Gény, L.; Spring, J.-L.; Destrac, A.; Schultz, H.; Molitor, D.; Lacombe, T.; Graça, A.; Monamy, C.; et al. Temperature-Based Grapevine Sugar Ripeness Modelling for a Wide Range of Vitis vinifera L. Cultivars. Agric. For. Meteorol. 2020, 285–286, 107902. [Google Scholar] [CrossRef]
- Skahill, B.; Berenguer, B.; Stoll, M. Climate Projections for Pinot Noir Ripening Potential in the Fort Ross-Seaview, Los Carneros, Petaluma Gap, and Russian River Valley American Viticultural Areas. Agronomy 2023, 13, 696. [Google Scholar] [CrossRef]
Table Grape Production | Pisco Production | ||||
---|---|---|---|---|---|
Flame Seedless | Thompson Seedless | Muscat of Alexandria | Moscatel Rosada | ||
General characteristics | Vineyard surface (ha) | 1.2 | 1.0 | 1.3 | 1.3 |
Year of plantation | 1998 | 1998 | 1995 | 1995 | |
Trellis system | Pergola | Pergola | Pergola | Pergola | |
Spacing distance | 2.0 × 3.5 | 2.0 × 3.5 | 2.0 × 3.5 | 2.0 × 3.5 | |
Data of harvest date | Seasons | 2002 to 2018 | 2002–2003 to 2012–2013 | 2002–2003 to 2017–2018 | 2002–2003 to 2017–2018 |
Number of seasons | 16 | 11 | 16 | 16 | |
Differences between production system | Yield adjustment | Yes | Yes | No | No |
Use of growth regulators | Yes | Yes | No | No | |
Phenology | Average growth cycle duration (days) (budburst to harvest) | 140 | 150 | 210 | 200 |
Bioclimatic Index | Equation | Standard Period 1 | Adjusted Periods (for Early Ripening Varieties in Northern Chile) |
---|---|---|---|
Huglin Index (HI) | 1 October–31 March | 1 July–31 December; 1 July–31 January; 1 August–30 April; 1 September–30 April; 1 September–31 March | |
Growing Degree Days (GDD) | 1 October–30 April | 1 July–31 December; 1 July–31 January; 1 August–30 April; 1 September–30 April; 1 September–31 March | |
Growing Season Temperature (GST) | 1 October–30 April | 1 July–31 December; 1 July–31 January; 1 August–30 April; 1 September–30 April; 1 September–31 March | |
Springtime Temperature Summation (SONmean, SONmax) | 1 September–30 November | 1 October–31 December | |
Cool Night Index (CI) | March | December; January; February; April | |
Mean January Temperature (MJT) | January | No adjustments needed |
Descriptive Statistics | Linear Trend | |||||
---|---|---|---|---|---|---|
Bioclimatic Indices | Period | Mean | SD | CV | Trend yr−1 | R2 |
Huglin Index (HI: Heat Units) | 1 October–31 March | 2434.9 | 84.3 | 3.5 | 6.39 | 0.13 |
1 July–31 December | 1841.1 | 137.8 | 7.5 | 0.75 | 0.0007 | |
1 July–31 January | 2308.9 | 146.4 | 6.3 | 3.07 | 0.01 | |
1 August–30 April | 3258.3 | 143.4 | 4.4 | 7.99 | 0.07 | |
1 September–30 April | 3025.7 | 114.4 | 3.8 | 7.18 | 0.09 | |
1 September–31 March | 2708.1 | 100.2 | 3.7 | 5.78 | 0.08 | |
Cool Night Index (CI: °C) | December | 9.8 | 0.8 | 8.2 | 0.006 | 0.001 |
January | 11.8 | 0.8 | 7.1 | 0.02 | 0.02 | |
February | 11.3 | 0.8 | 13.4 | 0.035 | 0.03 | |
March | 9.4 | 0.9 | 9.9 | −0.0007 | 0.00001 | |
April | 6.5 | 1.1 | 17.6 | 0.07 | 0.09 | |
MJT 1 (°C) | January | 20.5 | 0.7 | 3.6 | 0.04 | 0.06 |
SON 2 Mean (Heat Units) | 1 September–30 November | 1435.9 | 72.6 | 5.1 | −5.65 | 0.14 |
1 October–31 December | 1601.8 | 58.1 | 3.6 | −3.08 | 0.06 | |
SON 2 Max (Heat Units) | 1 September–30 November | 2339.7 | 85.3 | 3.6 | 2.20 | 0.02 |
1 October–31 December | 2504.4 | 79.1 | 3.2 | 4.36 | 0.07 | |
Growing Degree Days (GDD: Heat Units) | 1 October–30 April | 1702.5 | 95.7 | 5.6 | 0.60 | 0.0009 |
1 July–31 December | 960.0 | 129.2 | 13.5 | −9.36 | 0.12 | |
1 July–31 January | 1284.1 | 137.3 | 10.7 | −8.28 | 0.08 | |
1 August–30 April | 1916.9 | 140.5 | 7.3 | −3.38 | 0.01 | |
1 September–30 April | 1828.2 | 115.3 | 6.3 | −1.49 | 0.004 | |
1 September–31 March | 1671.9 | 101.5 | 6.1 | −2.42 | 0.01 | |
Growing Season Temperature (GST: °C) | 1 October–30 April | 18.0 | 0.5 | 2.5 | 0.002 | 0.0004 |
1 July–31 December | 15.1 | 0.8 | 5.4 | −0.05 | 0.09 | |
1 July–31 January | 15.8 | 0.7 | 4.7 | −0.04 | 0.07 | |
1 August–30 April | 17.0 | 0.5 | 3.2 | −0.01 | 0.01 | |
1 September–30 April | 17.5 | 0.5 | 2.7 | −0.006 | 0.004 | |
1 September–31 March | 17.9 | 0.5 | 2.7 | −0.011 | 0.01 |
Flame Seedless | Thompson Seedless | Muscat of Alexandria | Moscatel Rosada | |
---|---|---|---|---|
Flame Seedless | - | 0.81 * | 0.35 | 0.79 ** |
Thompson Seedless | - | 0.48 | 0.87 ** | |
Muscat of Alexandria | - | 0.51 * | ||
Moscatel Rosada | - |
Bioclimatic Indices | Period | Flame Seedless | Thompson Seedless | Muscat of Alexandria | Moscatel Rosada |
---|---|---|---|---|---|
Huglin Index (HI) | (1 October–31 March) | 0.38 * | 0.11 | 0.40 ** | 0.26 * |
1 July–31 December | 0.67 **† | 0.55 ** | 0.38 * | 0.59 **† | |
1 July–31 January | 0.63 ** | 0.58 **† | 0.42 **† | 0.53 ** | |
1 August–30 April | 0.55 ** | 0.24 | 0.42 **† | 0.36 * | |
1 September–30 April | 0.43 ** | 0.15 | 0.35 * | 0.32 * | |
1 September–31 March | 0.46 ** | 0.18 | 0.35 * | 0.35 * | |
Cool Night Index (CI) | December | 0.11 | 0.01 | 0.17 | 0.23 |
January | 0.23 | 0.02 | 0.35 *† | 0.12 | |
February | 0.03 | 0.02 | 0.001 | 0.018 | |
(March) | 0.02 | 0.06 | 0.001 | 0.0002 | |
April | 0.02 | 0.02 | 0.15 | 0.04 | |
MJT 1 | (January) | 0.12 | 0.06 | 0.26 * | 0.04 |
SON 2 Mean | (1 September–30 November) | 0.60 ** | 0.44 * | 0.09 | 0.64 ** |
1 October–31 December | 0.68 **† | 0.46 *† | 0.23 | 0.67 **† | |
SON 2 Max | (1 September–30 November) | 0.47 ** | 0.68 ** | 0.24 | 0.44 ** |
1 October–31 December | 0.34 * | 0.46 * | 0.28 *† | 0.32 * | |
Growing Degree Days (GDD) | (1 October–30 April) | 0.45 ** | 0.21 | 0.31 * | 0.33 * |
1 July–31 December | 0.65 ** | 0.45 * | 0.18 | 0.66 **† | |
1 July–31 January | 0.68 **† | 0.47 *† | 0.23 | 0.64 ** | |
1 August–30 April | 0.58 ** | 0.25 | 0.26 * | 0.44 ** | |
1 September–30 April | 0.46 ** | 0.21 | 0.22 | 0.39 * | |
1 September–31 March | 0.51 ** | 0.21 | 0.2 | 0.43 ** | |
Growing Season Temperature (GST) | (1 October–30 April) | 0.48 ** | 0.27 | 0.33 * | 0.36 * |
1 July–31 December | 0.68 ** | 0.48 * | 0.24 | 0.71 **† | |
1 July–31 January | 0.70 **† | 0.50 *† | 0.29 *† | 0.71 **† | |
1 August–30 April | 0.61 ** | 0.28 | 0.28 * | 0.46 ** | |
1 September–30 April | 0.48 ** | 0.2 | 0.23 | 0.41 ** | |
1 September–31 March | 0.53 ** | 0.23 | 0.2 | 0.44 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdugo-Vásquez, N.; Ibacache-González, A.; Gutiérrez-Gamboa, G. The Variability and Trend of Harvest Dates of Table and Pisco Grapes in Northern Chile Are Independently Influenced by Bioclimatic Indices. Horticulturae 2025, 11, 425. https://doi.org/10.3390/horticulturae11040425
Verdugo-Vásquez N, Ibacache-González A, Gutiérrez-Gamboa G. The Variability and Trend of Harvest Dates of Table and Pisco Grapes in Northern Chile Are Independently Influenced by Bioclimatic Indices. Horticulturae. 2025; 11(4):425. https://doi.org/10.3390/horticulturae11040425
Chicago/Turabian StyleVerdugo-Vásquez, Nicolás, Antonio Ibacache-González, and Gastón Gutiérrez-Gamboa. 2025. "The Variability and Trend of Harvest Dates of Table and Pisco Grapes in Northern Chile Are Independently Influenced by Bioclimatic Indices" Horticulturae 11, no. 4: 425. https://doi.org/10.3390/horticulturae11040425
APA StyleVerdugo-Vásquez, N., Ibacache-González, A., & Gutiérrez-Gamboa, G. (2025). The Variability and Trend of Harvest Dates of Table and Pisco Grapes in Northern Chile Are Independently Influenced by Bioclimatic Indices. Horticulturae, 11(4), 425. https://doi.org/10.3390/horticulturae11040425