Magnetic Hyperthermia and Antibacterial Response of CuCo2O4 Nanoparticles Synthesized through Laser Ablation of Bulk Alloy
Abstract
:1. Introduction
2. Materials and Methods
Proposed Synthesis Mechanism of NPs
3. Results and Discussion
3.1. LIBS Spectrum of Bulk Alloy Fabricated Via the Arc Melting Technique
3.2. X-ray Diffraction Pattern of CuCo2O4 NPs
3.3. VSM Study of Laser Assisted CuCo2O4 NPs
3.4. SEM and EDX Results of CuCo2O4 NPs Synthesized Via Laser Ablation
3.5. TEM Image and Corresponding Histogram of CuCo2O4 NPs
3.6. Dynamic Light Scattering Analysis of CuCo2O4 NPs
3.7. Antibacterial Activities of CuCo2O4 NPs
3.8. Mutagenicity by Ames Assay of CuCo2O4 Nanoparticles
3.9. Magnetic Fluid Hyperthermia Study of Laser Synthesized CuCo2O4 Nanofluid
Magnetic Heating Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sheikhi Mehrabadi, Z.; Ahmadpour, A.; Shahtahmasebi, N.; Bagheri Mohagheghi, M.M. Synthesis and Characterization of Cu Doped Cobalt Oxide Nanocrystals as Methane Gas Sensors. Phys. Scr. 2011, 84, 015801. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.A.; Bhatti, M.A.; Tahira, A.; Chandio, A.D.; Channa, I.A.; Sahito, A.G.; Chalangar, E.; Willander, M.; Nur, O.; Ibupoto, Z.H. Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange. Ceram. Int. 2020, 46, 9997–10005. [Google Scholar] [CrossRef]
- Maliha, Z.; Rani, M.; Neffati, R.; Mahmood, A.; Iqbal, M.Z.; Shah, A. Investigation of copper/cobalt MOFs nanocomposite as an electrode material in supercapacitors. Int. J. Energy Res. 2022, 46, 17404–17415. [Google Scholar] [CrossRef]
- Anithkumar, M.; Rajan, S.A.; Khan, A.; Kaczmarek, B.; Michalska-Sionkowska, M.; Łukowicz, K.; Osyczka, A.M.; Gupta, J.; Sahu, N.K. Glucose Oxidase-Loaded MnFe2O4 Nanoparticles for Hyperthermia and Cancer Starvation Therapy. ACS Appl. Nano Mater. 2023, 6, 2605–2614. [Google Scholar] [CrossRef]
- Ahmed, K.; Zaidi, S.F. Treating Cancer with Heat: Hyperthermia as Promising Strategy to Enhance Apoptosis. J. Pak. Med. Assoc. 2013, 63, 504–508. [Google Scholar]
- Brezovich, I.A.; Young, J.H. Hyperthermia with Implanted Electrodes. Med. Phys. 1981, 8, 79–84. [Google Scholar] [CrossRef]
- Robins, H.I.; Rushing, D.; Kutz, M.; Tutsch, K.D.; Tiggelaar, C.L.; Paul, D.; Spriggs, D.; Kraemer, C.; Gillis, W.; Feierabend, C.; et al. Phase I Clinical Trial of Melphalan and 41.8 °C Whole-Body Hyperthermia in Cancer Patients. J. Clin. Oncol. 1997, 15, 158–164. [Google Scholar] [CrossRef]
- Douple, E.B.; Strohbehn, J.W.; Bowers, E.D.; Walsh, J.E. Cancer Therapy with Localized Hyperthermia Using an Invasive Microwave System. J. Microw. Power 1979, 14, 181–186. [Google Scholar] [CrossRef]
- Tishin, A.; Shtil, A.; Pyatakov, A.; Zverev, V. Developing Antitumor Magnetic Hyperthermia: Principles, Materials and Devices. Recent Pat. Anticancer Drug Discov. 2016, 11, 360–375. [Google Scholar] [CrossRef]
- Dutz, S.; Hergt, R. Magnetic Particle Hyperthermia—A Promising Tumour Therapy? Nanotechnology 2014, 25, 452001. [Google Scholar] [CrossRef]
- Gilchrist, R.K.; Medal, R.; Shorey, W.D.; Hanselman, R.C.; Parrott, J.C.; Taylor, C.B. Selective Inductive Heating of Lymph Nodes. Ann. Surg. 1957, 146, 596–606. [Google Scholar] [CrossRef]
- Kumar, C.S.S.R.; Mohammad, F. Magnetic Nanomaterials for Hyperthermia-Based Therapy and Controlled Drug Delivery. Adv. Drug Deliv. Rev. 2011, 63, 789–808. [Google Scholar] [CrossRef] [Green Version]
- Nasrin, S.; Chowdhury, F.U.Z.; Hoque, S.M. Study of Hydrodynamic Size Distribution and Hyperthermia Temperature of Chitosan Encapsulated Zinc-Substituted Manganese Nano Ferrites Suspension. Phys. B Condens. Matter 2019, 561, 54–63. [Google Scholar] [CrossRef]
- Ghayour, H.; Abdellahi, M.; Ozada, N.; Jabbrzare, S.; Khandan, A. Hyperthermia Application of Zinc Doped Nickel Ferrite Nanoparticles. J. Phys. Chem. Solids 2017, 111, 464–472. [Google Scholar] [CrossRef]
- Suleman, M.; Riaz, S. In Silico Study of Hyperthermia Treatment of Liver Cancer Using Core-Shell CoFe2O4@MnFe2O4 Magnetic Nanoparticles. J. Magn. Magn. Mater. 2020, 498, 166143. [Google Scholar] [CrossRef]
- Shah, S.A.; Hashmi, M.U.; Alam, S.; Shamim, A. Magnetic and Bioactivity Evaluation of Ferrimagnetic ZnFe2O4 Containing Glass Ceramics for the Hyperthermia Treatment of Cancer. J. Magn. Magn. Mater. 2010, 322, 375–381. [Google Scholar] [CrossRef]
- Ban, I.; Stergar, J.; Drofenik, M.; Ferk, G.; Makovec, D. Synthesis of Copper-Nickel Nanoparticles Prepared by Mechanical Milling for Use in Magnetic Hyperthermia. J. Magn. Magn. Mater. 2011, 323, 2254–2258. [Google Scholar] [CrossRef]
- Deatsch, A.E.; Evans, B.A. Heating Efficiency in Magnetic Nanoparticle Hyperthermia. J. Magn. Magn. Mater. 2014, 354, 163–172. [Google Scholar] [CrossRef]
- Akurati, R.R.; Jaladi, N.K.; Kurapati, S.R.; Kapusetti, G.; Choppadandi, M.; Mandal, P. Preparation, Characterization and Study of Magnetic Induction Heating of Co-Cu Nanoparticles. Mater. Today Commun. 2023, 34, 104964. [Google Scholar] [CrossRef]
- Jamir, M.; Borgohain, C.; Borah, J.P. Study of Chitosan Coated Copper Substituted Nano-Ferrites for Hyperthermia Applications. Phys. E Low-Dimens. Syst. Nanostruct. 2023, 146, 115560. [Google Scholar] [CrossRef]
- Kim, D.H.; Nikles, D.E.; Johnson, D.T.; Brazel, C.S. Heat Generation of Aqueously Dispersed CoFe2O4 Nanoparticles as Heating Agents for Magnetically Activated Drug Delivery and Hyperthermia. J. Magn. Magn. Mater. 2008, 320, 2390–2396. [Google Scholar] [CrossRef]
- Fotukian, S.M.; Barati, A.; Soleymani, M.; Alizadeh, A.M. Solvothermal Synthesis of CuFe2O4 and Fe3O4 Nanoparticles with High Heating Efficiency for Magnetic Hyperthermia Application. J. Alloys Compd. 2020, 816, 152548. [Google Scholar] [CrossRef]
- Ben-Nissan, B.; Ka, S.; Himanshu, T.; Huguenin, K.; Sp, S. Structural, magnetic and in vitro bioactivity of co-cu ferrite and bioglass composite for hyperthermia in bone tissue engineering. Bioceram. Dev. Appl. 2016, 2016, 03794111. [Google Scholar]
- Goudarzi, M.; Salavati-Niasari, M.; Yazdian, F.; Amiri, M. Sonochemical Assisted Thermal Decomposition Method for Green Synthesis of CuCo2O4/CuO Ceramic Nanocomposite Using Dactylopius Coccus for Anti-Tumor Investigations. J. Alloys Compd. 2019, 788, 944–953. [Google Scholar] [CrossRef]
- Rivera-Chaverra, M.J.; Restrepo-Parra, E.; Acosta-Medina, C.D.; Mello, A.; Ospina, R. Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications. Nanomaterials 2020, 10, 2099. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Pan, Y.; Jamil, Y.; Shah, A.A.; Amir, M.; Al Islam, S.; Fazal, Y.; Chen, J.; Shen, Z. Comparison of Copper-Based Cu-Ni and Cu-Fe Nanoparticles Synthesized via Laser Ablation for Magnetic Hyperthermia and Antibacterial Applications. Phys. B Condens. Matter 2023, 650, 414503. [Google Scholar] [CrossRef]
- Kim, Y.H.; Choi, Y.R.; Kim, K.M.; Choi, S.Y. Evaluation of Copper Ion of Antibacterial Effect on Pseudomonas Aeruginosa, Salmonella Typhimurium and Helicobacter Pylori and Optical, Mechanical Properties. Appl. Surf. Sci. 2012, 258, 3823–3828. [Google Scholar] [CrossRef]
- Ramesh, J.; Carter, A.O.; Campbell, M.H.; Gibbons, N.; Powlett, C.; Moseley, H.; Lewis, D.; Carter, T. Use of Mobile Phones by Medical Staff at Queen Elizabeth Hospital, Barbados: Evidence for Both Benefit and Harm. J. Hosp. Infect. 2008, 70, 160–165. [Google Scholar] [CrossRef]
- Brady, R.R.W.; Verran, J.; Damani, N.N.; Gibb, A.P. Review of Mobile Communication Devices as Potential Reservoirs of Nosocomial Pathogens. J. Hosp. Infect. 2009, 71, 295–300. [Google Scholar] [CrossRef]
- Esteban-Tejeda, L.; Malpartida, F.; Esteban-Cubillo, A.; Pecharromán, C.; Moya, J.S. The Antibacterial and Antifungal Activity of a Soda-Lime Glass Containing Silver Nanoparticles. Nanotechnology 2009, 20, 085102. [Google Scholar] [CrossRef]
- Dabagh, S.; Chaudhary, K.; Haris, S.A.; Haider, Z.; Ali, J. Aluminium Substituted Ferrite Nanoparticles with Enhanced Antibacterial Activity. J. Comput. Theor. Nanosci. 2018, 15, 1052–1058. [Google Scholar] [CrossRef]
- Kumar, P.; Mathpal, M.C.; Ghosh, S.; Inwati, G.K.; Maze, J.R.; Duvenhage, M.M.; Roos, W.D.; Swart, H.C. Plasmonic Au Nanoparticles Embedded in Glass: Study of TOF-SIMS, XPS and Its Enhanced Antimicrobial Activities. J. Alloys Compd. 2022, 909, 164789. [Google Scholar] [CrossRef]
- Paknahad, P.; Askari, M.; Ghorbanzadeh, M. Application of Sol-Gel Technique to Synthesis of Copper-Cobalt Spinel on the Ferritic Stainless Steel Used for Solid Oxide Fuel Cell Interconnects. J. Power Sources 2014, 266, 79–87. [Google Scholar] [CrossRef]
- Bhatti, A.M.; Almaani, K.F.; Shah, A.A.; Tahira, A.; Chandio, A.D.; Mugheri, A.Q.; Bhatti, A.L. Low Temperature Aqueous Chemical Growth Method for the Doping of W into ZnO Nanostructures and Their Photocatalytic Role in the Degradration of Methylene Blue. J. Clust. Sci. 2022, 33, 1445–1446. [Google Scholar] [CrossRef]
- Bhatti, M.A.; Gilani, S.J.; Shah, A.A.; Channa, I.A.; Almani, K.F.; Chandio, A.D.; Halepoto, I.A.; Tahira, A.; Bin Jumah, M.N.; Ibupoto, Z.H. Effective removal of methylene blue by surface alteration of TiO2 with Ficus Carica leaf extract under visible light. Nanomaterials 2022, 12, 2766. [Google Scholar] [CrossRef]
- Akhtar, N.; Rani, M.; Mahmood, A.; Tariq, K.; Murtaza, G.; Alothman, A.A.; AL-zahrani, R.S.; Ali, S.; Janjua, N.K.; Shah, A. Synthesis and characterization of graphene oxide-based nanocomposite NaCr2O4/GO for electrochemical applications. J. Mater. Res. Technol. 2021, 15, 6287–6294. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Z.; Cai, L.; Li, Y.; Yan, Z.; Wang, Y. The Excellent Catalytic Activity for Thermal Decomposition of Ammonium Perchlorate Using Porous CuCo2O4 Synthesized by Template-Free Solution Combustion Method. J. Alloys Compd. 2019, 797, 548–557. [Google Scholar] [CrossRef]
- Manikandan, A.; Sridhar, R.; Arul Antony, S.; Ramakrishna, S. A Simple Aloe Vera Plant-Extracted Microwave and Conventional Combustion Synthesis: Morphological, Optical, Magnetic and Catalytic Properties of CoFe2O4 nanostructures. J. Mol. Struct. 2014, 1076, 188–200. [Google Scholar] [CrossRef]
- Chen, L.; Hong, M. Functional Nonlinear Optical Nanoparticles Synthesized by Laser Ablation. Opto-Electron. Sci. 2022, 1, 210007. [Google Scholar] [CrossRef]
- Amendola, V.; Meneghetti, M. What Controls the Composition and the Structure of Nanomaterials Generated by Laser Ablation in Liquid Solution? Phys. Chem. Chem. Phys. 2013, 15, 3027–3046. [Google Scholar] [CrossRef]
- Zhang, D.; Gökce, B.; Barcikowski, S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev. 2017, 117, 3990–4103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.S.; Liu, J.; Liang, C.H. Perspective on How Laser-Ablated Particles Grow in Liquids. Sci. China Physics Mech. Astron. 2017, 60, 074201. [Google Scholar] [CrossRef]
- Liu, J.; Gong, Y.; Xu, G.; Peng, G.; Shah, I.A.; Ul Hassan, N.; Xu, F. Realization of Magnetostructural Coupling by Modifying Structural Transitions in MnNiSi-CoNiGe System with a Wide Curie-Temperature Window. Sci. Rep. 2016, 6, 23386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Nowsherwan, G.A.; Shah, A.A.; Riaz, S.; Riaz, M.; Chandio, A.D.; Shah, A.K.; Channa, I.A.; Hussain, S.S.; Ali, R.; et al. A Study of the Structural and Surface Morphology and Photoluminescence of Ni-Doped AlN Thin Films Grown by Co-Sputtering. Nanomaterials 2022, 12, 3919. [Google Scholar] [CrossRef] [PubMed]
- Shukri, W.N.W.; Bidin, N.; Islam, S.; Krishnan, G. Synthesis of Au–Ag Alloy Nanoparticles in Deionized Water by Pulsed Laser Ablation Technique. J. Nanosci. Nanotechnol. 2018, 18, 4841–4851. [Google Scholar] [CrossRef]
- Santagata, A.; National, I.; Guarnaccio, A.; National, I.; Valyon, J. Production of Silver-Silica Core-Shell Nanocomposites Using Ultra-Short Pulsed Laser Ablation in Nanoporous Aqueous Silica Colloidal Solutions. J. Phys. D Appl. Phys. 2015, 48, 205304. [Google Scholar] [CrossRef]
- Ibupoto, Z.H.; Tahira, A.; Shah, A.A.; Aftab, U.; Solangi, M.Y.; Leghari, J.A.; Samoon, A.H.; Bhatti, A.L.; Bhatti, M.A.; Mazzaro, R.; et al. NiCo2O4 nanostructures loaded onto pencil graphite rod: An advanced composite material for oxygen evolution reaction. Int. J. Hydrog. Energy 2022, 47, 6650–6665. [Google Scholar] [CrossRef]
- Serkov, A.A.; Kuzmin, P.G.; Shafeev, G.A. Laser-Induced Agglomeration of Gold and Silver Nanoparticles Dispersed in Liquid. Chem. Phys. Lett. 2016, 647, 68–72. [Google Scholar] [CrossRef]
- Hahn, D.W.; Omenetto, N. Laser-Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasmaparticle Interactions: Still-Challenging Issues within the Analytical Plasma Community. Appl. Spectrosc. 2010, 64, 335–366. [Google Scholar] [CrossRef] [Green Version]
- Limbeck, A.; Brunnbauer, L.; Lohninger, H.; Pořízka, P.; Modlitbová, P.; Kaiser, J.; Janovszky, P.; Kéri, A.; Galbács, G. Methodology and Applications of Elemental Mapping by Laser Induced Breakdown Spectroscopy. Anal. Chim. Acta 2021, 1147, 72–98. [Google Scholar] [CrossRef]
- Takahashi, T.; Thornton, B.; Ohki, K.; Sakka, T. Calibration-Free Analysis of Immersed Brass Alloys Using Long-Ns-Duration Pulse Laser-Induced Breakdown Spectroscopy with and without Correction for Nonstoichiometric Ablation. Spectrochim. Acta Part B At. Spectrosc. 2015, 111, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Jantzi, S.C.; Motto-Ros, V.; Trichard, F.; Markushin, Y.; Melikechi, N.; De Giacomo, A. Sample Treatment and Preparation for Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2016, 115, 52–63. [Google Scholar] [CrossRef]
- Bol’shakov, A.A.; Yoo, J.H.; Liu, C.; Plumer, J.R.; Russo, R.E. Laser-Induced Breakdown Spectroscopy in Industrial and Security Applications. Appl. Opt. 2010, 49, C132–C142. [Google Scholar] [CrossRef]
- Hahn, D.W.; Omenetto, N. Laser-Induced Breakdown Spectroscopy (LIBS), Part II: Review of Instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields. Appl. Spectrosc. 2012, 66, 347–419. [Google Scholar] [CrossRef]
- Owens, T.; Mao, S.S.; Canfield, E.K.; Grigoropoulos, C.P.; Mao, X.; Russo, R.E. Ultrafast Thin-Film Laser-Induced Breakdown Spectroscopy of Doped Oxides. Appl. Opt. 2010, 49, 67–69. [Google Scholar] [CrossRef]
- Liao, J.; Feng, Y.; Wu, S.; Ye, H.; Zhang, J.; Zhang, X.; Xie, F.; Li, H. Hexagonal CuCo2O4 Nanoplatelets, a Highly Active Catalyst for the Hydrolysis of Ammonia Borane for Hydrogen Production. Nanomaterials 2019, 9, 360. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Vieker, H.; Kouotou, P.; Beyer, A. In Situ Characterization of Cu–Co Oxides for Catalytic Application. Faraday Discuss. 2015, 177, 249–262. [Google Scholar] [CrossRef]
- Silambarasan, M.; Padmanathan, N.; Ramesh, P.S.; Geetha, D. Spinel CuCo2O4 Nanoparticles: Facile One-Step Synthesis, Optical, and Electrochemical Properties. Mater. Res. Express 2016, 3, 095021. [Google Scholar] [CrossRef]
- Bagtache, R.; Boudjedien, K.; Sebai, I.; Meziani, D.; Trari, M. Facile Preparation of the Spinel CuCo2O4 Application to Hydrogen Photo-Production. Appl. Phys. A Mater. Sci. Process. 2021, 127, 60. [Google Scholar] [CrossRef]
- Rahmatolahzadeh, R.; Mousavi-Kamazani, M.; Shobeiri, S.A. Facile Co-Precipitation-Calcination Synthesis of CuCo2O4 Nanostructures Using Novel Precursors for Degradation of Azo Dyes. J. Inorg. Organomet. Polym. Mater. 2017, 27, 313–322. [Google Scholar] [CrossRef]
- Mohamed, W.S.; Hadia, N.M.A.; Al Bakheet, B.; Alzaid, M.; Abu-Dief, A.M. Impact of Cu2+ Cations Substitution on Structural, Morphological, Optical and Magnetic Properties of Co1-XCuxFe2O4 Nanoparticles Synthesized by a Facile Hydrothermal Approach. Solid State Sci. 2022, 125, 106841. [Google Scholar] [CrossRef]
- Tripathi, H.; Pandey, G.C.; Dubey, A.; Shaw, S.K.; Prasad, N.K.; Singh, S.P.; Rath, C. Superparamagnetic Manganese Ferrite and Strontium Bioactive Glass Nanocomposites: Enhanced Biocompatibility and Antimicrobial Properties for Hyperthermia Application. Adv. Eng. Mater. 2021, 23, 2000275. [Google Scholar] [CrossRef]
- Mammo, T.W.; Murali, N.; Sileshi, Y.M.; Arunamani, T. Studies of Structural, Morphological, Electrical, and Magnetic Properties of Mg-Substituted Co-Ferrite Materials Synthesized Using Sol-Gel Autocombustion Method. Phys. B Condens. Matter 2017, 523, 24–30. [Google Scholar] [CrossRef]
- Nwanya, A.C.; Awada, C.; Obi, D.; Raju, K.; Ozoemena, K.I.; Osuji, R.U.; Ruediger, A.; Maaza, M.; Rosei, F.; Ezema, F.I. Nanoporous Copper-Cobalt Mixed Oxide Nanorod Bundles as High Performance Pseudocapacitive Electrodes. J. Electroanal. Chem. 2017, 787, 24–35. [Google Scholar] [CrossRef]
- Samanta, S.; Srivastava, R. Simultaneous Determination of Epinephrene and Paracetamol at Copper-Cobalt Oxide Spinel Decorated Nanocrystalline Zeolite Modified Electrodes. J. Colloid Interface Sci. 2016, 475, 126–135. [Google Scholar] [CrossRef]
- Joshi, A.; Naatz, H.; Faber, K.; Pokhrel, S.; Dringen, R. Iron-Doping of Copper Oxide Nanoparticles Lowers Their Toxic Potential on C6 Glioma Cells. Neurochem. Res. 2020, 45, 809–824. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, A.; Laha, D.; Bhattacharya, D.; Pramanik, P.; Karmakar, P. A Novel Study of Antibacterial Activity of Copper Iodide Nanoparticle Mediated by DNA and Membrane Damage. Colloids Surf. B Biointerfaces 2012, 96, 50–55. [Google Scholar] [CrossRef]
- Baek, Y.W.; An, Y.J. Microbial Toxicity of Metal Oxide Nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia Coli, Bacillus Subtilis, and Streptococcus Aureus. Sci. Total Environ. 2011, 409, 1603–1608. [Google Scholar] [CrossRef]
- Kumar, V.; Mishra, R.K.; Kaur, G.; Dutta, D. Cobalt and Nickel Impair DNA Metabolism by the Oxidative Stress Independent Pathway. Metallomics 2017, 9, 1596–1609. [Google Scholar] [CrossRef]
- Simonsen, L.O.; Harbak, H.; Bennekou, P. Cobalt Metabolism and Toxicology—A Brief Update. Sci. Total Environ. 2012, 432, 210–215. [Google Scholar] [CrossRef]
- Zaib, M.; Shahzadi, T.; Muzammal, I.; Farooq, U. Catharanthus Roseus Extract Mediated Synthesis of Cobalt Nanoparticles: Evaluation of Antioxidant, Antibacterial, Hemolytic and Catalytic Activities. Inorg. Nano-Met. Chem. 2020, 50, 1171–1180. [Google Scholar] [CrossRef]
- Anuradha, C.T.; Raji, P. Citrus Limon Fruit Juice-Assisted Biomimetic Synthesis, Characterization and Antimicrobial Activity of Cobalt Oxide (Co3O4) Nanoparticles. Appl. Phys. A Mater. Sci. Process. 2021, 127, 949. [Google Scholar] [CrossRef]
- Anupong, W.; On-uma, R.; Jutamas, K.; Joshi, D.; Salmen, S.H.; Alahmadi, T.A.; Jhanani, G.K. Cobalt Nanoparticles Synthesizing Potential of Orange Peel Aqueous Extract and Their Antimicrobial and Antioxidant Activity. Environ. Res. 2023, 216, 114594. [Google Scholar] [CrossRef]
- Suri, S.S.; Fenniri, H.; Singh, B. Nanotechnology-Based Drug Delivery Systems. J. Occup. Med. Toxicol. 2007, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.J.; Tsai, P.J.; Chen, Y.C. Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria. Small 2008, 4, 485–491. [Google Scholar] [CrossRef]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts against Food Pathogens and Spoilage Microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef]
- Prakash, J.; Kumar, P.; Harris, R.A.; Swart, C.; Neethling, J.H.; Van Vuuren, A.J.; Swart, H.C. Synthesis, Characterization and Multifunctional Properties of Plasmonic Ag-TiO2 Nanocomposites. Nanotechnology 2016, 27, 325202. [Google Scholar] [CrossRef]
- Ambreen, J.; Haleem, A.; Shah, A.A.; Mushtaq, F.; Siddiq, M.; Bhatti, M.A.; Shah Bukhari, S.N.U.; Chandio, A.D.; Mahdi, W.A.; Alshehri, S. Facile Synthesis and Fabrication of NIPAM-Based Cryogels for Environmental Remediation. Gels 2023, 9, 64. [Google Scholar] [CrossRef]
- Kumar Inwati, G.; Kumar, P.; Roos, W.D.; Swart, H.C. Thermally Induced Structural Metamorphosis of ZnO:Rb Nanostructures for Antibacterial Impacts. Colloids Surf. B Biointerfaces 2020, 188, 110821. [Google Scholar] [CrossRef]
- Singh, C.; Mehata, A.K.; Priya, V.; Malik, A.K.; Setia, A.; Suseela, M.N.L.; Vikas, M.N.L.; Gokul, P.; Samridhi, P.; Singh, S.K.; et al. Bimetallic Au–Ag Nanoparticles: Advanced Nanotechnology for Tackling Antimicrobial Resistance. Molecules 2022, 27, 7059. [Google Scholar] [CrossRef]
- Khan, S.; Iqbal, T.; Ahmed, N.; Jamil, A. Antioxidant, hemolytic and mutagenic potential of Psoralea corylifolia. J. Anim. Plant Sci. 2015, 25, 1451–1456. [Google Scholar]
- Zia udDen, N.; Shahid, M. Determination of Bioactive Properties of Different Temperature Camellia Sinensis (Green Tea). Am. J. Food Nutr. 2017, 5, 10–18. [Google Scholar]
- Zuber, M.; Tabasum, S.; Jamil, T.; Shahid, M.; Hussain, R.; Feras, K.S.; Bhatti, K.P. Biocompatibility and Microscopic Evaluation of Polyurethane-Poly(Methyl Methacrylate)-Titnanium Dioxide Based Composites for Dental Applications. J. Appl. Polym. Sci. 2014, 131, 39806. [Google Scholar] [CrossRef]
- Phong, L.T.H.; Manh, D.H.; Nam, P.H.; Lam, V.D.; Khuyen, B.X.; Tung, B.S.; Bach, T.N.; Tung, D.K.; Phuc, N.X.; Hung, T.V.; et al. Structural, Magnetic and Hyperthermia Properties and Their Correlation in Cobalt-Doped Magnetite Nanoparticles. RSC Adv. 2021, 12, 698–707. [Google Scholar] [CrossRef]
- Ramana, P.V.; Rao, K.S.; Kumar, K.R.; Kapusetti, G.; Choppadandi, M.; Kiran, J.N.; Rao, K.H. A Study of Uncoated and Coated Nickel-Zinc Ferrite Nanoparticles for Magnetic Hyperthermia. Mater. Chem. Phys. 2021, 266, 124546. [Google Scholar] [CrossRef]
- Talaei, M.; Hassanzadeh-Tabrizi, S.A.; Saffar-Teluri, A. Synthesis of Mesoporous CuFe2O4@SiO2 Core-Shell Nanocomposite for Simultaneous Drug Release and Hyperthermia Applications. Ceram. Int. 2021, 47, 30287–30297. [Google Scholar] [CrossRef]
- Oh, Y.; Lee, N.; Kang, H.W.; Oh, J. In Vitro Study on Apoptotic Cell Death by Effective Magnetic Hyperthermia with Chitosan-Coated MnFe2O4. Nanotechnology 2016, 27, 115101. [Google Scholar] [CrossRef]
- Kalita, V.M.; Tovstolytkin, A.I.; Ryabchenko, S.M.; Yelenich, O.V.; Solopan, S.O.; Belous, A.G. Mechanisms of AC Losses in Magnetic Fluids Based on Substituted Manganites. Phys. Chem. Chem. Phys. 2015, 17, 18087–18097. [Google Scholar] [CrossRef]
- Angelakeris, M. Magnetic Nanoparticles: A Multifunctional Vehicle for Modern Theranostics. Biochim. Biophys. Acta-Gen. Subj. 2017, 1861, 1642–1651. [Google Scholar] [CrossRef]
- Jadhav, S.V.; Kim, B.M.; Lee, H.Y.; Im, I.C.; Rokade, A.A.; Park, S.S.; Patil, M.P.; Kim, G.D.; Yu, Y.S.; Lee, S.H. Induction Heating and in Vitro Cytotoxicity Studies of MnZnFe2O4 Nanoparticles for Self-Controlled Magnetic Particle Hyperthermia. J. Alloys Compd. 2018, 745, 282–291. [Google Scholar] [CrossRef]
- Hemery, G.; Garanger, E.; Lecommandoux, S.; Wong, A.D.; Gillies, E.R.; Pedrono, B.; Bayle, T.; Jacob, D.; Sandre, O. Thermosensitive Polymer-Grafted Iron Oxide Nanoparticles Studied by in Situ Dynamic Light Backscattering under Magnetic Hyperthermia. J. Phys. D. Appl. Phys. 2015, 48, 494001. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Kawashita, M.; Araki, N.; Mitsumori, M.; Hiraoka, M.; Doi, M. Magnetite Nanoparticles with High Heating Efficiencies for Application in the Hyperthermia of Cancer. Mater. Sci. Eng. C 2010, 30, 990–996. [Google Scholar] [CrossRef]
- Dennis, C.L.; Jackson, A.J.; Borchers, J.A.; Hoopes, P.J.; Strawbridge, R.; Foreman, A.R.; Van Lierop, J.; Grüttner, C.; Ivkov, R. Nearly Complete Regression of Tumors via Collective Behavior of Magnetic Nanoparticles in Hyperthermia. Nanotechnology 2009, 20, 395103. [Google Scholar] [CrossRef] [Green Version]
- Mehdaoui, B.; Meffre, A.; Lacroix, L.M.; Carrey, J.; Lachaize, S.; Gougeon, M.; Respaud, M.; Chaudret, B. Large Specific Absorption Rates in the Magnetic Hyperthermia Properties of Metallic Iron Nanocubes. J. Magn. Magn. Mater. 2010, 322, L49–L52. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, P.; Giri, J.; Samanta, G.; Sarma, H.D.; Mishra, K.P.; Bellare, J.; Banerjee, R.; Bahadur, D. Comparative Evaluation of Heating Ability and Biocompatibility of Different Ferite-Based Magnetic Fluids for Hyperthermia Application. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2007, 81, 12–22. [Google Scholar] [CrossRef]
- Dennis, C.L.; Jackson, A.J.; Borchers, J.A.; Ivkov, R.; Foreman, A.R.; Lau, J.W.; Goernitz, E.; Gruettner, C. The Influence of Collective Behavior on the Magnetic and Heating Properties of Iron Oxide Nanoparticles. J. Appl. Phys. 2008, 103, 7–9. [Google Scholar] [CrossRef]
Element | Line Type | Apparent Concentration | k Ratio | Wt% | Wt% Sigma | Standard Label | Factory Standard |
---|---|---|---|---|---|---|---|
C | K series | 0.59 | 0.00592 | 4.35 | 1.03 | C Vit | Yes |
O | K series | 21.43 | 0.07211 | 20.7 | 0.62 | SiO2 | Yes |
Co | K series | 9.02 | 0.09016 | 15.16 | 0.81 | Co | Yes |
Cu | L series | 20.96 | 0.20956 | 59.79 | 1.06 | Cu | Yes |
Total: | 100 |
Samples | Number of Positive Wells/Number of Total Wells | |||
---|---|---|---|---|
S. typhimurium TA-98 | Results | S. typhimurium TA-100 | Results | |
Blank | 0/96 | Non-mutagenic | 0/96 | Non-mutagenic |
Standard | 78/96 | Mutagenic | 84/96 | Mutagenic |
Background | 20/96 | - | 23/96 | - |
CuCo2O4 NPs | 30/96 | Non-mutagenic | 38/96 | Non-mutagenic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.; Jamil, Y.; Khan, S.A.; Pan, Y.; Shah, A.A.; Chandio, A.D.; Gilani, S.J.; Bin Jumah, M.N.; Fazal, Y.; Chen, J.; et al. Magnetic Hyperthermia and Antibacterial Response of CuCo2O4 Nanoparticles Synthesized through Laser Ablation of Bulk Alloy. Magnetochemistry 2023, 9, 68. https://doi.org/10.3390/magnetochemistry9030068
Ali I, Jamil Y, Khan SA, Pan Y, Shah AA, Chandio AD, Gilani SJ, Bin Jumah MN, Fazal Y, Chen J, et al. Magnetic Hyperthermia and Antibacterial Response of CuCo2O4 Nanoparticles Synthesized through Laser Ablation of Bulk Alloy. Magnetochemistry. 2023; 9(3):68. https://doi.org/10.3390/magnetochemistry9030068
Chicago/Turabian StyleAli, Imran, Yasir Jamil, Saeed Ahmed Khan, Yunxiang Pan, Aqeel Ahmed Shah, Ali Dad Chandio, Sadaf Jamal Gilani, May Nasser Bin Jumah, Yusra Fazal, Jun Chen, and et al. 2023. "Magnetic Hyperthermia and Antibacterial Response of CuCo2O4 Nanoparticles Synthesized through Laser Ablation of Bulk Alloy" Magnetochemistry 9, no. 3: 68. https://doi.org/10.3390/magnetochemistry9030068
APA StyleAli, I., Jamil, Y., Khan, S. A., Pan, Y., Shah, A. A., Chandio, A. D., Gilani, S. J., Bin Jumah, M. N., Fazal, Y., Chen, J., & Shen, Z. (2023). Magnetic Hyperthermia and Antibacterial Response of CuCo2O4 Nanoparticles Synthesized through Laser Ablation of Bulk Alloy. Magnetochemistry, 9(3), 68. https://doi.org/10.3390/magnetochemistry9030068