NaBH4-Poly(Ethylene Oxide) Composite Electrolyte for All-Solid-State Na-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Polymer Electrolyte
2.2. Material Characterizations
2.3. Electrochemical Measurements
3. Results
3.1. Characterization of Hy-NaBH4-PEO Composite Electrolyte
3.2. Decrease in PEO Crystallinity in Hy-NaBH4-PEO
3.3. Electrochemical Properties of Hy-NaBH4-PEO
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on Sodium-Ion Batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Xin, S.; Mai, L.; You, Y. Materials Design for High-Safety Sodium-Ion Battery. Adv. Energy Mater. 2021, 11, 2000974. [Google Scholar] [CrossRef]
- Li, F.; Wei, Z.; Manthiram, A.; Feng, Y.; Ma, J.; Mai, L. Sodium-based batteries: From critical materials to battery systems. J. Mater. Chem. A 2019, 7, 9406–9431. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, Z.; Jin, H.; Zhao, Y. Engineered Grain Boundary Enables the Room Temperature Solid-State Sodium Metal Batteries. Batteries 2023, 9, 252. [Google Scholar] [CrossRef]
- Kim, J.-J.; Yoon, K.; Park, I.; Kang, K. Progress in the Development of Sodium-Ion Solid Electrolytes. Small Methods 2017, 1, 1700219. [Google Scholar] [CrossRef]
- Li, Y.; Sun, C.; Sun, Z.; Li, M.; Jin, H.; Zhao, Y. Boosting Na-O Affinity in Na3Zr2Si2PO12 Electrolyte Promises Highly Rechargeable Solid-State Sodium Batteries. Adv. Funct. Mater. 2024, 2403937. [Google Scholar] [CrossRef]
- Vasudevan, S.; Dwivedi, S.; Balaya, P. Overview and perspectives of solid electrolytes for sodium batteries. Int. J. Appl. Ceram. Technol. 2022, 20, 563–584. [Google Scholar] [CrossRef]
- Li, Z.; Liu, P.; Zhu, K.; Zhang, Z.; Si, Y.; Wang, Y.; Jiao, L. Solid-State Electrolytes for Sodium Metal Batteries. Energy Fuels 2021, 35, 9063–9079. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, K.; Mi, J.; Lu, L.; Zhao, L.; Wang, L.; Li, Y.; Zeng, H. Na3PSe4: A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity. Adv. Energy Mater. 2015, 5, 1501294. [Google Scholar] [CrossRef]
- Matsuo, M.; Orimo, S.-I. Lithium fast-ionic conduction in complex hydrides: Review and prospects. Adv. Energy Mater. 2011, 1, 161–172. [Google Scholar] [CrossRef]
- Matsuo, M.; Remhof, A.; Martelli, P.; Caputo, R.; Ernst, M.; Miura, Y.; Sato, T.; Oguchi, H.; Maekawa, H.; Takamura, H.; et al. Complex Hydrides with (BH4)− and (NH2)− Anions as New Lithium Fast-Ion Conductors. J. Am. Chem. Soc. 2009, 131, 16389–16391. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, M.; Kuromoto, S.; Sato, T.; Oguchi, H.; Takamura, H.; Orimo, S.-I. Sodium ionic conduction in complex hydrides with [BH4]− and [NH2]− anions. Appl. Phys. Lett. 2012, 100, 203904. [Google Scholar] [CrossRef]
- Unemoto, A.; Matsuo, M.; Orimo, S.I. Complex Hydrides for Electrochemical Energy Storage. Adv. Funct. Mater. 2014, 24, 2267–2279. [Google Scholar] [CrossRef]
- Lu, Z.; Ciucci, F. Metal Borohydrides as Electrolytes for Solid-State Li, Na, Mg, and Ca Batteries: A First-Principles Study. Chem. Mater. 2017, 29, 9308–9319. [Google Scholar] [CrossRef]
- de Kort, L.M.; Brandt Corstius, O.E.; Gulino, V.; Gurinov, A.; Baldus, M.; Ngene, P. Designing Highly Conductive Sodium-Based Metal Hydride Nanocomposites: Interplay between Hydride and Oxide Properties. Adv. Funct. Mater. 2023, 33, 2209122. [Google Scholar] [CrossRef]
- Dou, Y.; Hansen, H.A.; Xu, S.-M.; Blanchard, D. Layered double hydroxides as advanced tracks to promote ionic conductivity in metal borohydride. Mater. Chem. Front. 2021, 5, 4989–4996. [Google Scholar] [CrossRef]
- Duchêne, L.; Remhof, A.; Hagemann, H.; Battaglia, C. Status and prospects of hydroborate electrolytes for all-solid-state batteries. Energy Storage Mater. 2020, 25, 782–794. [Google Scholar] [CrossRef]
- Luo, X.; Aguey-Zinsou, K.-F. Correlations between the ionic conductivity and cation size in complex borohydrides. Ionics 2020, 26, 5287–5291. [Google Scholar] [CrossRef]
- Luo, X.; Rawal, A.; Cazorla, C.; Aguey-Zinsou, K.-F. Facile Self-Forming Superionic Conductors Based on Complex Borohydride Surface Oxidation. Adv. Sustain. Syst. 2020, 4, 1900113. [Google Scholar] [CrossRef]
- Papke, B.L.; Ratner, M.A.; Shriver, D.F. Vibrational spectroscopy and structure of polymer electrolytes, poly(ethylene oxide) complexes of alkali metal salts. J. Phys. Chem. Solids 1981, 42, 493–500. [Google Scholar] [CrossRef]
- Zhang, Q.; Lu, Y.; Yu, H.; Yang, G.; Liu, Q.; Wang, Z.; Chen, L.; Hu, Y.-S. PEO-NaPF6 Blended Polymer Electrolyte for Solid State Sodium Battery. J. Electrochem. Soc. 2020, 167, 070523. [Google Scholar] [CrossRef]
- Arya, A.; Sharma, A.L. Insights into the use of polyethylene oxide in energy storage/conversion devices: A critical review. J. Phys. D Appl. Phys. 2017, 50, 443002. [Google Scholar] [CrossRef]
- Dahal, U.R.; Dormidontova, E.E. The dynamics of solvation dictates the conformation of polyethylene oxide in aqueous, isobutyric acid and binary solutions. Phys. Chem. Chem. Phys. 2017, 19, 9823–9832. [Google Scholar] [CrossRef]
- Diederichsen, K.M.; McShane, E.J.; McCloskey, B.D. Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries. ACS Energy Lett. 2017, 2, 2563–2575. [Google Scholar] [CrossRef]
- Dormidontova, E.E. Role of Competitive PEO-Water and Water-Water Hydrogen Bonding in Aqueous Solution PEO Behavior. Macromolecules 2002, 35, 987–1001. [Google Scholar] [CrossRef]
- Luo, X.; Rawal, A.; Aguey-Zinsou, K.-F. Evidence of Superionic Na+ Conductivity in Partially Hydrolyzed NaBH4. J. Phys. Chem. C 2024. [Google Scholar] [CrossRef]
- Ahiavi, E.; Dawson, J.A.; Kudu, U.; Courty, M.; Islam, M.S.; Clemens, O.; Masquelier, C.; Famprikis, T. Mechanochemical synthesis and ion transport properties of Na3OX (X = Cl, Br, I and BH4) antiperovskite solid electrolytes. J. Power Sources 2020, 471, 228489. [Google Scholar] [CrossRef]
- Zhu, Y.; Ouyang, L.; Zhong, H.; Liu, J.; Wang, H.; Shao, H.; Huang, Z.; Zhu, M. Closing the Loop for Hydrogen Storage: Facile Regeneration of NaBH4 from its Hydrolytic Product. Angew. Chem. Int. Ed. 2020, 59, 8623–8629. [Google Scholar] [CrossRef]
- Le, T.T.; Pistidda, C.; Puszkiel, J.; Milanese, C.; Garroni, S.; Emmler, T.; Capurso, G.; Gizer, G.; Klassen, T.; Dornheim, M. Efficient Synthesis of Alkali Borohydrides from Mechanochemical Reduction of Borates Using Magnesium-Aluminum-Based Waste. Metals 2019, 9, 1061. [Google Scholar] [CrossRef]
- Saddeek, Y.B.; Aly, K.A.; Shaaban, K.S.; Ali, A.M.; Sayed, M.A. Elastic, optical and structural features of wide range of CdO-Na2B4O7 glasses. Mater. Res. Express 2018, 5, 065204. [Google Scholar] [CrossRef]
- Dupon, R.; Papke, B.L.; Ratner, M.A.; Whitmore, D.H.; Shriver, D.F. Influence of ion pairing on cation transport in the polymer electrolytes formed by poly(ethylene oxide) with sodium tetrafluoroborate and sodium tetrahydroborate. J. Am. Chem. Soc. 1982, 104, 6247–6251. [Google Scholar] [CrossRef]
- Anghel, E.M.; Zaharescu, M.; Zuca, S.; Pavlatou, E. Structure and phase diagram of the Na2B4O7-Na3AlF6 system. J. Mater. Sci. 1999, 34, 3923–3929. [Google Scholar] [CrossRef]
- Dwivedi, B.P.; Khanna, B.N. Cation dependence of raman scattering in alkali borate glasses. J. Phys. Chem. Solids 1995, 56, 39–49. [Google Scholar] [CrossRef]
- Luo, X.; Rawal, A.; Salman, M.S.; Aguey-Zinsou, K.-F. Core-Shell NaBH4@Na2B12H12 Nanoparticles as Fast Ionic Conductors for Sodium-Ion Batteries. ACS Appl. Nano Mater. 2022, 5, 373–379. [Google Scholar] [CrossRef]
- Xie, W.; Zou, C.; Tang, Z.; Fu, H.; Zhu, X.; Kuang, J.; Deng, Y. Well-crystallized borax prepared from boron-bearing tailings by sodium roasting and pressure leaching. RSC Adv. 2017, 7, 31042–31048. [Google Scholar] [CrossRef]
- Li, Z.; Fu, J.; Zhou, X.; Gui, S.; Wei, L.; Yang, H.; Li, H.; Guo, X. Ionic Conduction in Polymer-Based Solid Electrolytes. Adv. Sci. 2023, 10, 2201718. [Google Scholar] [CrossRef]
- Kumar, B.; Rodrigues, S.J.; Koka, S. The crystalline to amorphous transition in PEO-based composite electrolytes: Role of lithium salts. Electrochim. Acta 2002, 47, 4125–4131. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, R.; Sun, J.; Wu, M.; Zhao, T. Polyoxyethylene (PEO)|PEO–Perovskite|PEO Composite Electrolyte for All-Solid-State Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2019, 11, 46930–46937. [Google Scholar] [CrossRef]
- Hou, H.; Xu, Q.; Pang, Y.; Li, L.; Wang, J.; Zhang, C.; Sun, C. Efficient Storing Energy Harvested by Triboelectric Nanogenerators Using a Safe and Durable All-Solid-State Sodium-Ion Battery. Adv. Sci. 2017, 4, 1700072. [Google Scholar] [CrossRef]
- Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 2012, 3, 856. [Google Scholar] [CrossRef] [PubMed]
- Kuo, M.C.; Huang, J.C.; Chen, M. Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly(ether ether ketone). Mater. Chem. Phys. 2006, 99, 258–268. [Google Scholar] [CrossRef]
- Devi, C.; Gellanki, J.; Pettersson, H.; Kumar, S. High sodium ionic conductivity in PEO/PVP solid polymer electrolytes with InAs nanowire fillers. Sci. Rep. 2021, 11, 20180. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Wang, L.; Hu, Z.; Cui, Z.; Li, J.; Dong, S.; Zhou, X.; Cui, G. Differentiated Lithium Salt Design for Multilayered PEO Electrolyte Enables a High-Voltage Solid-State Lithium Metal Battery. Adv. Sci. 2019, 6, 1901036. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, T.; Zhang, W.; Huang, H.; Gan, Y.; Xia, Y.; He, X.; Zhang, J. Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries. J. Mater. Chem. A 2022, 10, 3400–3408. [Google Scholar] [CrossRef]
- Roy, A.; Dutta, B.; Bhattacharya, S. Ion dynamics in NaBF4 salt-complexed PVC–PEO blend polymer electrolytes: Correlation between average ion hopping length and network structure. Ionics 2017, 23, 3389–3399. [Google Scholar] [CrossRef]
- Wu, F.; Fitzhugh, W.; Ye, L.; Ning, J.; Li, X. Advanced sulfide solid electrolyte by core-shell structural design. Nat. Commun. 2018, 9, 4037. [Google Scholar] [CrossRef]
- Lu, X.; Xia, G.; Lemmon, J.P.; Yang, Z. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives. J. Power Sources 2010, 195, 2431–2442. [Google Scholar] [CrossRef]
- Jaipal Reddy, M.; Chu, P.P. Ion pair formation and its effect in PEO:Mg solid polymer electrolyte system. J. Power Sources 2002, 109, 340–346. [Google Scholar] [CrossRef]
- Papke, B.L.; Dupon, R.; Ratner, M.A.; Shriver, D.F. Ion-pairing in polyether solid electrolytes and its influence on ion transport. Solid State Ion. 1981, 5, 685–688. [Google Scholar] [CrossRef]
- Lu, Y.; Li, L.; Zhang, Q.; Niu, Z.; Chen, J. Electrolyte and Interface Engineering for Solid-State Sodium Batteries. Joule 2018, 2, 1747–1770. [Google Scholar] [CrossRef]
- Lu, Y.; Li, L.; Zhang, Q.; Cai, Y.; Ni, Y.; Chen, J. High-performance all-solid-state electrolyte for sodium batteries enabled by the interaction between the anion in salt and Na3SbS4. Chem. Sci. 2022, 13, 3416–3423. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.E.; Sloop, S.E.; Kerr, J.B.; Newman, J. Comparison of lithium-polymer cell performance with unity and nonunity transference numbers. J. Power Sources 2000, 89, 132–138. [Google Scholar] [CrossRef]
- Serra Moreno, J.; Armand, M.; Berman, M.B.; Greenbaum, S.G.; Scrosati, B.; Panero, S. Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization. J. Power Sources 2014, 248, 695–702. [Google Scholar] [CrossRef]
- Liao, H.; Zhang, Z.; Zheng, Y.; Gao, Y. NaFePO4 for sodium-ion batteries: Mechanism, synthesis and optimization strategies toward commercialization. Energy Storage Mater. 2024, 65, 103157. [Google Scholar] [CrossRef]
- Asakura, R.; Remhof, A.; Battaglia, C. Hydroborate-Based Solid Electrolytes for All-Solid-State Batteries. In Solid State Batteries Volume 1: Emerging Materials and Applications; American Chemical Society: Washington, DC, USA, 2022; Volume 1413, pp. 353–393. [Google Scholar]
- Unemoto, A.; Ikeshoji, T.; Yasaku, S.; Matsuo, M.; Stavila, V.; Udovic, T.J.; Orimo, S.-I. Stable Interface Formation between TiS2 and LiBH4 in Bulk-Type All-Solid-State Lithium Batteries. Chem. Mater. 2015, 27, 5407–5416. [Google Scholar] [CrossRef]
- Roedern, E.; Kühnel, R.-S.; Remhof, A.; Battaglia, C. Magnesium Ethylenediamine Borohydride as Solid-State Electrolyte for Magnesium Batteries. Sci. Rep. 2017, 7, 46189. [Google Scholar] [CrossRef]
- Eriksson, T.; Andersson, A.M.; Bishop, A.G.; Gejke, C.; Gustafsson, T.; Thomas, J.O. Surface Analysis of LiMn2O4 Electrodes in Carbonate-Based Electrolytes. J. Electrochem. Soc. 2002, 149, A69. [Google Scholar] [CrossRef]
- Pilli, A.; Jones, J.; Chugh, N.; Kelber, J.; Pasquale, F.; LaVoie, A. Atomic layer deposition of BN as a novel capping barrier for B2O3. J. Vac. Sci. Technol. A 2019, 37, 041505. [Google Scholar] [CrossRef]
- Yu, X.; Xue, L.; Goodenough, J.B.; Manthiram, A. A High-Performance All-Solid-State Sodium Battery with a Poly(ethylene oxide)–Na3Zr2Si2PO12 Composite Electrolyte. ACS Mater. Lett. 2019, 1, 132–138. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Cheng, J.; Hou, G.; Nie, X.; Ai, Q.; Dai, L.; Feng, J.; Ci, L. Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal. J. Energy Chem. 2020, 41, 73–78. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Ren, C.; Luo, F.; Ma, Q.; Hu, Y.-S.; Zhou, Z.; Li, H.; Huang, X.; Chen, L. A ceramic/polymer composite solid electrolyte for sodium batteries. J. Mater. Chem. A 2016, 4, 15823–15828. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Aguey-Zinsou, K.-F. NaBH4-Poly(Ethylene Oxide) Composite Electrolyte for All-Solid-State Na-Ion Batteries. Batteries 2024, 10, 316. https://doi.org/10.3390/batteries10090316
Luo X, Aguey-Zinsou K-F. NaBH4-Poly(Ethylene Oxide) Composite Electrolyte for All-Solid-State Na-Ion Batteries. Batteries. 2024; 10(9):316. https://doi.org/10.3390/batteries10090316
Chicago/Turabian StyleLuo, Xiaoxuan, and Kondo-Francois Aguey-Zinsou. 2024. "NaBH4-Poly(Ethylene Oxide) Composite Electrolyte for All-Solid-State Na-Ion Batteries" Batteries 10, no. 9: 316. https://doi.org/10.3390/batteries10090316
APA StyleLuo, X., & Aguey-Zinsou, K. -F. (2024). NaBH4-Poly(Ethylene Oxide) Composite Electrolyte for All-Solid-State Na-Ion Batteries. Batteries, 10(9), 316. https://doi.org/10.3390/batteries10090316