Scale-Up of Lithium Iron Phosphate Cathodes with High Active Materials Contents for Lithium Ion Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Electrochemical Testing
3.2. Mixing and Coating Characterisations
3.3. Comparison of Mixes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bockholt, H.; Indrikova, M.; Netz, A.; Golks, F.; Kwade, A. The interaction of consecutive process steps in the manufacturing of lithium ion battery electrodes with regard to structural and electrochemical properties. J. Power Sources 2016, 325, 140–151. [Google Scholar] [CrossRef]
- Li, J.; Fleetwood, J.; Hawley, W.B.; Kays, W. From materials to cell: State of the art and prospective technologies for lithium ion battery electrode processing. Chem. Rev. 2022, 122, 903–956. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.S.; Greenwood, D.; Pardikar, K.; Smith, R.; Entwistle, T.; Middlemiss, L.A.; Murray, G.; Cussen, S.A.; Lain, M.J.; Capener, M.J.; et al. Roadmap on lithium ion battery manufacturing research. J. Phys. Energy 2022, 4, 042006. [Google Scholar] [CrossRef]
- Apachitei, G.; Hidalgo, M.; Dogaru, D.; Lain, M.J.; Heymer, R.; Marco, J.; Copley, M. Optimisation of industrially relevant electrode formulations for LFP cathodes in lithium ion cells. Batteries 2023, 9, 192. [Google Scholar] [CrossRef]
- Wang, M.; Dang, D.; Meyer, A.; Arsenault, R.; Cheng, Y.-T. Effects of the mixing sequence on making lithium ion battery electrodes. J. Electrochem. Soc. 2020, 167, 100518. [Google Scholar] [CrossRef]
- Schmitt, M.; Baunach, M.; Wengeler, L.; Peters, K.; Junges, P.; Scharfer, P.; Schabel, W. Slot-die processing of lithium ion battery electrodes—Coating window characterization. Chem. Eng. Proc. 2013, 68, 32–37. [Google Scholar] [CrossRef]
- Porcher, W.; Lestriez, R.; Jouanneau, S.; Guyomard, D. Design of aqueous processed thick LFP composite electrodes for high energy lithium battery. J. Electrochem. Soc. 2009, 156, A133–A144. [Google Scholar] [CrossRef]
- Reynolds, C.D.; Hare, S.D.; Slater, P.R.; Simmons, M.J.H.; Kendrick, E.E. Rheology and structure of lithium ion battery electrode slurries. Energy Technol. 2022, 10, 2200545. [Google Scholar] [CrossRef]
- Lee, G.-W.; Ryu, J.H.; Han, W.; Ahn, K.H.; Oh, S.M. Effect of slurry preparation process on electrochemical performances of LCO composite electrode. J. Power Sources 2010, 195, 6049–6054. [Google Scholar] [CrossRef]
- Hein, S.; Danner, T.; Westhoff, D.; Prifling, B.; Scurtu, R.; Kremer, L.; Hoffmann, A.; Hilger, A.; Osenberg, M.; Manke, I.; et al. Influence of conductive additives and binder on the impedance of lithium ion battery electrodes: Effect of morphology. J. Electrochem. Soc. 2020, 167, 013546. [Google Scholar] [CrossRef]
- Gören, A.; Cintora-Juarez, D.; Martins, P.; Ferdov, S.; Silva, M.M.; Tirado, J.L.; Costa, C.M.; Lanceros-Méndez, S. Influence of solvent evaporation rate in the preparation of carbon coated LFP cathode films on battery performance. Energy Technol. 2016, 4, 573–582. [Google Scholar] [CrossRef]
- Schreiner, D.; Oguntke, M.; Günther, T.; Reinhart, G. Modelling of the calendering process of NMC-622 cathodes in battery production analysing machine materials process structure correlations. Energy Technol. 2019, 7, 1900840. [Google Scholar] [CrossRef]
- Billot, N.; Günther, Y.; Schreiner, D.; Stahl, R.; Kranner, J.; Beyer, M.; Reinhart, G. Investigation of the adhesion strength along the electrode manufacturing process for improved lithium ion anodes. Energy Technol. 2020, 8, 1801136. [Google Scholar] [CrossRef]
- van Bommel, A.; Divigalpitiya, R. Effect of calendering LFP electrodes. J. Electrochem. Soc. 2012, 159, A1791–A1795. [Google Scholar] [CrossRef]
- Baunach, M.; Jaiser, S.; Schmelzle, S.; Nirschl, H.; Scharfer, P.; Schabel, W. Delamination behaviour of lithium ion battery anodes: Influence of drying temperature during the electrode processing. Dry. Technol. 2016, 34, 462–473. [Google Scholar] [CrossRef]
- ELECTRODE RESISTANCE MEASUREMENT SYSTEM RM2610. Available online: https://www.hioki.com/global/products/resistance-meters/resistance/id_6740 (accessed on 11 September 2023).
- Heenan, T.M.M.; Tan, C.; Hack, J.; Brett, D.J.L.; Shearing, P.R. Developments in X-ray tomography characterisation for electrochemical devices. Mater. Today 2019, 31, 70–85. [Google Scholar] [CrossRef]
- Nguyrn, T.-T.; Villanova, J.; Su, Z.; Tucoulou, R.; Fleutot, B.; Delobel, B.; Delacourt, C.; Demortière, A. 3D quantification of microstructural properties of NMC-532 high energy density electrodes by X-ray holographic nano-tomography. Adv. Energy Mater. 2021, 11, 2003529. [Google Scholar] [CrossRef]
- Qi, X.; Blizanac, B.; DuPasquier, A.; Oljaca, M.; Li, J.; Winter, M. Understanding the influence of conductive carbon additives surface area on the rate performance of LFP cathodes for lithium ion batteries. Carbon 2013, 64, 334–340. [Google Scholar] [CrossRef]
- Meyer, C.; Bockholt, H.; Haselrieder, W.; Kwade, A. Characterisation of the calendering process for compaction of electrodes for lithium ion batteries. J. Mater. Process. Technol. 2017, 249, 172–178. [Google Scholar] [CrossRef]
- Bridgewater, G.; Capener, M.J.; Brandon, J.; Lain, M.J.; Copley, M.; Kendrick, E. A comparison of lithium ion cell performance across three different cell formats. Batteries 2021, 7, 38. [Google Scholar] [CrossRef]
- Ahsan, Z.; Ding, B.; Cai, Z.; Wen, C.; Yandg, W.; Ma, Y.; Zhang, S. Recent progress in capacity enhancement of LFP cathodes for lithium ion batteries. J. Electrochem. Energy Convers. Storage 2021, 18, 01080101–01080118. [Google Scholar] [CrossRef]
- Balakrishnan, N.T.M.; Paul, A.; Krishnan, M.A.; Das, A.; Raphaez, L.R.; Ahn, J.-H.; Fatima, J.J.; Prasanth, R. LFP as high performance cathode material for lithium ion batteries. Environ. Chem. A Sustain. World 2021, 62, 35–73. [Google Scholar] [CrossRef]
- Gören, A.; Costa, C.M.; Silva, M.M.; Lanceros-Méndez, S. State of the art and open questions on cathode preparation based on carbon coated LF. Compos. Part B Eng. 2015, 83, 333–345. [Google Scholar] [CrossRef]
- Weichert, A.; Göken, V.; Fromm, O.; Beuse, T.; Winter, M.; Börner, M. Strategies for formulation optimisation of composite positive electrodes for lithium ion batteries based on layered oxide, spinel and olivine type active materials. J. Power Sources 2022, 551, 232179. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous optimisation of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Kornas, T.; Wittmann, D.; Daub, R.; Meyer, O.; Weihs, C.; Thiede, S.; Hermann, C. Multi-criteria optimisation in the production of lithium ion batteries. Procedia Manuf. 2020, 43, 720–727. [Google Scholar] [CrossRef]
- Gallagher, K.G.; Nelson, P.A.; Dees, D.W. Simplified calculation of the area specific impedance for battery design. J. Power Sources 2011, 196, 2289–2297. [Google Scholar] [CrossRef]
- Zheng, H.; Li, J.; Song, X.; Liu, G.; Battaglia, V.S. A comprehensive understanding of electrode thickness effects on the electrochemical performance of lithium ion battery cathodes. Electrochim. Acta 2012, 71, 258–265. [Google Scholar] [CrossRef]
- Li, Y.; El Gabaly, F.; Ferguson, T.D.; Smith, R.B.; Bartelt, N.C.; Sugar, J.D.; Fenton, K.R.; Cogswell, D.A.; Kilcoyne, A.L.D.; Tyliszczak, T.; et al. Current induced transition from particle-by-particle to concurrent intercalation in phase separating battery electrodes. Nat. Mater. 2014, 13, 1149–1156. [Google Scholar] [CrossRef]
- Liu, H.; Kazemiabnavi, S.; Grenier, A.; Vaughan, G.; Di Michiel, M.; Polzin, B.J.; Thornton, K.; Chapman, K.W.; Chupas, P.J. Quantifying reaction and rate heterogeneity in battery electrodes in 3D through operando X-ray diffraction computed tomography. Appl. Mater. Interfaces 2019, 11, 18386–18394. [Google Scholar] [CrossRef]
- Wang, F.; Yang, K.; Ge, M.; Wang, J.; Wang, J.; Xiao, X.; Lee, W.-H.; Li, L.; Tang, M. Reaction heterogeneity in LFP agglomerates and the tole of intercalation induced stress. ACS Energy Lett. 2022, 7, 1648–1656. [Google Scholar] [CrossRef]
- Liu, P.; Wang, J.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. Aging mechanisms of LFP batteries deduced by electrochemical and structural analyses. J. Electrochem. Soc. 2010, 157, A499–A507. [Google Scholar] [CrossRef]
- Yang, F.; Wang, D.; Zhao, Y.; Tsui, K.-L.; Bae, S.J. A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium ion batteries. Energy 2018, 145, 486–495. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, J.; Wang, X.; Chen, L.; Cao, G.; Wang, J.; Zhang, H.; He, X. Insights for understanding multiscale degradation of LFP cathodes. eScience 2022, 2, 125–137. [Google Scholar] [CrossRef]
- Jaiser, S.; Funk, L.; Baunach, M.; Scharfer, P.; Schabel, W. Experimental investigation into battery electrode surfaces: The distribution of liquid at the surface and the emptying of pores during drying. J. Colloid Interface Sci. 2017, 494, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.; Mistry, A.; Mukherjee, P.P. Mechanistic understanding of the role of evaporation in electrode processing. J. Electrochem. Soc. 2017, 164, A1616–A1627. [Google Scholar] [CrossRef]
Model | Parameter | LFP | PVDF | KS6L | SWCNT |
---|---|---|---|---|---|
Mix04 | Experimental | 94.7 | 2.3 | 2.8 | 0.20 |
Mix06 | Experimental | 97.1 | 2.0 | 0.7 | 0.20 |
Mix11 | Experimental | 94.9 | 3.0 | 1.9 | 0.16 |
Mixture | 2 C, mA h g−1 | 95.8 | 1.2 | 2.8 | 0.20 |
Mixture + Process | 5 C, mA h g−1 | 96.7 | 1.1 | 2.0 | 0.20 |
Mixture + Process | 5 C, mA h | 94.9 | 2.1 | 2.8 | 0.20 |
Multi-objective | Four parameters | 95.34 | 2.85 | 1.63 | 0.18 |
Mixes 18–20 | Experimental | 97.03 | 1.94 | 0.87 | 0.16 |
Mix I. D. | Type | Drying | Calendering Gap/μm | |
---|---|---|---|---|
Mix 18 | Single | Hot plate | 496 | |
Mix 19 | Single | D1 | 485–500 | |
Mix 20 | Single | D2 | 485–500 | |
Single | D3 | 485–500 | ||
Double | D3 | “zero gap” |
Zone | D1 | D2 | D3 |
---|---|---|---|
Z1 (upper) | 95 | 65 | 75 |
Z1 (lower) | 115 | 85 | 95 |
Z2 (upper) | 110 | 80 | 80 |
Z2 (lower) | 130 | 100 | 100 |
Z3 (upper) | 120 | 90 | 85 |
Z3 (lower) | 150 | 120 | 105 |
Parameter | Sheet | Reel-to-Reel | |
---|---|---|---|
Roll diameter | /mm | 203 | 305 |
Roll width | /mm | 203 | 310 |
Roll temperature | /°C | 85 | 85 |
Feed rate | /m min−1 | 0.8 | 1.2 |
Mix | 5 C Discharge /mA h g−1 | Adhesion /kPa | Rthru /S cm−2 | ASI /S cm−2 |
---|---|---|---|---|
Mix06 | 80.2 | 446 | 1.3 | 0.042 |
Mix18 | 90.6 | 473 | 7.9 | 0.051 |
Mix19D1 | 92.1 | 100 | 14.6 | 0.052 |
Mix20D2 | 88.3 | 379 | 8.2 | 0.048 |
Mix20D3 | 91.5 | 401 | 9.7 | 0.052 |
MLR | 94.4 | 363 | 1.7 | 0.039 |
Mix | 5 C | Adhesion | Rthru | ASI | Average |
---|---|---|---|---|---|
Mix06 | 0.80 | 0.66 | 0.22 | 0.55 | 0.53 |
Mix18 | 0.91 | 0.72 | 1.00 | 0.78 | 0.86 |
Mix19D1 | 0.92 | 0.00 | 1.00 | 0.81 | 0.00 |
Mix20D2 | 0.88 | 0.51 | 1.00 | 0.71 | 0.77 |
Mix20D3 | 0.91 | 0.56 | 1.00 | 0.80 | 0.81 |
MLR | 0.94 | 0.47 | 0.29 | 0.48 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apachitei, G.; Heymer, R.; Lain, M.; Dogaru, D.; Hidalgo, M.; Marco, J.; Copley, M. Scale-Up of Lithium Iron Phosphate Cathodes with High Active Materials Contents for Lithium Ion Cells. Batteries 2023, 9, 518. https://doi.org/10.3390/batteries9100518
Apachitei G, Heymer R, Lain M, Dogaru D, Hidalgo M, Marco J, Copley M. Scale-Up of Lithium Iron Phosphate Cathodes with High Active Materials Contents for Lithium Ion Cells. Batteries. 2023; 9(10):518. https://doi.org/10.3390/batteries9100518
Chicago/Turabian StyleApachitei, Geanina, Rob Heymer, Michael Lain, Daniela Dogaru, Marc Hidalgo, James Marco, and Mark Copley. 2023. "Scale-Up of Lithium Iron Phosphate Cathodes with High Active Materials Contents for Lithium Ion Cells" Batteries 9, no. 10: 518. https://doi.org/10.3390/batteries9100518
APA StyleApachitei, G., Heymer, R., Lain, M., Dogaru, D., Hidalgo, M., Marco, J., & Copley, M. (2023). Scale-Up of Lithium Iron Phosphate Cathodes with High Active Materials Contents for Lithium Ion Cells. Batteries, 9(10), 518. https://doi.org/10.3390/batteries9100518