Feasibility of a Sustainable On-Site Paper Recycling Process
Abstract
:1. Introduction
2. Results and Discussion
CO2 Footprint Analysis
3. Materials and Methods
3.1. Preparation of RCF Cardboard Samples
3.2. Dry Defibration
3.3. Binders
- 1% PVA solutions: 1.5%, 1.6%, 1.7%, and 1.8% (dry PVA per dry fiber)
- 2% PVA solutions: 3.0%, 3.2%, 3.4%, and 3.6% (dry PVA per dry fiber)
- 0.5% sodium alginate solutions: 0.75%, 0.8%, 0.85%, and 0.9% (dry alginate per dry fiber)
3.4. Forming of RCF Cardboards
3.5. Characterization
3.6. CO2 Footprint Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PVA | Poly(vinyl alcohol) |
GHG | Greenhouse gas |
SEM | Scanning electron microscope |
RCF | Recycled cellulose fiber |
CNF | Cellulose nanofiber |
References
- Van Ewijk, S.; Stegemann, J.A.; Ekins, P. Global Life Cycle Paper Flows, Recycling Metrics, and Material Efficiency. J. Ind. Ecol. 2018, 22, 686–693. [Google Scholar] [CrossRef]
- Laurijssen, J.; Marsidi, M.; Westenbroek, A.; Worrell, E.; Faaij, A. Paper and biomass for energy? Resour. Conserv. Recycl. 2010, 54, 1208–1218. [Google Scholar] [CrossRef]
- Bajpai, P. Paper and Paperboard Industry. In Pulp and Paper Industry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 13–24. [Google Scholar] [CrossRef]
- Shang, D.; Lu, H.; Liu, C.; Wang, D.; Diao, G. Evaluating the green development level of global paper industry from 2000-2030 based on a market-extended LCA model. J. Clean. Prod. 2022, 380, 135108. [Google Scholar] [CrossRef]
- Amândio, M.S.T.; Pereira, J.M.; Rocha, J.M.S.; Serafim, L.S.; Xavier, A.M.R.B. Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy. Energies 2022, 15, 4105. [Google Scholar] [CrossRef]
- Molina-Sánchez, E.; Leyva-Díaz, J.C.; Cortés-García, F.J.; Molina-Moreno, V. Proposal of Sustainability Indicators for the Waste Management from the Paper Industry within the Circular Economy Model. Water 2018, 10, 1014. [Google Scholar] [CrossRef]
- Lipiäinen, S.; Kuparinen, K.; Sermyagina, E.; Vakkilainen, E. Pulp and paper industry in energy transition: Towards energy-efficient and low carbon operation in Finland and Sweden. Sustain. Prod. Consum. 2022, 29, 421–431. [Google Scholar] [CrossRef]
- IEA. Tracking Clean Energy Progress 2023. Paris, Jul. 2023. Available online: https://www.iea.org/reports/tracking-clean-energy-progress-2023 (accessed on 20 April 2024).
- Sopelana, A.; Auriault, C.; Bansal, A.; Fifer, K.; Paiva, H.; Maurice, C.; Westin, G.; Rios, J.; Oleaga, A.; Cañas, A. Innovative Circular Economy Models for the European Pulp and Paper Industry: A Reference Framework for a Resource Recovery Scenario. Sustainability 2021, 13, 10285. [Google Scholar] [CrossRef]
- Recovered Paper and Recycled Fibers. In Handbook of Pulp; Wiley-VCH: Weinheim, Germany, 2006; pp. 1147–1190.
- Olejnik, K. Water Consumption in Paper Industry—Reduction Capabilities and the Consequences. In Security of Industrial Water Supply and Management; Atimtay, A.T., Sikdar, S.K., Eds.; NATO Science for Peace and Security Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2011; pp. 113–129. [Google Scholar] [CrossRef]
- Han, N.; Zhang, J.; Hoang, M.; Gray, S.; Xie, Z. A review of process and wastewater reuse in the recycled paper industry. Environ. Technol. Innov. 2021, 24, 101860. [Google Scholar] [CrossRef]
- Jacobs. Pulp and Paper Industry: Energy Bandwidth Study, USA. 2006. Available online: https://www.energy.gov/eere/amo/articles/itp-forest-products-report-aiche-pulp-and-paper-industry-energy-bandwidth-study (accessed on 5 May 2024).
- Pivnenko, K.; Eriksson, E.; Astrup, T.F. Waste paper for recycling: Overview and identification of potentially critical substances. Waste Manag. 2015, 45, 134–142. [Google Scholar] [CrossRef]
- Nakamura, M. Development of The Dry Paper Recycling Technology which Realizes a New Ofice Papermaking System. Jpn. TAPPI J. 2018, 72, 786–792. [Google Scholar] [CrossRef]
- CEPI. DryPulp for Cureformed Paper. EP2876207A1, 27 May 2015. Available online: https://patents.google.com/patent/EP2876207A1/en (accessed on 10 November 2023).
- Georgiadis, P. An integrated System Dynamics model for strategic capacity planning in closed-loop recycling networks: A dynamic analysis for the paper industry. Simul. Model. Pract. Theory 2013, 32, 116–137. [Google Scholar] [CrossRef]
- Flory, A.R.; Requesens, D.V.; Devaiah, S.P.; Teoh, K.T.; Mansfield, S.D.; E Hood, E. Development of a green binder system for paper products. BMC Biotechnol. 2013, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, P.; Danesi, S. Policies for the Circular Economy: The Case of Paper Industry. Symphonya 2021, 1, 76–84. [Google Scholar] [CrossRef]
- Merrild, H.; Damgaard, A.; Christensen, T.H. Life cycle assessment of waste paper management: The importance of technology data and system boundaries in assessing recycling and incineration. Resour. Conserv. Recycl. 2008, 52, 1391–1398. [Google Scholar] [CrossRef]
- Yang, G.; Zhou, C.; Wang, W.; Ma, S.; Liu, H.; Liu, Y.; Zhao, Z. Recycling sustainability of waste paper industry in Beijing City: An analysis based on value chain and GIS model. Waste Manag. 2020, 106, 62–70. [Google Scholar] [CrossRef]
- Kvasha, N.; Bolotnikova, O.; Malevskaia-Malevich, E. Biotechnological Basis of the Pulp and Paper Industry Circular Economic System. Economies 2023, 11, 302. [Google Scholar] [CrossRef]
- Gregor-Svetec, D.; Možina, K.; Blaznik, B.; Urbas, R.; Brodnjak, U.V.; Golob, G. “Efficient Paper Recycling”, University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana, Slovenia. 2013. Available online: https://dk.upce.cz/server/api/core/bitstreams/b6b1022f-db19-4a5b-a2b8-8d80a4d88d59/content (accessed on 4 April 2025).
- Worrell, E.; Martin, N.; Anglani, N.; Einstein, D.; Khrushch, M.; Price, L. Opportunities to Improve energy Efficiency in the U.S. Pulp and Paper Industry; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2001. [Google Scholar]
- Li, L.; Zhu, J.; Zeng, Z. New Approach for Recycling Office Waste Paper: An Efficient and Recyclable Material for Oily Wastewater Treatment. ACS Appl. Mater. Interfaces 2020, 12, 55894–55902. [Google Scholar] [CrossRef]
- Jin, E.; van Ewijk, S.; Kanaoka, K.S.; Alamerew, Y.A.; Lin, H.; Cao, Z.; Jabarivelisdeh, B.; Ehmann, K.F.; Chertow, M.R.; Masanet, E. Sustainability assessment and pathways for U.S. domestic paper recycling. Resour. Conserv. Recycl. 2023, 199, 107249. [Google Scholar] [CrossRef]
- Ono, Y.; Hayashi, M.; Yokoyama, K.; Okamura, T.; Itsubo, N. Environmental Assessment of Innovative Paper Recycling Technology Using Product Lifecycle Perspectives. Resources 2020, 9, 23. [Google Scholar] [CrossRef]
- Altay, B.N.; Klass, C.; Chen, T.; Fleck, A.; Aydemir, C.; Karademir, A.; Fleming, P.D. The effect of green biobased binder on structural, mechanical, liquid absorption and wetting properties of coated papers. Clean. Eng. Technol. 2021, 5, 100274. [Google Scholar] [CrossRef]
- Chen, Q.; Zuo, W.; Xie, Z.; Liu, W.; Lu, M.; Qiu, X.; Habib, S.; Jing, Y.; Zhang, X.; Yu, N.; et al. Design of sodium alginate/PVA based high-efficiency recycled rewritten film by water-soluble-regeneration. Cellulose 2023, 30, 7865–7875. [Google Scholar] [CrossRef]
- Defalque, C.M.; Marins, F.A.S.; da Silva, A.F.; Rodríguez, E.Y.A. A review of waste paper recycling networks focusing on quantitative methods and sustainability. J. Mater. Cycles Waste Manag. 2021, 23, 55–76. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, M. Disassembly, refinement, and reassembly: From ancient papermaking to modern materials processing. J. Bioresour. Bioprod. 2025, 10, 7–13. [Google Scholar] [CrossRef]
- Yang, X.; Berglund, L.A. Recycling without Fiber Degradation—Strong Paper Structures for 3D Forming Based on Nanostructurally Tailored Wood Holocellulose Fibers. ACS Sustain. Chem. Eng. 2020, 8, 1146–1154. [Google Scholar] [CrossRef]
- Seth, R. Fibre Quality Factors in Papermaking—II The Importance of Fibre Coarseness. MRS Proc. 1990, 197, 143. [Google Scholar] [CrossRef]
- Mazur, K.; Buchner, R.; Bonn, M.; Hunger, J. Hydration of Sodium Alginate in Aqueous Solution. Macromolecules 2014, 47, 771–776. [Google Scholar] [CrossRef]
- Chang, C.; Duan, B.; Zhang, L. Fabrication and characterization of novel macroporous cellulose–alginate hydrogels. Polymer 2009, 50, 5467–5473. [Google Scholar] [CrossRef]
- Shivyari, N.Y.; Tajvidi, M.; Bousfield, D.W.; Gardner, D.J. Production and Characterization of Laminates of Paper and Cellulose Nanofibrils. ACS Appl. Mater. Interfaces 2016, 8, 25520–25528. [Google Scholar] [CrossRef]
- Amini, E.; Tajvidi, M.; Gardner, D.J.; Bousfield, D.W. Utilization of Cellulose Nanofibrils as a Binder for Particleboard Manufacture. BioResources 2017, 12, 4093–4110. [Google Scholar] [CrossRef]
- Antony, T.; Cherian, R.M.; Varghese, R.T.; Kargarzadeh, H.; Ponnamma, D.; Chirayil, C.J.; Thomas, S. Sustainable green packaging based on nanocellulose composites-present and future. Cellulose 2023, 30, 10559–10593. [Google Scholar] [CrossRef]
- Provost-Savard, A.; Legros, R.; Majeau-Bettez, G. Parametrized regionalization of paper recycling life-cycle assessment. Waste Manag. 2023, 156, 84–96. [Google Scholar] [CrossRef]
- Pihkola, H. Carbon Footprint and Environmental Impacts of Print Products from Cradle to Grave. Results from the LEADER Project (Part 1); VTT: Espoo, Finland, 2010. [Google Scholar]
- Organisatsioonide KHG Jalajälg | Kliimaministeerium. Available online: https://kliimaministeerium.ee/rohereform-kliima/rohereform/organisatsioonide-khg-jalajalg (accessed on 28 August 2024).
- Bastos, J.; Monforti-Ferrario, F.; Melica, G. GHG Emission Factors for Local Energy Use. January 2024. Available online: http://data.europa.eu/89h/72fac2b2-aa63-4dc1-ade3-4e56b37e4b7c (accessed on 28 August 2024).
- Kiilto. Kiilto Sustainability Report 2023. 2023. Available online: https://www.kiilto.com/wp-content/uploads/2024/04/kiilto_sustainability_report_2023.pdf (accessed on 20 January 2025).
- Greenhouse Gas Reporting: Conversion Factors. 2024. Available online: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2024 (accessed on 20 January 2025).
- Singh, V.; Bachala, S.K.; Madan, M.; Ahuja, A.; Rastogi, V.K. A comprehensive comparison between synthetic and bio-based wet-strength additives for paper manufacturing. Cellulose 2024, 31, 4645–4679. [Google Scholar] [CrossRef]
- ISO 16065-2:2014(E); ISO, Pulps—Determination of Fibre Length by Automated Optical Analysis — Part 2: Unpolarized Light Method. ISO: Geneva, Switzerland, 2014.
- ISO 5263-1:2004(E); ISO, Pulps—Laboratory Wet Disintegration — Part 1: Disintegration of Chemical Pulps. ISO: Geneva, Switzerland, 2004.
- ISO 1924-2:2008; ISO, Paper and Board—Determination of Tensile Properties—Part 2: Constant Rate of Elongation Method (20 mm/min). ISO: Geneva, Switzerland, 2008.
- ISO 187:2022; ISO, Paper, Board and Pulps—Standard Atmosphere for Conditioning and Testing and Procedure for Monitoring the Atmosphere and Conditioning of Samples. ISO: Geneva, Switzerland, 2022.
- CEPI. Framework for Carbon Footprints for Paper and Board Products. 2017. Available online: https://www.cepi.org/wp-content/uploads/2021/02/ENV-17-035.pdf (accessed on 12 November 2024).
- Vullo, E.L.; Monforti-Ferrario, F.; Palermo, V.; Bertoldi, P. Greenhouse Gases Emission Factors for Local Emission Inventories: Covenant of Mayors Databases. LU: Publications Office. 2022. Available online: https://data.europa.eu/doi/10.2760/776442 (accessed on 19 March 2025).
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES) for the IPCC: Hayama, Japan, 2006. [Google Scholar]
Sample | Average Fiber Length (mm) | Length-Weighted Average Fiber Length (mm) | Weight Weighted Average Fiber Length (mm) | Coarseness (mg·m−1) | Fibrillation (%) |
---|---|---|---|---|---|
Original paper | 0.68 | 0.86 | 1.11 | 0.123 | 1.73 |
Dry defibrated paper | 0.65 | 0.83 | 1.08 | 0.134 | 1.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levin, K.J.; Costa, D.d.S.; Urb, L.; Peikolainen, A.-L.; Venderström, T.; Tamm, T. Feasibility of a Sustainable On-Site Paper Recycling Process. Recycling 2025, 10, 67. https://doi.org/10.3390/recycling10020067
Levin KJ, Costa DdS, Urb L, Peikolainen A-L, Venderström T, Tamm T. Feasibility of a Sustainable On-Site Paper Recycling Process. Recycling. 2025; 10(2):67. https://doi.org/10.3390/recycling10020067
Chicago/Turabian StyleLevin, Karl Jakob, David dos Santos Costa, Lii Urb, Anna-Liisa Peikolainen, Tanel Venderström, and Tarmo Tamm. 2025. "Feasibility of a Sustainable On-Site Paper Recycling Process" Recycling 10, no. 2: 67. https://doi.org/10.3390/recycling10020067
APA StyleLevin, K. J., Costa, D. d. S., Urb, L., Peikolainen, A.-L., Venderström, T., & Tamm, T. (2025). Feasibility of a Sustainable On-Site Paper Recycling Process. Recycling, 10(2), 67. https://doi.org/10.3390/recycling10020067