Replacing Sand in Concrete: Review on Potential for Utilization of Bottom Ash from Combustion of Wood in Circulating Fluidized Bed Boilers
Abstract
:1. Introduction
1.1. Products with Potential for Sand Replacement with Wood Biomass Bottom Ash
1.1.1. Suitability for Concrete Products
1.1.2. Dry-Cast Concrete (DCC)
1.1.3. Roller-Compacted Concrete (RCC)
1.1.4. Pre-Cast Structural Elements
1.1.5. Tunnel Ballast Concrete
1.1.6. Ready-Mix Concrete
1.1.7. Dry-Mix Concrete
1.2. Production of Ash and Availability of Raw Material
1.3. Combustion of Biomass
1.4. Bottom Ash
1.5. Combustion Technologies Compared
Boiler Type | Circulating Fluidized Bed—CFB | Bubbling Fluidized Bed—BFB | Grate |
---|---|---|---|
Biomass fuel | Solids, powders | Solids, sludges | Solids |
BA particle type | Bed material | Bed material | Agglomerates |
Advantages | High efficiency Fuel flexibility Scalability | High efficiency Fuel flexibility for biomass fuels | Simple construction Low initial cost Low operating cost |
Disadvantages | High initial cost High operating cost Agglomeration of bed material | High initial cost High operating cost Agglomeration of bed material | Low efficiency Slagging Emissions (NOx) |
Production stability | High | High | Low |
Initial cost | High | Medium-high | Low-medium |
Operating cost | High | Medium-high | Medium |
Size (thermal output) | Medium to large (30–1000 MW) | Medium (20–400 MW) | Small to medium (1–100 MW) |
Operating temperature | 750–950 | 650–920 | <1100 |
Sources | [41,43,68,69,70,71] |
1.6. Environmental Potential and Issues
1.7. Aim of Current Review
2. Requirements for Concrete Types and Exposure Classes
2.1. Geometrical Requirements (Grading)
2.2. Fines, Physical, Durability, and Chemical Properties
3. Characteristics of Wood Bottom Ash
3.1. Mineral Composition
Pozzolanic Potential
3.2. Physical Properties
3.3. Heavy Metals and Leaching
3.4. Morphology
4. Bottom Ash as Replacement of Fine Aggregates in Concrete and Mortars
4.1. Strength
4.2. Durability
Alkali–Silica Reactions
4.3. Pre-Treatment of Ashes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAR | Alkali aggregate reaction |
ASR | Alkali–silica reaction |
ASTM | American Society for Testing and Materials |
BA | Bottom ash |
BFB | Bubbling fluidized bed |
CFB | Circulating fluidized bed |
FA | Fly ash |
DCC | Dry-cast concrete |
EN | European norm (European standard) |
EU | European Union |
LoI | Loss on ignition |
MSWI | Municipal solid waste incineration |
RCA | Recycled concrete aggregate |
RCC | Roller-compacted concrete |
SEM | Scanning electron microscopy |
TGA | Thermogravimetric analysis |
XRF | X-ray fluorescence spectrometry |
References
- Andersen, C.E.; Rasmussen, F.N.; Zimmermann, R.K.; Kanafani, K.; Birgisdottir, H. Livscyklusvurdering for Cirkulaere Løsninger Med Fokus på Klimapåvirkning Forundersøgelse Polyteknisk Boghandel og Forlag. SBI Bind 2019:08, Copenhagen.
- Bendixen, M.; Best, J.; Hackney, C.; Iversen, L.L. Time Is Running Out for Sand. 2019. Available online: https://www.nature.com/articles/d41586-019-02042-4 (accessed on 12 March 2025).
- Peduzzi, P. Sand and Sustainability: 10 Strategic Recommendations to Avert a Crisis, UNEP. 2022. Available online: https://www.unep.org/resources/report/sand-and-sustainability-10-strategic-recommendations-avert-crisis (accessed on 12 March 2025).
- Peduzzi, P. Sand, rarer than one thinks. Environ. Dev. 2014, 11, 208–218. [Google Scholar] [CrossRef]
- Koehnken, L.; Rintoul, M.S.; Goichot, M.; Tickner, D.; Loftus, A.C.; Acreman, M.C. Impacts of riverine sand mining on freshwater ecosystems: A review of the scientific evidence and guidance for future research. River Res. Appl. 2020, 36, 362–370. [Google Scholar] [CrossRef]
- Miller, S.A.; Moore, F.C. Climate and health damages from global concrete production. Nat. Clim. Chang. 2020, 10, 439–443. [Google Scholar] [CrossRef]
- Han, Y.; Xu, W.; Liu, J.; Zhang, X.; Wang, K.; Wang, D.; Mei, Z. Ecological impacts of unsustainable sand mining: Urgent lessons learned from a critically endangered freshwater cetacean. Proc. R. Soc. B Biol. Sci. 2023, 290, 20221786. [Google Scholar] [CrossRef]
- Song, H.; Gu, G.; Cheng, Y. Experimental study on river sand replacement in concrete. In IOP Conference Series: Earth and Environmental Science, Volume 567, 2020 International Conference on Energy Saving and Environmental Protection and Civil Engineering, Shanghai, China, 7–9 August 2020; IOP Publishing Ltd.: Bristol, UK, 2020. [Google Scholar] [CrossRef]
- Mohanta, N.R.; Murmu, M. Alternative coarse aggregate for sustainable and eco-friendly concrete—A review. J. Build. Eng. 2022, 59, 105079. [Google Scholar] [CrossRef]
- Minane, J.R.; Becquart, F.; Abriak, N.E.; Deboffe, C. Upgraded Mineral Sand Fraction from MSWI Bottom Ash: An Alternative Solution for the Substitution of Natural Aggregates in Concrete Applications. Procedia Eng. 2017, 180, 1213–1220. [Google Scholar] [CrossRef]
- Rosales, J.; Cabrera, M.; Beltrán, M.G.; López, M.; Agrela, F. Effects of treatments on biomass bottom ash applied to the manufacture of cement mortars. J. Clean. Prod. 2017, 154, 424–435. [Google Scholar] [CrossRef]
- Torres, A.; Simoni, M.U.; Keiding, J.K.; Müller, D.B.; Ermgassen, S.O.S.E.Z.; Liu, J.; Jaeger, J.A.G.; Winter, M.; Lambin, E.F. Sustainability of the global sand system in the Anthropocene. One Earth 2021, 4, 639–650. [Google Scholar] [CrossRef]
- Zhou, H.; Bhattarai, R.; Li, Y.; Si, B.; Dong, X.; Wang, T.; Yao, Z. Towards sustainable coal industry: Turning coal bottom ash into wealth. Sci. Total Environ. 2022, 804, 149985. [Google Scholar] [CrossRef]
- Nair, D.G.; Jagadish, K.S.; Fraaij, A. Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing. Cem. Concr. Res. 2006, 36, 1062–1071. [Google Scholar] [CrossRef]
- Filho, R.G.D.M.; Colpini, L.M.S.; Ferrer, M.M.; Nagano, M.F.; Rosso, J.M.; Volnistem, E.A.; Paraíso, P.R.; de Matos Jorge, L.M. Characterization of different sugarcane bagasse ashes generated for preparation and application as green products in civil construction. Clean. Technol. Env. Policy 2019, 21, 1687–1698. [Google Scholar] [CrossRef]
- de Sande, V.T.; Sadique, M.; Pineda, P.; Bras, A.; Atherton, W.; Riley, M. Potential use of sugar cane bagasse ash as sand replacement for durable concrete. J. Build. Eng. 2021, 39, 102277. [Google Scholar] [CrossRef]
- Beltrán, M.G.; Barbudo, A.; Agrela, F.; Jiménez, J.R.; De Brito, J. Mechanical performance of bedding mortars made with olive biomass bottom ash. Constr. Build. Mater. 2016, 112, 699–707. [Google Scholar] [CrossRef]
- Kirthika, S.K.; Singh, S.K. Durability studies on recycled fine aggregate concrete. Constr. Build. Mater. 2020, 250, 118850. [Google Scholar] [CrossRef]
- Nebiyu, W.M.; Nuramo, D.A.; Ketema, A.F. Experimental Study of Recycled Aggregate Concrete Produced from Recycled Fine Aggregate. Adv. Sci. Technol. 2021, 412, 49–67. [Google Scholar]
- Chimenos, J.M.; Segarra, M.; Fernandez, M.A.; Espiell, F. Characterization of the bottom ash in municipal solid waste incinerator. J. Hazard. Mater. 1999, 64, 211–222. [Google Scholar] [CrossRef]
- Jurič, B.; Hanžič, L.; Ilić, R.; Samec, N. Utilization of municipal solid waste bottom ash and recycled aggregate in concrete. Waste Manag. 2006, 26, 1436–1442. [Google Scholar] [CrossRef]
- Chidiac, S.E.; Zibara, H. Dry-cast concrete masonry products: Properties and durability. Can. J. Civ. Eng. 2007, 34, 1413–1423. [Google Scholar] [CrossRef]
- Lessard, J.M.; Omran, A.; Tagnit-Hamou, A.; Gagne, R. Feasibility of using biomass fly and bottom ashes in dry-cast concrete production. Constr. Build. Mater. 2017, 132, 565–577. [Google Scholar] [CrossRef]
- Kumar, B.A.V.R.; Ramakrishna, G. Performance evaluation of sustainable materials in roller compacted concrete pavements: A state of art review. J. Build. Pathol. Rehabil. 2022, 7, 78. [Google Scholar] [CrossRef]
- Wu, Z.; Libre, N.A.; Khayat, K.H. Factors affecting air-entrainment and performance of roller compacted concrete. Constr. Build. Mater. 2020, 259, 120413. [Google Scholar] [CrossRef]
- Lessard, J.-M.; Omran, A.; Tagnit-Hamou, A.; Gagne, R. Feasibility of Using Biomass Fly and Bottom Ashes to Produce RCC and PCC. J. Mater. Civ. Eng. 2017, 29, 04016267. [Google Scholar] [CrossRef]
- Elliott, K.S. Precast Concrete Structures, 1st ed.; Butterworth Heinemann: Oxford, UK, 2002. [Google Scholar]
- Wang, B.; Yan, L.; Fu, Q.; Kasal, B. A Comprehensive Review on Recycled Aggregate and Recycled Aggregate Concrete. Resour. Conserv. Recycl. 2021, 171, 105565. [Google Scholar] [CrossRef]
- Jin, R.; Chen, Q.; Soboyejo, A. Survey of the current status of sustainable concrete production in the U.S. Resour. Conserv. Recycl. 2015, 105, 148–159. [Google Scholar] [CrossRef]
- Lunniss, R.; Baber, J. Immersed Tunnels—Lunniss and Baber; Taylor & Francis Group: London, UK, 2013. [Google Scholar]
- Bickel, J.O.; Kuesel, T.R.; King, E.H. Tunnel Engineering Handbook, 2nd ed.; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 1996. [Google Scholar] [CrossRef]
- Boulanger, P.; Goncalo, P. Industrial Mortars and Repairing Concrete Products. In Organic Materials for Sustainable Construction; John Wiley and Sons: Hoboken, NJ, USA, 2013; pp. 407–418. [Google Scholar] [CrossRef]
- Gabrijel, I.; Rukavina, M.J.; Štirmer, N. Influence of wood fly ash on concrete properties through filling effect mechanism. Materials 2021, 14, 7164. [Google Scholar] [CrossRef]
- Tsiropoulos, I.; Nijs, W.; Tarvydas, D.; Ruiz, P. Towards Net-Zero Emissions in the EU Energy System by 2050; Publications Office of the European Union: Luxembourg City, Luxembourg, 2020. [Google Scholar] [CrossRef]
- IEA. Renewables 2022. IEA. 2022. Available online: https://www.iea.org/reports/renewables-2022 (accessed on 4 October 2023).
- Energistyrelsen, Biomasseanalyse, Danish Energy Agency, Copenhagen. 2020. Available online: https://ens.dk/presse/energistyrelsen-offentliggoer-biomasseanalyse (accessed on 12 March 2025).
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
- Zhai, J.; Burke, I.T.; Stewart, D.I. Beneficial management of biomass combustion ashes. Renew. Sustain. Energy Rev. 2021, 151, 111555. [Google Scholar] [CrossRef]
- Curran, M.; Hellweg, S.; Beck, J.; Beck, J. Is There Any Empirical Support for Biodiversity Offset Policy? Ecol. Appl. 2014, 24, 617–632. Available online: http://www.jstor.org/stable/24432178 (accessed on 12 March 2025). [CrossRef]
- Sterman, J.D.; Siegel, L.; Rooney-Varga, J.N. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy. Environ. Res. Lett. 2018, 13, 015007. [Google Scholar] [CrossRef]
- James, A.K.; Thring, R.W.; Helle, S.; Ghuman, H.S. Ash management review-applications of biomass bottom ash. Energies 2012, 5, 3856–3873. [Google Scholar] [CrossRef]
- Karlsson, V.; Agernäs, T.; Svenstig, K.; Eskilsson, D. Miljötillståndsansökan Biokraftvärme Rya—03.B-Teknisk Beskrivning; Göteborg Energi: Göteborg, Sweden, 2021. [Google Scholar]
- Widell, H. Industrial-scale biomass combustion plants: Engineering issues and operation. Biomass Combust. Sci. Technol. Eng. 2013, 10, 225–277. [Google Scholar] [CrossRef]
- Belin, F.; James, D.E.; Walker, D.J.; Warrick, R.J. Waste Wood Combustion in Circulating Fluidized Bed Boilers. In Proceedings of the Second International Conference on Circulating Fluidized Beds, Compiégne, France, 14–18 March 1988; pp. 351–368. [Google Scholar] [CrossRef]
- Leckner, B.; Lind, F. Combustion of municipal solid waste in fluidized bed or on grate—A comparison. Waste Manag. 2020, 109, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, M.; Martinez-Echevarria, M.J.; López-Alonso, M.; Agrela, F.; Rosales, J. Self-compacting recycled concrete using biomass bottom ash. Materials 2021, 14, 6084. [Google Scholar] [CrossRef] [PubMed]
- Muthadhi, A.; Banupriya, S. Production of Self-Compacting Concrete with Fly Ash Using Bagasse Ash as Fine Aggregate. Iran. J. Sci. Technol.—Trans. Civ. Eng. 2022, 46, 2187–2200. [Google Scholar] [CrossRef]
- Nascimento, L.C.; Junior, G.B.; Xavier, G.d.C.; Monteiro, S.N.; Vieira, C.M.F.; de Azevedo, A.R.G.; Alexandre, J. Use of wood bottom ash in cementitious materials: A review. J. Mater. Res. Technol. 2023, 23, 4226–4243. [Google Scholar] [CrossRef]
- Schlupp, F.; Page, J.; Djelal, C.; Libessart, L. Use of Biomass Bottom Ash as an Alternative Solution to Natural Aggregates in Concrete Applications: A Review. Materials 2024, 17, 4504. [Google Scholar] [CrossRef]
- Tahami, S.A.; Arabani, M.; Mirhosseini, A.F. Usage of two biomass ashes as filler in hot mix asphalt. Constr. Build Mater. 2018, 170, 547–556. [Google Scholar] [CrossRef]
- Sigvardsen, N.M.; Kirkelund, G.M.; Jensen, P.E.; Geiker, M.R.; Ottosen, L.M. Impact of production parameters on physiochemical characteristics of wood ash for possible utilisation in cement-based materials. Resour. Conserv. Recycl. 2019, 145, 230–240. [Google Scholar] [CrossRef]
- Nurmesniemi, H.; Manskinen, K.; Pöykiö, R.; Dahl, O. Forest Fertilizer Properties of the Bottom Ash and Fly Ash from A Large-Sized (115 Mw) Industrial Power Plant Incinerating Wood-Based Biomass Residues. J. Univ. Chem. Technol. Metall. 2012, 47, 43–52. [Google Scholar]
- Eliche-Queseda, D.; Felipe-Sesé, M.A.; Fuentes-Sanchéz, M.J. Biomass bottom ash waste and by-products of the acetylene industry as raw materials for unfired bricks. J. Build. Eng. 2021, 38, 102191. [Google Scholar] [CrossRef]
- Cabrera, M.; Galvin, A.P.; Agrela, F.; Carvajal, M.D.; Ayuso, J. Characterisation and technical feasibility of using biomass bottom ash for civil infrastructures. Constr. Build Mater. 2014, 58, 234–244. [Google Scholar] [CrossRef]
- Milovanović, B.; Štirmer, N.; Carević, I.; Baričević, A. Wood biomass ash as a raw material in concrete industry. Gradjevinar 2019, 71, 505–514. [Google Scholar] [CrossRef]
- Li, L.; Yu, C.; Bai, J.; Wang, Q.; Luo, Z. Heavy metal characterization of circulating fluidized bed derived biomass ash. J. Hazard Mater. 2012, 233–234, 41–47. [Google Scholar] [CrossRef]
- Carević, I.; Serdar, M.; Štirmer, N.; Ukrainczyk, N. Preliminary screening of wood biomass ashes for partial resources replacements in cementitious materials. J. Clean. Prod. 2019, 229, 1045–1064. [Google Scholar] [CrossRef]
- Rissanen, J.; Ohenoja, K.; Kinnunen, P.; Romagnoli, M.; Illikainen, M. Milling of peat-wood fly ash: Effect on water demand of mortar and rheology of cement paste. Constr. Build Mater. 2018, 180, 143–153. [Google Scholar] [CrossRef]
- Dahl, O.; Nurmesniemi, H.; Pöykiö, R.; Watkins, G. Comparison of the characteristics of bottom ash and fly ash from a medium-size (32 MW) municipal district heating plant incinerating forest residues and peat in a fluidized-bed boiler. Fuel Process. Technol. 2009, 90, 871–878. [Google Scholar] [CrossRef]
- Modolo, R.C.E.; Silva, T.; Senff, L.; Tarelho, L.A.C.; Labrincha, J.A.; Ferreira, V.M.; Silva, L. Bottom ash from biomass combustion in BFB and its use in adhesive-mortars. Fuel Process. Technol. 2015, 129, 192–202. [Google Scholar] [CrossRef]
- Van Dijen, F.; Pels, J. Classification of Ashes and Identification of Possible Future Utilisations; Publications Office of the European Union: Luxembourg City, Luxembourg, 2019; Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c4c6c430&appId=PPGMS (accessed on 12 March 2025). [CrossRef]
- Sandberg, J.; Karlsson, C.; Fdhila, R.B. A 7year long measurement period investigating the correlation of corrosion, deposit and fuel in a biomass fired circulated fluidized bed boiler. Appl. Energy 2011, 88, 99–110. [Google Scholar] [CrossRef]
- Wu, M.H.; Shih, K.; Lin, C.L. Impact of bed particle size distribution on the distribution of heavy metal during defluidization process in fluidized bed incinerator. Combust. Sci. Technol. 2012, 184, 811–828. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete, 5th ed.; Pearson: London, UK, 2011. [Google Scholar]
- Chourasia, S.; Alappat, B.J. Experimental study on the attrition and size distribution of bed material in a recirculating fluidized bed. Chem. Eng. Commun. 2017, 204, 1174–1186. [Google Scholar] [CrossRef]
- Schlupp, F.; Page, J.; Djelal, C.; Libessart, L. Use of biomass bottom ash as granular substitute in mortar. J. Build. Eng. 2023, 75, 106927. [Google Scholar] [CrossRef]
- Schlupp, F.; Page, J.; Djelal, C.; Libessart, L. Influence of recycled sand from biomass combustion on the mechanical, hydration and porous properties of mortar mixtures. Constr. Build Mater. 2023, 404, 133193. [Google Scholar] [CrossRef]
- Leckner, B. Hundred years of fluidization for the conversion of solid fuels. Powder. Technol. 2022, 411, 117935. [Google Scholar] [CrossRef]
- Khan, A.A.; de Jong, W.; Janses, P.J.; Spliethoff, H. Biomass combustion in fluidized bed boilers—Potential problems and remedies. Fuel Process. Technol. 2009, 90, 21–50. [Google Scholar] [CrossRef]
- Van Loo, S.; Koppejan, J. The Handbook of Biomass Combustion & Co-Firing, 1st ed.; Earthscan: London, UK, 2008. [Google Scholar]
- Valmet, Valmet BFB Boilers. 2025. Available online: https://www.valmet.com/energyproduction/bfb-boilers/ (accessed on 16 January 2025).
- Vamvuka, D.; Zografos, D.; Alevizos, G. Control methods for mitigating biomass ash-related problems in fluidized beds. Bioresour. Technol. 2008, 99, 3534–3544. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, H.Y.; Yang, K.H.; Ha, J.S. Evaluation of workability and mechanical properties of bottom ash aggregate concrete. Appl. Sci. 2020, 10, 8016. [Google Scholar] [CrossRef]
- De Fusco, L.; Defoort, F.; Rajczyk, R.; Jeanmart, H.; Blondeau, J.; Contino, F. Ash Characterization of Four Residual Wood Fuels in a 100 kWth Circulating Fluidized Bed Reactor Including the Use of Kaolin and Halloysite Additives. Energy Fuels 2016, 30, 8304–8315. [Google Scholar] [CrossRef]
- Tranvik, A.E.; Sanati, M.; Zethraeus, B.; Lyberg, M. Influence of Ash Composition on Slagging and Defluidisation in a Biomass Fired Commercial CFB Boiler. Prog. Thermochem. Biomass Convers. 2008, 66, 824–830. [Google Scholar] [CrossRef]
- Sommersacher, P.; Brunner, T.; Obernberger, I. Fuel indexes: A novel method for the evaluation of relevant combustion properties of new biomass fuels. Energy Fuels 2012, 26, 380–390. [Google Scholar] [CrossRef]
- Valizadeh, A.; Skoglund, N.; Forsberg, F.; Lycksam, H.; Öhman, M. Role of surface morphology in bed particle layer formation on quartz bed particles in fluidized bed combustion of woody biomass. Fuel 2024, 357, 129702. [Google Scholar] [CrossRef]
- Acordi, J.; Luza, A.; Fabris, D.C.N.; Raupp-Pereira, F.; De Noni, A.; Montedo, O.R.K. New waste-based supplementary cementitious materials: Mortars and concrete formulations. Constr. Build Mater. 2020, 240, 117877. [Google Scholar] [CrossRef]
- da Costa, T.P.; Quinteiro, P.; Tarelho, L.A.C.; Arroja, L.; Dias, A.C. Environmental assessment of valorisation alternatives for woody biomass ash in construction materials. Resour. Conserv. Recycl. 2019, 148, 67–79. [Google Scholar] [CrossRef]
- Abdoli, S.; Kara, S.; Hauschild, M. System interaction, System of Systems, and environmental impact of products. CIRP Ann. 2019, 68, 17–20. [Google Scholar] [CrossRef]
- Larsen, G.; Greve, C.; Wismann, M. HVORNÅR ER DET SLUT MED GRUS I DANMARK? Aktuel Naturvidenskab 2019, 4, 12–15. [Google Scholar]
- Cabrera, M.; Díaz-lópez, J.L.; Agrela, F.; Rosales, J. Eco-efficient cement-based materials using biomass bottom ash: A review. Appl. Sci. 2020, 10, 8026. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash.: Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 2013, 105, 19–39. [Google Scholar] [CrossRef]
- Agrela, F.; Cabrera, M.; Morales, M.M.; Zamorano, M.; Alshaaer, M. Biomass fly ash and biomass bottom ash. In New Trends in Eco-Efficient and Recycled Concrete; Elsevier: Amsterdam, The Netherlands, 2018; pp. 23–58. [Google Scholar] [CrossRef]
- Berra, M.; Mangialardi, T.; Paolini, A.E. Reuse of woody biomass fly ash in cement-based materials. Constr. Build Mater. 2015, 76, 286–296. [Google Scholar] [CrossRef]
- 450-1; Fly Ash for Concrete—Part 1: Definition, Specifications and Conformity Criteria. European Committee for Standardization: Brussels, Belgium, 2012.
- ASTM C618–23; Standard Specification for Coal Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2023. [CrossRef]
- Kȩpys, W. Bottom ash obtained from biomass burning in fluidised-bed boilers as a mortar component. In Proceedings of the E3S Web of Conferences, EDP Sciences, Villebon-sur-Yvette, France, 13 September 2018. [Google Scholar] [CrossRef]
- Tyni, S.K.; Karppinen, J.A.; Tiainen, M.S.; Laitinen, R.S. Preparation and characterization of amorphous aluminosilicate polymers from ash formed in combustion of peat and wood mixtures. J. Non-Cryst. Solids 2014, 387, 94–100. [Google Scholar] [CrossRef]
- Modolo, R.C.E.; Ferreira, V.M.; Tarelho, L.A.; Labrincha, J.A.; Senff, L.; Silva, L. Mortar formulations with bottom ash from biomass combustion. Constr. Build Mater. 2013, 45, 275–281. [Google Scholar] [CrossRef]
- Maschio, S.; Tonello, G.; Piani, L.; Furlani, E. Fly and bottom ashes from biomass combustion as cement replacing components in mortars production: Rheological behaviour of the pastes and materials compression strength. Chemosphere 2011, 85, 666–671. [Google Scholar] [CrossRef]
- Cuenca-Moyano, G.M.; Cabrera, M.; López-Alonso, M.; Martínez-Echevarría, M.J.; Agrela, F.; Rosales, J. Design of lightweight concrete with olive biomass bottom ash for use in buildings. J. Build. Eng. 2023, 69, 106289. [Google Scholar] [CrossRef]
- Steenari, B.M.; Karlsson, L.G.; Lindqvist, O. Evaluation of the leaching characteristics of wood ash and ash agglomeration. Biomass Bioenergy 1999, 16, 119–136. [Google Scholar] [CrossRef]
- EN 206:2013+A2:2021; Concrete—Specification, Performance, Production and Conformity. European Committee for Standardization: Brussels, Belgium, 2021.
- EN 12620:2002+A1; Aggregates for Concrete. European Committee for Standardization: Brussels, Belgium, 2008.
- ASTM C33/C33M; Standard Specification for Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2024. [CrossRef]
- DS 206:2024; Concrete—Rules for Application of EN 206 in Denmark; Danish Standards Association: Copenhagen, Denmark, 2024.
- Lindgård, J.; Andiç-Çakir, Ö.; Fernandes, I.; Rønning, T.F.; Thomas, M.D.A. Alkali-silica reactions (ASR): Literature review on parameters influencing laboratory performance testing. Cem. Concr. Res. 2012, 42, 223–243. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Sigvardsen, N.M.; Geiker, M.R.; Ottosen, L.M. Reaction mechanisms of wood ash for use as a partial cement replacement. Constr. Build. Mater. 2021, 286, 122889. [Google Scholar] [CrossRef]
- Supancic, K.; Obernberger, I.; Kienzl, N.; Arich, A. Conversion and leaching characteristics of biomass ashes during outdoor storage—Results of laboratory tests. Biomass Bioenergy 2014, 61, 211–226. [Google Scholar] [CrossRef]
- Tarelho, L.A.C.; Teixeira, E.R.; Silva, D.F.R.; Modolo, R.C.E.; Labrincha, J.A.; Rocha, F. Characteristics of distinct ash flows in a biomass thermal power plant with bubbling fluidised bed combustor. Energy 2015, 90, 387–402. [Google Scholar] [CrossRef]
- Sklivaniti, V.; Tsakiridis, P.E.; Katsiotis, N.S.; Velissariou, D.; Pistofidis, N.; Papageorgiou, D.; Beazi, M. Valorisation of woody biomass bottom ash in Portland cement: A characterization and hydration study. J. Environ. Chem. Eng. 2017, 5, 205–213. [Google Scholar] [CrossRef]
- Beltrán, M.G.; Agrela, F.; Barbudo, A.; Ayuso, J.; Ramírez, A. Mechanical and durability properties of concretes manufactured with biomass bottom ash and recycled coarse aggregates. Constr Build Mater 2014, 72, 231–238. [Google Scholar] [CrossRef]
- Cruz, N.C.; Silva, F.C.; Tarelho, L.A.C.; Rodrigues, S.M. Critical review of key variables affecting potential recycling applications of ash produced at large-scale biomass combustion plants. Resour. Conserv. Recycl. 2019, 150, 104427. [Google Scholar] [CrossRef]
- Hinojosa, M.J.R.; Galvín, A.P.; Agrela, F.; Perianes, M.; Barbudo, A. Potential use of biomass bottom ash as alternative construction material: Conflictive chemical parameters according to technical regulations. Fuel 2014, 128, 248–259. [Google Scholar] [CrossRef]
- Nikbin, I.M.; Rahimi, R.S.; Allahyari, H.; Damadi, M. A comprehensive analytical study on the mechanical properties of concrete containing waste bottom ash as natural aggregate replacement. Constr. Build Mater. 2016, 121, 746–759. [Google Scholar] [CrossRef]
- European Commission, Commission Decision 2000/532/EC, Official Journal of the European Union, Brussels, Belgium. 2000. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32000D0532 (accessed on 12 March 2025).
- European Commission, Commission Notice 2018/C124/01 on Technical Guidance on the Classification of Waste. Official Journal of the European Union, Brussels, Belgium. 2018. Available online: https://www.hazwasteonline.com/2018/04/notice-2018-c-124/ (accessed on 12 March 2025).
- The Council of the European Union. Council Decision of 19 December 2002 Establishing Criteria and Procedures for the Acceptance of Waste at Landfills Pursuant to Article 16 of and Annex II to Directive 1999/32/EC; Official Journal of the European Union: Brussels, Belgium, 2003. [Google Scholar]
- EN 12457-2; Characterisation of Waste-Leaching-Compliance Test for Leaching of Granular Waste Part 2. European Committee for Standardization: Brussels, Belgium, 2002.
- Cabrera, M.; Galvin, A.P.; Agrela, F.; Beltran, M.G.; Ayuso, J. Reduction of leaching impacts by applying biomass bottom ash and recycled mixed aggregates in structural layers of roads. Materials 2016, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.; Lopes, H.; Tarelho, L.A.C. Critical aspects of biomass ashes utilization in soils: Composition, leachability, PAH and PCDD/F. Waste Manag. 2015, 46, 304–315. [Google Scholar] [CrossRef]
- Barbosa, R.; Dias, D.; Lapa, N.; Lopes, H.; Mendes, B. Chemical and ecotoxicological properties of size fractionated biomass ashes. Fuel Process. Technol. 2013, 109, 124–132. [Google Scholar] [CrossRef]
- Rajamma, R.; Ball, R.J.; Tarelho, L.A.C.; Allen, G.C.; Labrincha, J.A.; Ferreira, V.M. Characterisation and use of biomass fly ash in cement-based materials. J. Hazard. Mater. 2009, 172, 1049–1060. [Google Scholar] [CrossRef]
- Steenari, B.-M.; Schelander, S.; Lindqvist, O. Chemical and leaching characteristics of ash from combustion of coal, peat and wood in a 12 MW CFB-a comparative study. Fuel 1999, 78, 249–258. [Google Scholar] [CrossRef]
- Pitman, R.M. Wood ash use in forestry—A review of the environmental impacts. Forestry 2006, 79, 563–588. [Google Scholar] [CrossRef]
- Ottosen, L.M.; Sigvardsen, N.M. Heavy Metal Leaching from Wood Ash Before and After Hydration and Carbonation. Environ. Sci. Pollut. Res. 2024. Available online: https://link.springer.com/article/10.1007/s11356-024-33221-0 (accessed on 12 March 2025). [CrossRef]
- Narodoslawsky, M.; Obernberger, I. From waste to raw material-the route from biomass to wood ash for cadmium and other heavy metals. J. Hazardous Mater. 1996, 50, 157–168. [Google Scholar] [CrossRef]
- Kauppinen, E.I.; Jokiniemi, J.K.; Lind, T.; Latva-Somppi, J. Ash Particle Formation and Metal Behaviour During Biomass Combustion in Fluidized Bed Boiler. In Characterization & Control of Interfaces for High Quality Advanced Materials; The American Ceramic Society: Westerville, OH, USA, 2005; pp. 347–354. [Google Scholar] [CrossRef]
- Drljača, D.M.; Vukić, L.M.; Dragić, D.M.; Borković, A.P.; Botić, T.T.; Dugić, P.T.; Papuga, S.V.; Šolić, M.D.; Maletić, S.P.; Gvero, P.M.; et al. Leaching of heavy metals from wood biomass ash, before and after binding in cement composite. J. Serbian Chem. Soc. 2022, 87, 1091–1108. [Google Scholar] [CrossRef]
- Bodker, J. Utilisation of Ash from Incineration of Wastewater Sludge (bio ash) in Concrete Production, Danish Technological Institute, Taastrup. 2007. Available online: https://webgate.ec.europa.eu/life/publicWebsite/project/LIFE05-ENV-DK-000153/utilisation-of-ash-from-incineration-of-wastewater-sludge-bio-ash-in-concrete-production (accessed on 12 March 2025).
- Barbosa, R.; Lapa, N.; Dias, D.; Mendes, B. Concretes containing biomass ashes: Mechanical, chemical, and ecotoxic performances. Constr. Build. Mater. 2013, 48, 457–463. [Google Scholar] [CrossRef]
- Dahl, O.; Nurmesniemi, H.; Pöykiö, R.; Watkins, G. Heavy metal concentrations in bottom ash and fly ash fractions from a large-sized (246 MW) fluidized bed boiler with respect to their Finnish forest fertilizer limit values. Fuel Process. Technol. 2010, 91, 1634–1639. [Google Scholar] [CrossRef]
- Li, D.; Ahn, S.; Kim, R.G.; Li, J.; Jung, S.; Jeon, C. Formation of agglomerates with core–shell structure in a large-scale CFB boiler. Fuel 2023, 332, 126197. [Google Scholar] [CrossRef]
- Jensen, A.H.; Ottosen, L.M.; Edvardsen, C.K. Mechanical properties of mortar substituting fine aggregate with wood bottom ash from fluidized bed boilers. In Proceedings of the 15th Fib International PhD Symposium in Civil Engineering, Fib, Fédération Internationale du béton, Budapest, Hungary, 28–30 August 2024; Balazs, G.L., Sólyom, S., Foster, S., Eds.; pp. 767–774. [Google Scholar]
- EN 196-2; Method of Testing Cement-Part 2: Chemical Analysis of Cement. European Committee for Standardization: Brussels, Belgium, 2013.
- Li, Q.H.; Zhang, Y.G.; Meng, A.H.; Li, L.; Li, G.X. Study on ash fusion temperature using original and simulated biomass ashes. Fuel Process. Technol. 2013, 107, 107–112. [Google Scholar] [CrossRef]
- Valmari, T.; Lind, T.M.; Kauppinen, E.I.; Sfiris, G.; Nilsson, K.; Maenhaut, W. Field study on ash behavior during circulating fluidized-bed combustion of biomass. 1. Ash formation. Energy Fuels 1999, 13, 379–389. [Google Scholar] [CrossRef]
- Tranvik, A.C.; Öhman, M.; Sanati, M. Bed material deposition in cyclones of wood fuel fired circulating fluidized beds (CFBs). Energy Fuels 2007, 21, 104–109. [Google Scholar] [CrossRef]
- Modolo, R.C.E.; Ascensão, G.; Senff, L.; Ribeiro, F.R.C.; Tarelho, L.A.D.C.; Ferreira, V.M.; Labrincha, J.A.; Silva, A.S.; Moraes, C.A.M. Recycling of ashes from biomass combustion as raw material for mortars. Mix Sustentável 2021, 7, 137–146. [Google Scholar] [CrossRef]
- Ottosen, L.M.; Hansen, E.Ø.; Jensen, P.E.; Kirkelund, G.M.; Golterman, P. Wood ash used as partly sand and/or cement replacement in mortar. Int. J. Sustain. Dev. Plan. 2016, 11, 781–791. [Google Scholar] [CrossRef]
- Skevi, L.; Baki, V.A.; Feng, Y.; Valderrabano, M.; Ke, X. Biomass Bottom Ash as Supplementary Cementitious Material: The Effect of Mechanochemical Pre-Treatment and Mineral Carbonation. Materials 2022, 15, 8357. [Google Scholar] [CrossRef]
Type | Roller-Compacted Concrete | Dry-Cast Concrete | Pre-Cast Structural Elements | Ballast Concrete | Ready-Mix Concrete | Dry-Mix Concrete |
---|---|---|---|---|---|---|
Product | ||||||
Characteristics | Low cement content, zero slump, low cost | Zero slump, compacted by vibration and high pressure | Controlled environment, repetitive production, medium to high slump, high strength, high quality | Varies, based on use in the project | Wide range of properties, based on specific use | Wide range of properties, based on specific use |
Uses | Dams, paving, roads | Paving stones, pipes (e.g., water, sewers, drainage), foundation blocks | Structural concrete is used in buildings, tunnels, bridges, and other infrastructure. | Leveling and ballasting of, e.g., tunnels | All types of concrete structures | Small singular castings, grouting, low-volume high-strength needs, civilian use (fences, patios) |
Durability requirements | High | High | Low to high | Low | Low to high | Low to high |
Potential exposure | Seawater, freeze/thaw, rain, air | Seawater, freeze/thaw, rain, air | Seawater, freeze/thaw, rain, air | Inside tunnels | Seawater, freeze/thaw, rain, air | Seawater, freeze/thaw, rain, air |
Reinforcement | None | None | Yes | None | Either | Either |
CFB | BFB | Grate | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Requirement | Purpose | [w.%] | [88] | [51] | [89] | [66] | [57] | [90] | [91] | [11] | [92] | |
EN 450-1 | Na2O-eq (196-2) | Durability (ASR) | ≤5.0 | 0.6 | 5.9 | 6.8 | 1.6 | 4.8 | 0.9 | 8.3 | 5.0 | 10.4 |
Chloride | Durability | ≤0.1 | 0.0 | 0.0 | − | − | − | 0.0 | <0.1 | 0.0 | 0.0 | |
sulfate (SO3) | Durability | ≤3.0 | 0.7 | 0.2 | 0.0 | 0.0 | 1.5 | − | 0.0 | 0.2 | 1.2 | |
Free CaO | Durability (ASR) | ≤10.0 | 5.5 | 16.0 | 3.6 | 3.4 | 20.2 | 17.2 | 48.4 | 16.6 | 23.9 | |
MgO | Strength | ≤4.0 | 1.5 | 1.5 | 0.7 | 0.5 | 3.2 | 2.0 | 9.9 | 2.6 | 3.3 | |
P2O5 | Strength | ≤5.0 | 2.0 | 0.5 | 0.0 | 0.2 | 2.9 | 0.0 | 1.0 | 0.0 | 2.7 | |
LoI | Workability /durability | ≤5.0/7.0/9.0 (Cat. A/B/C) | − | 0.0 | 0.0 | 0.0 | 1.6 | 2.1 | 2.4 | 4.3 | 13.5 | |
ASTM C618-23 | Sulfate (SO3) | Durability | ≤3.0/≤5.0/≤5.0 (Cat. N/F/C) | 0.7 | 0.2 | 0.0 | 0.0 | 1.5 | − | 0.0 | 0.2 | 1.2 |
Free CaO | Durability (ASR) | Sbd/≤18.0/>18.0 (Cat. N/F/C) | 5.5 | 16.0 | 3.6 | 3.4 | 20.2 | 17.2 | 48.4 | 16.6 | 23.9 | |
LoI (Cat. A/B/C) | Workability /durability | ≤10.0/6.0/6.0 (Cat. N/F/C) | − | 0.0 | 0.0 | 0.0 | 1.6 | 2.1 | 2.4 | 4.3 | 13.5 |
Boiler Type | Source | Fuel Type | LOI (950°) [%] | Water Absorption [%] | Density [kg/m3] | PH [−] |
---|---|---|---|---|---|---|
BFB | [67] | Mixed wood | 0 | 2.41 | 2280 | − |
BFB | [57] | Wood | 1.6 | − | 2440 | 13.13 |
BFB | [57] | Wood | 1.6 | 2440 | 13.13 | |
BFB | [90] | Forest residue | 2.08 | − | 2650 | − |
BFB | [23] | Paper | − | 5.25 | 2310 | − |
BFB | [102] | Wood | <0.5 | − | − | 12 |
CFB | [56] | Agri. Waste | 2.56 | − | − | − |
CFB | [51] | Wood chips | − | − | − | 11.9 |
CFB | [101] | Wood | − | − | − | 12.3 |
Grate | [57] | Wood | 1 | − | 2330 | 12.98 |
Grate | [91] | Wood | 2.4 | − | 2600 | − |
Grate | [11] | Wood/olive residue | 4.34 | 21.8 | 1860 | − |
Grate | [57] | Wood | 6.5 | − | 2530 | 13.06 |
Grate | [57] | Wood | 9.9 | − | 2690 | 13.78 |
Grate | [78] | Wood | 11.06 | 13.3 | 2390 | − |
Grate | [57] | Wood | 12.3 | − | 2500 | 13.6 |
Grate | [57] | Wood | 13.4 | − | 2470 | 13.16 |
Grate | [92] | Wood | 13.5 | 10.1 | 2340 | − |
Grate | [57] | Wood | 14.2 | − | 1750 | 13.46 |
Grate | [57] | Wood | 18.1 | − | 2570 | 14 |
Grate | [57] | Wood | 19.6 | − | 2180 | 12.6 |
Grate | [103] | Wood | 41.49 | 2350 | ||
Grate | [104] | Wood/olive residue | 19.9 | 2020 | − | |
Sand | [90] | − | 0.09 | 2668 | − | |
Sand | [90] | − | 0.24 | 2660 | − | |
Sand | [46] | − | − | 0.9 | 2530 | − |
Sand | [46] | − | − | 0.9 | 2670 | − |
Sand | [104] | − | − | 1.09 | 2590 | − |
Sand | [78] | − | − | 0.76 | 2553 | − |
Sand | [23] | − | − | 1.3 | 2610 | − |
Component | As | Ba | Cd | Cr | Cu | Hg | Mo | Ni | Pb | Sb | Se | Zn | Cl- | F- | S- |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mg/kg | 2 | 100 | 1 | 10 | 50 | 0.2 | 10 | 10 | 10 | 0.7 | 0.5 | 50 | 15,000 | 150 | 20,000 |
Src. | Type | Fuel | As | Ba | Cd | Cr | Cu | Hg | Mo | Ni | Pb | Sb | Se | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[%] | ||||||||||||||
[101] | Grate |
Bark/ wood chips | 80 | - | 70 | 1920 | 228 | - | 10 | 566 | 57 | - | - | 188 |
[112] | Grate | Olive biomass | 11 | 0 | - | 6 | 4 | 29 | 3 | 5 | - | 2 | 5 | 0 |
[113] | Grate | Wood | - | - | - | 5 | 1 | - | - | 5 | 5 | - | - | 0 |
[92] | Grate |
Wood/ olive cake | 0 | 0 | 0 | 1 | 8 | 0 | 3 | 2 | 0 | 0 | 0 | 1 |
[88] | CFB | Wood chips | 2 | - | 0 | 2 | 0 | - | - | 0 | 0 | - | - | 0 |
[101] | CFB | Forest residue | 95 | - | 20 | 211 | 88 | - | 4 | 80 | 185 | - | - | 840 |
[56] | CFB | Mixed wood | - | - | 1 | 1 | 0 | 2 | - | 0 | 0 | 1 | 26 | 0 |
[114] | BFB | Forest residue | 0 | 5 | 32 | 5 | 32 | 6 | 20 | 6 | 10 | 2 | 2 | 0 |
[113] | BFB | Wood | - | - | - | 5 | 1 | - | - | 5 | 5 | - | - | 0 |
[102] | BFB | Mixed wood | - | 2 | - | 1 | - | - | 1 | - | 0 | - | - | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, A.H.; Edvardsen, C.K.; Ottosen, L.M. Replacing Sand in Concrete: Review on Potential for Utilization of Bottom Ash from Combustion of Wood in Circulating Fluidized Bed Boilers. Recycling 2025, 10, 73. https://doi.org/10.3390/recycling10020073
Jensen AH, Edvardsen CK, Ottosen LM. Replacing Sand in Concrete: Review on Potential for Utilization of Bottom Ash from Combustion of Wood in Circulating Fluidized Bed Boilers. Recycling. 2025; 10(2):73. https://doi.org/10.3390/recycling10020073
Chicago/Turabian StyleJensen, Anders Hedegaard, Carola K. Edvardsen, and Lisbeth M. Ottosen. 2025. "Replacing Sand in Concrete: Review on Potential for Utilization of Bottom Ash from Combustion of Wood in Circulating Fluidized Bed Boilers" Recycling 10, no. 2: 73. https://doi.org/10.3390/recycling10020073
APA StyleJensen, A. H., Edvardsen, C. K., & Ottosen, L. M. (2025). Replacing Sand in Concrete: Review on Potential for Utilization of Bottom Ash from Combustion of Wood in Circulating Fluidized Bed Boilers. Recycling, 10(2), 73. https://doi.org/10.3390/recycling10020073