Investigating the Socio-Spatial Dynamics of WEEE Collection in São Paulo, Brazil: A Data Mining Approach
Abstract
:1. Introduction
2. Systematic Literature Review
3. Materials and Methods
3.1. Procedures for Conducting the Literature Review
3.2. Socio-Spatial Characterization of the City of São Paulo (Study Area)
3.3. Data Collection
3.4. Data Processing and Analysis
4. Results
4.1. Pattern Discovery Using Decision Trees (DTs)
- Districts with low income and education indices (HDI_E and HDI_R), combined with small areas, tend to lack WEEE collection points. This knowledge, extracted from the tree, may reflect limitations in infrastructure or investment priorities that do not favor the implementation of collection points in certain areas. It may also indicate inequalities in access to WEEE collection points, especially in socially vulnerable areas.
- It was observed that even in districts with higher income levels, the number of ecopoints and WEEE collection points can be limited. This highlights the importance of studies focused on increasing accessibility to collection services.
- Populous districts with moderate ecopoint availability generally have an average number of WEEE collection points. This indicates a relationship between population size, solid waste recycling infrastructure (represented by the number of ecopoints), and the availability of WEEE collection points.
- Districts with favorable socioeconomic conditions and robust solid waste recycling infrastructure are correlated with higher numbers of WEEE collection points. This suggests that a strengthened socioeconomic environment combined with significant investments in ecopoints creates ideal conditions for promoting WEEE recycling.
4.2. Pattern Discovery Using the Apriori Algorithm
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Data Description
References
- Jaiswal, S.K.; Mukti, S.K. Prioritizing Factors Affecting E-Waste Recycling in India: A Framework for Achieving a Circular Economy. Circ. Econ. Sustain. 2024, 5, 461–481. [Google Scholar] [CrossRef]
- Oliveira Neto, G.C.; Correia, A.D.J.C.; Tucci, H.N.P.; Melatto, R.A.P.B.; Amorim, M. Reverse Chain for Electronic Waste to Promote Circular Economy in Brazil: A Survey on Electronics Manufacturers and Importers. Sustainability 2023, 15, 4135. [Google Scholar] [CrossRef]
- Gaur, T.S.; Yadav, V.; Mittal, S.; Sharma, M.K. A systematic review on sustainable E-waste management: Challenges, circular economy practices, and a conceptual framework. Manag. Environ. Qual. Int. J. 2024, 35, 858–884. [Google Scholar] [CrossRef]
- Oliveira Neto, G.C.D.; de Araujo, S.A.; Gomes, R.A.; Alliprandini, D.H.; Flausino, F.R.; Amorim, M. Simulation of Electronic Waste Reverse Chains for the Sao Paulo Circular Economy: An Artificial Intelligence-Based Approach for Economic and Environmental Optimizations. Sensors 2023, 23, 9046. [Google Scholar] [CrossRef] [PubMed]
- Nikou, V.; Sardianou, E. Bridging the socioeconomic gap in E-waste: Evidence from aggregate data across 27 European Union countries. Clean. Prod. Lett. 2023, 5, 100052. [Google Scholar] [CrossRef]
- Widanapathirana, S.; Perera, I.J.J.U.N.; Bellanthudawa, B.K.A. Electrical and electronic waste (e-waste) recycling and management strategies in South Asian region: A systematic review from Sri Lankan context. Waste Dispos. Sustain. Energy 2023, 5, 559–575. [Google Scholar] [CrossRef]
- Assavapokee, T.; Wongthatsanekorn, W. Reverse production system infrastructure design for electronic products in the state of Texas. Comput. Ind. Eng. 2012, 62, 129–140. [Google Scholar] [CrossRef]
- Mar-Ortiz, J.; Adenso-Diaz, B.; González-Velarde, J.L. Design of a recovery network for WEEE collection: The case of Galicia, Spain. J. Oper. Res. Soc. 2011, 62, 1471–1484. [Google Scholar] [CrossRef]
- Qiang, S.; Zhou, X.Z. Robust reverse logistics network design for the waste of electrical and electronic equipment (WEEE) under recovery uncertainty. J. Environ. Biol. 2016, 37, 1153–1165. [Google Scholar]
- Elia, V.; Gnoni, M.G.; Tornese, F. Designing a sustainable dynamic collection service for WEEE: An economic and environmental analysis through simulation. Waste Manag. Res. 2019, 37, 402–411. [Google Scholar] [CrossRef]
- Achilles, C.; Aidonis, D.; Vlacokostas, C.; Moussiopoulos, N.; Triantafillou, D. A multi-objective decision-making model to select waste electrical and electronic equipment transportation media. Resour. Conserv. Rec. 2012, 66, 76–84. [Google Scholar] [CrossRef]
- Bal, A.; Satoglu, S.I. A goal programming model for sustainable reverse logistics operations planning and an application. J. Clean. Prod. 2018, 201, 1081–1091. [Google Scholar] [CrossRef]
- Alumur, S.A.; Nickel, S.; Saldanha-da-Gama Verter, V. Multi-period reverse logistics network design. Eur. J. Oper. Res. 2012, 220, 67–78. [Google Scholar] [CrossRef]
- Gomes, M.I.; Barbosa-Povoa, A.P.; Novais, A.Q. Modeling a recovery network for WEEE: A case study in Portugal. Waste Manag. 2011, 31, 1645–1660. [Google Scholar] [CrossRef]
- Kilic, H.S.; Cebeli, U.; Ayhan, M.B. Reverse logistics system design for the waste of electrical and electronic equipment (WEEE) in Turkey. Resour. Conserv. Recycl. 2014, 95, 120–132. [Google Scholar] [CrossRef]
- Moslehi, M.S.; Sahebi, H.; Teymour, A. A multi-objective stochastic model for a reverse logistics supply chain design with environmental considerations. J. Ambient Intell. Humaniz. Comput. 2021, 12, 8017–8040. [Google Scholar] [CrossRef]
- Yu, H.; Solvang, W. A stochastic programming approach with improved multi-criteria scenario-based solution method for sustainable reverse logistics design of waste electrical and electronic equipment (WEEE). Sustainability 2016, 8, 1331. [Google Scholar] [CrossRef]
- Achilles, C.; Vlachokostas, C.; Aidonis, D.; Moussiopoulos, N.; Lakovou, E.; Banias, G. Optimizing reverse logistics network to support policy-making in the case of Electrical and Electronic Equipment. Waste Manag. 2010, 30, 2592–2600. [Google Scholar] [CrossRef]
- Achilles, C.; Vlachokostas, C.; Moussiopoulos, N.; Banias, G. Decision support system for the optimal location of electrical and electronic waste treatment pants: A case study in Greece. Waste Manag. 2010, 30, 870–879. [Google Scholar] [CrossRef]
- Shokohyar, S.; Mansour, S. Simulation-based optimization of a sustainable recovery network for waste from electrical and electronic equipment (WEEE). Int. J. Comput. Integr. Manuf. 2013, 26, 487–503. [Google Scholar] [CrossRef]
- Gamberini, R.; Gebennini, E.; Manzini, R.; Ziveri, A. On the integration of planning and environmental impact assessment for a WEEEtransportation network: A case study. Resour. Conserv. Recycl. 2010, 54, 937–951. [Google Scholar] [CrossRef]
- Dat, L.Q.; Linh, D.T.T.; Chou Shuo-Yan Yu, V.F. Optimizing reverse logistic costs for recycling end-of-life electrical and electronic products. Expert Syst. Appl. 2012, 39, 6380–6387. [Google Scholar] [CrossRef]
- Ayvaz, B.; Bolat, B.; Aydin, N. Stochastic reverse logistics network design for waste of electrical and electronic equipment. Resour. Conserv. Recycl. 2015, 104, 391–404. [Google Scholar] [CrossRef]
- Duman, G.M.; Kongar, E.; Gupta, S.M. Estimation of electronic waste using optimized multivariate gray models. Waste Manag. 2019, 95, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Tosarkani, B.M.; Amin, S.H.; Zolfagharinia, H. A scenario-based robust possibilistic model for a multi-objective electronic reverse logistics network. Int. J. Prod. Econ. 2020, 224, 107557. [Google Scholar] [CrossRef]
- Lv, J.; Du, S. Kriging Method-Based Return Prediction of Waste Electrical and Electronic Equipment in Reverse Logistics. Appl. Sci. 2021, 11, 3536. [Google Scholar] [CrossRef]
- Zhang, H.; Peeters, P.; Demeester, E.; Duflou, J.R.; Kellens, K. A CNN-Based Fast Picking Method for WEEE Recycling. Proc. CIRP 2022, 106, 264–269. [Google Scholar] [CrossRef]
- Guo, R.; Zhong, Z. A customer-centric IoT-based novel closed-loop supply chain model for WEEE management. Adv. Eng. Inform. 2023, 55, 101899. [Google Scholar] [CrossRef]
- Liao, G.H.W.; Luo, X. Collaborative reverse logistics network for electric vehicle batteries management from sustainable perspective. J. Environ. Manag. 2022, 324, 116352. [Google Scholar] [CrossRef]
- Neto, G.C.O.; Ruiz, M.S.; Correia, A.J.C.; Mendes, H.M.R. Environmental advantages of the reverse logistics: A case study in the batteries collection in Brazil. Production 2018, 28, e20170098. [Google Scholar]
- Najm, H.; Asadi-Gangraj, E. Designing a robust sustainable reverse logistics to waste of electrical and electronic equipment: A case study. Int. J. Environ. Sci. Technol. 2024, 21, 1559–1574. [Google Scholar] [CrossRef]
- Weng, J.; Zhang, L.; Tang, J.; Wang, Q.; Zhou, D. Employing spatio-temporal analysis and multi-period location to optimize waste photovoltaic recycling network. Sustain. Energy Technol. Assess. 2024, 68, 103881. [Google Scholar] [CrossRef]
- Koshta, N.; Patra, S.; Singh, S.P. A location-allocation model for E-waste acquisition from households. J. Clean. Prod. 2024, 440, 140802. [Google Scholar] [CrossRef]
- Correia, A.J.C.; de Oliveira Neto, G.C.; Metato, R.A.P.B.; de Araújo, S.A.; Amorim, M.; Kumar, V.; Matias, J. Evaluation of circular economy practices for management of the reverse chain of electronic waste in Brazil. J. Mater. Cycles Waste Manag. 2024, 26, 3699–3713. [Google Scholar] [CrossRef]
- Doan, L.T.T.; Amer, Y.; Lee, S.H.; Phuc, P.N.K.; Tran, T.T. Optimizing a reverse supply chain network for electronic waste under risk and uncertain factors. Appl. Sci. 2021, 11, 1946. [Google Scholar] [CrossRef]
- Shevchenko, T.; Saidani, M.; Danko, Y.; Golysheva, I.; Chovancová, J.; Vavrek, R. Towards a smart E-waste system utilizing supply chain participants and interactive online maps. Recycling 2021, 6, 8. [Google Scholar] [CrossRef]
- Ni, Z.; Chan, H.K.; Tan, Z. Systematic literature review of reverse logistics for e-waste: Overview, analysis, and future research agenda. Int. J. Logist. Res. Appl. 2023, 26, 843–871. [Google Scholar] [CrossRef]
- Nowakowski, P.; Kuśnierz, S.; Płoszaj, J.; Sosna, P. Collecting Small-Waste Electrical and Electronic Equipment in Poland—How Can Containers Help in Disposal of E-Waste by Individuals? Sustainability 2021, 13, 12422. [Google Scholar] [CrossRef]
- Mohamad, N.S.; Thoo, A.C.; Huam, H.T. The determinants of consumers’ E-waste recycling behavior through the lens of extended theory of planned behavior. Sustainability 2022, 14, 9031. [Google Scholar] [CrossRef]
- Shi, J.; Chen, W.; Verter, V. The joint impact of environmental awareness and system infrastructure on e-waste collection. Eur. J. Oper. Res. 2023, 310, 760–772. [Google Scholar] [CrossRef]
- Gautam, D.; Bolia, N. Developing an incentive-based model for efficient product recovery and reverse logistics. Bus. Strategy Environ. 2024, 33, 7972–7989. [Google Scholar] [CrossRef]
- Liu, T.; Cao, J.; Wu, Y.; Weng, Z.; Senthil, R.A.; Yu, L. Exploring influencing factors of WEEE social recycling behavior: A Chinese perspective. J. Clean. Prod. 2021, 312, 127829. [Google Scholar] [CrossRef]
- Jangre, J.; Prasad, K.; Patel, D. Analysis of barriers in e-waste management in developing economy: An integrated multiple-criteria decision-making approach. Environ. Sci. Pollut. Res. 2022, 29, 72294–72308. [Google Scholar] [CrossRef]
- Ghisellini, P.; Quinto, I.; Passaro, R.; Ulgiati, S. Circular economy management of waste electrical and electronic equipment (WEEE) in Italian urban systems: Comparison and perspectives. Sustainability 2023, 15, 9054. [Google Scholar] [CrossRef]
- Brito, J.L.R.D.; Ruiz, M.S.; Kniess, C.T.; Santos, M.R.D. Reverse remanufacturing of electrical and electronic equipment and the circular economy. Rev. Gestão 2022, 29, 380–394. [Google Scholar] [CrossRef]
- Guo, R.; Zhong, Z. Assessing WEEE sustainability potential with a hybrid customer-centric forecasting framework. Sustain. Prod. Consum. 2021, 27, 1918–1933. [Google Scholar] [CrossRef]
- Wang, B.; Li, H. Optimization of electronic waste recycling network designing. In Proceedings of the 2020 5th International Conference on Electromechanical Control Technology and Transportation (ICECTT), Nanchang, China, 15–17 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 368–371. [Google Scholar]
- Safdar, N.; Khalid, R.; Ahmed, W.; Imran, M. Reverse logistics network design of e-waste management under the triple bottom line approach. J. Clean. Prod. 2020, 272, 122662. [Google Scholar] [CrossRef]
- Duman, G.M.; Kongar, E. ESG Modeling and Prediction uncertainty of electronic waste. Sustainability 2023, 15, 11281. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- PMSP—Prefeitura Municipal de São Paulo. Pulsante, Moderna e Inclusiva; Conheça São Paulo—A Maior Metrópole da América Latina. Junho de 2023. Available online: https://capital.sp.gov.br/web/governo/w/institucional/348594 (accessed on 24 November 2024).
- Joseph, W.; Silva, G.A. Metropolitan governance and the problem of sociospatial fragmentation in Brazilian metropolises: The case of the metropolis of São Paulo. In Proceedings of the ENANPUR 2023, Belém, PA, Brazil, 22–26 May 2023; pp. 1–15. [Google Scholar]
- São Paulo: SMDU, 2014. Available online: https://gestaourbana.prefeitura.sp.gov.br/marco-regulatorio/plano-diretor/ (accessed on 24 November 2024).
- Empresa Paulista de Planejamento Metropolitano. Região Metropolitana de São Paulo. São Paulo: EMPLASA, 2024. Available online: https://publicacoes.agb.org.br/boletim-paulista/article/view/3310 (accessed on 24 November 2024).
- Instituto Brasileiro de Geografia e Estatística. São Paulo: Panorama. Rio de Janeiro: IBGE, 2023. Available online: https://cidades.ibge.gov.br/brasil/sp/sao-paulo/panorama (accessed on 24 November 2024).
- Fundação Sistema Estadual de Análise de Dados. Indicadores do Estado de São Paulo por Município; SEADE: São Paulo, Brazil, 2023. Available online: https://www.seade.gov.br/ (accessed on 24 November 2024).
- Geosampa, P. Mapa Digital da cidade de São Paulo. 2019. Available online: https://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx (accessed on 24 November 2024).
- de Araújo, S.A.; de Barros, D.F.; da Silva, E.M.; Cardoso, M.V. Applying computational intelligence techniques to improve the decision making of business game players. Soft Comput. 2019, 23, 8753–8763. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- da Silva Lourenço, W.; de Araujo Lima, S.J.; Alves de Araújo, S. TASNOP: A tool for teaching algorithms to solve network optimization problems. Comput. Appl. Eng. Educ. 2018, 26, 101–110. [Google Scholar] [CrossRef]
- Benvenga, M.A.; Araújo, S.A.D.; Librantz, A.F.; Santana, J.C.; Tambourgi, E.B. Application of simulated annealing in simulation and optimization of drying process of Zea mays malt. Eng. Agrícola 2011, 31, 940–953. [Google Scholar] [CrossRef]
- Rosa, J.M.; Guerhardt, F.; Júnior, S.E.R.R.; Belan, P.A.; Lima, G.A.; Santana, J.C.C.; Berssaneti, F.T.; Tambourgi, E.B.; Vanale, R.M.; de Araújo, S.A. Modeling and optimization of reactive cotton dyeing using response surface methodology combined with artificial neural network and particle swarm techniques. Clean Technol. Environ. Policy 2021, 23, 2357–2367. [Google Scholar] [CrossRef]
- de Oliveira Neto, G.C.; de Sousa, W.C. Economic and Environmental Advantage Evaluation of the Reverse Logistic Implementation in the Supermarket Retail. IFIP Adv. Inf. Commun. Technol. 2014, 439, 197–204. [Google Scholar]
- De Oliveira Neto, G.C.; Lucato, W.C. Production planning and control as a tool for eco-efficiency improvement and environmental impact reduction. Prod. Plan. Control 2016, 27, 148–156. [Google Scholar] [CrossRef]
Set of keywords | “electronic waste”, “e-waste”, “electronic scrap”, “waste electrical and electronic equipment”, “WEEE”, “electronic rubbish”, “discarded electronics”, “reverse logistic”, “reverse distribution”, “reverse supply chain”, “returns management”, “reverse flow logistics”, “backward logistics”, “artificial intelligence”, “data analysis”, “data mining”, “machine learning”, “optimization” |
Search string | ((“electronic waste” OR “e-waste” OR “electronic scrap” OR “waste electrical and electronic equipment OR “WEEE” OR “electronic rubbish” OR “discarded electronics”) AND (“reverse logistic” OR “reverse distribution” OR “reverse supply chain” OR “returns management” OR “reverse flow logistics” OR “backward logistics”) AND (“artificial intelligence” OR “data analysis” OR “data mining” OR “machine learning” OR “optimization”)) |
Variables | Description | Source | |
---|---|---|---|
Explanatory | Area_km2 | Area in km2 of the district | GeoSampa |
Pop | Number of individuals residing in the district | GeoSampa | |
Pop_Dens | Population density | GeoSampa | |
Num_Eco | Number of ecopoints present in the district | GeoSampa | |
HDI_E | Index representing the quality of education in the district | GeoSampa | |
HDI_I | Income dimension index, based on the per capita income indicator of the district | GeoSampa | |
Response | Num_CPs | Number of WEEE collection points in the district | Oliveira Neto et al. [2] |
District | Area_Km2 | Pop | Pop_Dens | Num_Eco | HDI_E | HDI_I | Num_CPs |
---|---|---|---|---|---|---|---|
Água Rasa | 7.18 | 84963 | 12313 | 0 | 0.7156 | 0.8046 | 0 |
Alto de Pinheiros | 7.46 | 43117 | 5600 | 0 | 0.845 | 1 | 0 |
… | … | … | … | … | … | … | … |
Vila Sônia | 9.99 | 108441 | 10954 | 0 | 0.6999 | 0.8083 | 0 |
District | Area_Km2 | Pop | Pop_Dens | Num_Eco | HDI_E | HDI_I | Num_CPs |
---|---|---|---|---|---|---|---|
Água Rasa | Small | Medium | High | Null | High | High | Null |
Alto de Pinheiros | Small | Small | Low | Null | High | High | Null |
… | … | … | … | … | … | … | … |
Vila Sônia | Medium | Medium | Medium | Null | Medium | Medium | Null |
Null | Low/Small | Medium | High/Big | |||||
---|---|---|---|---|---|---|---|---|
Interval | Amount of Data | Interval | Amount of Data | Interval | Amount of Data | Interval | Amount of Data | |
Area_km2 | - | - | <8.45 | 32 | >=8.45; <12.49 | 32 | >=12.49 | 32 |
Pop | - | - | <84.467 | 32 | >=84.467; <128.519 | 32 | >=128.519 | 32 |
Pop_Dens | - | - | <7.497 | 32 | >=7.497; <12.157 | 32 | >=12.157 | 32 |
Num_Eco | 0 | 61 | =1 | 8 | >=2; <4 | 12 | >=4 | 15 |
HDI_E | - | - | <0.618 | 32 | >=0.618; <0.700 | 32 | >=0.700 | 32 |
HDI_I | - | - | <0.722 | 34 | >=0.722; <0.789 | 30 | >=0.789 | 32 |
Num_CPs | 0 | 29 | =1 | 23 | >=2; <4 | 25 | >=4 | 19 |
Classified as | Real Class | |||
---|---|---|---|---|
Null | Low | Medium | High | |
27 | 1 | 1 | 0 | Null |
2 | 21 | 0 | 0 | Low |
7 | 3 | 13 | 2 | Medium |
1 | 0 | 1 | 17 | High |
1 | Area_km2 = Medium AND HDI_E _E = Medium AND HDI_I = Medium THEN Num_CPs = Medium | conf:(0.78) |
2 | Area_km2 = Medium AND HDI_I = Medium THEN Num_CPs = Medium | conf:(0.67) |
3 | Area_km2 = Small AND Num_Eco = Null THEN Num_CPs = Low | conf:(0.63) |
4 | Num_Eco = Null AND HDI_I = Medium THEN Num_CPs = Low | conf:(0.58) |
5 | Num_Eco = Null AND HDI_I = Low THEN Num_CPs = Null | conf:(0.52) |
6 | HDI_I = Low THEN Num_CPs = Null | conf:(0.50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira Neto, G.C.d.; Alexandruk, M.; Araújo, S.A.d.; Belan, P.A.; Delmondes, F.C.; Faioli, R.A.; Matias, J.; Rodrigues, M.; Amorim, M. Investigating the Socio-Spatial Dynamics of WEEE Collection in São Paulo, Brazil: A Data Mining Approach. Recycling 2025, 10, 77. https://doi.org/10.3390/recycling10020077
Oliveira Neto GCd, Alexandruk M, Araújo SAd, Belan PA, Delmondes FC, Faioli RA, Matias J, Rodrigues M, Amorim M. Investigating the Socio-Spatial Dynamics of WEEE Collection in São Paulo, Brazil: A Data Mining Approach. Recycling. 2025; 10(2):77. https://doi.org/10.3390/recycling10020077
Chicago/Turabian StyleOliveira Neto, Geraldo C. de, Marcos Alexandruk, Sidnei Alves de Araújo, Peterson Adriano Belan, Francisco C. Delmondes, Rafael Abreu Faioli, João Matias, Mario Rodrigues, and Marlene Amorim. 2025. "Investigating the Socio-Spatial Dynamics of WEEE Collection in São Paulo, Brazil: A Data Mining Approach" Recycling 10, no. 2: 77. https://doi.org/10.3390/recycling10020077
APA StyleOliveira Neto, G. C. d., Alexandruk, M., Araújo, S. A. d., Belan, P. A., Delmondes, F. C., Faioli, R. A., Matias, J., Rodrigues, M., & Amorim, M. (2025). Investigating the Socio-Spatial Dynamics of WEEE Collection in São Paulo, Brazil: A Data Mining Approach. Recycling, 10(2), 77. https://doi.org/10.3390/recycling10020077