Noninvasive Quantification of Glucose Metabolism in Mice Myocardium Using the Spline Reconstruction Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Imaging System
2.2. Animal Model
2.3. PET Imaging
2.4. PET Data Acquisition
2.5. Reconstructions
2.5.1. Analytic Reconstruction Methods
2.5.2. Iterative Reconstruction Method
2.6. Image Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Unterrainer, M.; Eze, C.; Ilhan, H.; Marschner, S.; Roengvoraphoj, O.; Schmidt-Hegemann, N.S.; Walter, F.; Kunz, W.G.; Rosenschöld, P.M.a.; Jeraj, R.; et al. Recent advances of PET imaging in clinical radiation oncology. Radiat. Oncol. 2020, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.; Rabiner, E.A. The development, past achievements, and future directions of brain PET. J. Cereb. Blood. Flow Metab. 2012, 32, 1426–1454. [Google Scholar] [CrossRef] [PubMed]
- Robson, P.M.; Dey, D.; Newby, D.E.; Berman, D.; Li, D.; Fayad, Z.A.; Dweck, M.R. MR/PET imaging of the cardiovascular system. JACC Cardiovasc. Imaging 2017, 10, 1165–1179. [Google Scholar] [CrossRef]
- Nettis, M.A.; Veronese, M.; Nikkheslat, N.; Mariani, N.; Lombardo, G.; Sforzini, L.; Enache, D.; Harrison, N.A.; Turkheimer, F.; Mondelli, V.; et al. PET imaging shows no changes in TSPO brain density after IFN-α immune challenge in healthy human volunteers. Transl. Psychiatry 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Zhu, X. FDG PET/CT of COVID-19. Radiology 2020, 296, E118. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Lecomte, R.; Crawford, E.S. Small-animal PET: What is it, and why do we need it? J. Nucl. Med. Technol. 2012, 40, 157–165. [Google Scholar] [CrossRef]
- Cherry, S.R. Fundamentals of positron emission tomography and applications in preclinical drug development. J. Clin. Pharmacol. 2001, 41, 482–491. [Google Scholar] [CrossRef]
- Dimitrakopoulou-Strauss, A.; Pan, L.; Sachpekidis, C. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: General considerations, current clinical applications, and future perspectives. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 21–39. [Google Scholar] [CrossRef] [PubMed]
- Thorn, S.L.; de Kemp, R.A.; Dumouchel, T.; Klein, R.; Renaud, J.M.; Wells, R.G.; Gollob, M.H.; Beanlands, R.S.; DaSilva, J.N. Repeatable noninvasive measurement of mouse myocardial glucose uptake with 18F-FDG: Evaluation of tracer kinetics in a type 1 diabetes model. J. Nucl. Med. 2013, 54, 1637–1644. [Google Scholar] [CrossRef]
- Abraham, A.; Nichol, G.; Williams, K.A.; Guo, A.; de Kemp, R.A.; Garrard, L.; Davies, R.A.; Duchesne, L.; Haddad, H.; Chow, B.; et al. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: The Ottawa-FIVE substudy of the PARR 2 trial. J. Nucl. Med. 2010, 51, 567–574. [Google Scholar] [CrossRef]
- Hori, Y.; Ihara, N.; Teramoto, N.; Kunimi, M.; Honda, M.; Kato, K.; Hanakawa, T. Noninvasive quantification of cerebral metabolic rate for glucose in rats using 18F-FDG PET and standard input function. J. Cereb. Blood. Flow Metab. 2015, 35, 1664–1670. [Google Scholar] [CrossRef]
- Bertoglio, D.; Deleye, S.; Miranda, A.; Stroobants, S.; Staelens, S.; Verhaeghe, J. Estimation of the net influx rate Ki and the cerebral metabolic rate of glucose MRglc using a single static [18F] FDG PET scan in rats. Neuroimage 2021, 233, 117961. [Google Scholar] [CrossRef]
- Lanz, B.; Poitry-Yamate, C.; Gruetter, R. Image-derived input function from the vena cava for 18F-FDG PET studies in rats and mice. J. Nucl. Med. 2014, 55, 1380–1388. [Google Scholar] [CrossRef] [PubMed]
- Thackeray, J.T.; Bankstahl, J.P.; Bengel, F.M. Impact of image-derived input function and fit time intervals on patlak quantification of myocardial glucose uptake in mice. J. Nucl. Med. 2015, 56, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Alf, M.F.; Wyss, M.T.; Buck, A.; Weber, B.; Schibli, R.; Krämer, S.D. Quantification of brain glucose metabolism by 18F-FDG PET with real-time arterial and image-derived input function in mice. J. Nucl. Med. 2013, 54, 132–138. [Google Scholar] [CrossRef]
- Kudomi, N.; Bucci, M.; Oikonen, V.; Silvennoinen, M.; Kainulainen, H.; Nuutila, P.; Iozzo, P.; Roivainen, A. Extraction of input function from rat [18F] FDG PET images. Mol. Imaging Biol. 2011, 13, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Kinahan, P.E.; Rogers, J. Analytic 3D image reconstruction using all detected events. IEEE Trans. Nucl. Sci. 1989, 36, 964–968. [Google Scholar] [CrossRef]
- Shepp, L.A.; Vardi, Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1982, 1, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Hudson, H.M.; Larkin, R.S. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 1994, 13, 601–609. [Google Scholar] [CrossRef]
- Tong, S.; Alessio, A.M.; Kinahan, P.E. Image reconstruction for PET/CT scanners: Past achievements and future challenges. Imaging Med. 2010, 2, 529. [Google Scholar] [CrossRef]
- Wang, B.; Liu, H. FBP-Net for direct reconstruction of dynamic PET images. Phys. Med. Biol. 2020, 65, 235008. [Google Scholar] [CrossRef] [PubMed]
- Gaitanis, A.; Kontaxakis, G.; Spyrou, G.; Panayiotakis, G.; Tzanakos, G. PET image reconstruction: A stopping rule for the MLEM algorithm based on properties of the updating coefficients. Comput. Med. Imaging Graph. 2010, 34, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Gaitanis, A.; Kontaxakis, G.; Spyrou, G.; Panayiotakis, G.; Tzanakos, G. Studying the properties of the updating coefficients in the OSEM algorithm for iterative image reconstruction in PET. Comput. Methods Programs Biomed. 2010, 99, 219–229. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wedekind, F.; Kroll, T.; Oskamp, A.; Beer, S.; Drzezga, A.; Ermert, J.; Neumaier, B.; Bauer, A.; Elmenhorst, D. Image-derived input functions for quantification of A1 adenosine receptors availability in mice brains using PET and [18F] CPFPX. Front. Physiol. 2020, 10, 1617. [Google Scholar] [CrossRef] [PubMed]
- Radon, J. On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med. Imaging 1986, 5, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Fokas, A.S.; Kastis, G.A. Mathematical Methods in PET and SPECT Imaging. In Handbook of Mathematical Methods in Imaging; Scherzer, O., Ed.; Springer: New York, NY, USA, 2015; pp. 903–936. [Google Scholar] [CrossRef]
- Protonotarios, N.E.; Fokas, A.S.; Kostarelos, K.; Kastis, G.A. The attenuated spline reconstruction technique for single photon emission computed tomography. J. R. Soc. Interface 2018, 15, 20180509. [Google Scholar] [CrossRef] [PubMed]
- Kastis, G.A.; Kyriakopoulou, D.; Gaitanis, A.; Fernández, Y.; Hutton, B.F.; Fokas, A.S. Evaluation of the spline reconstruction technique for PET. Med. Phys. 2014, 41, 042501. [Google Scholar] [CrossRef] [PubMed]
- Kastis, G.A.; Gaitanis, A.; Samartzis, A.P.; Fokas, A.S. The SRT reconstruction algorithm for semiquantification in PET imaging. Med. Phys. 2015, 42, 5970–5982. [Google Scholar] [CrossRef] [PubMed]
- Vrachliotis, A.; Kastis, G.A.; Protonotarios, N.E.; Fokas, A.S.; Nekolla, S.G.; Anagnostopoulos, C.D.; Costaridou, L.; Gaitanis, A. Evaluation of the spline reconstruction technique for preclinical PET imaging. Comput. Methods Programs Biomed. 2022, 217, 106668. [Google Scholar] [CrossRef]
- Gaitanis, A.; Kastis, G.A.; Vlastou, E.; Bouziotis, P.; Verginis, P.; Anagnostopoulos, C.D. Investigation of image reconstruction parameters of the Mediso nanoScan PC small-animal PET/CT scanner for two different positron emitters under NEMA NU 4-2008 standards. Mol. Imaging Biol. 2017, 19, 550–559. [Google Scholar] [CrossRef]
- Defrise, M.; Kinahan, P.E.; Townsend, D.W.; Michel, C.; Sibomana, M.; Newport, D.F. Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans.Med. Imaging 1997, 16, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Thielemans, K.; Tsoumpas, C.; Mustafovic, S.; Beisel, T.; Aguiar, P.; Dikaios, N.; Jacobson, M.W. STIR: Software for tomographic image reconstruction release 2. Phys.Med. Biol. 2012, 57, 867. [Google Scholar] [CrossRef] [PubMed]
- Magdics, M.; Szirmay-Kalos, L.; Szlavecz, Á.; Hesz, G.; Benyó, B.; Cserkaszky, Á.; Lantos, J.; Légrády, D.; Czifrus, S.; Wirth, A.; et al. TeraTomo project: A fully 3D GPU based reconstruction code for exploiting the imaging capability of the NanoPET/CT system. In Proceedings of the World Molecular Imaging Congress, Kyoto, Japan, 8–11 September 2010. [Google Scholar]
- PMOD Technologies LLC, Fällanden, Switzerland. PMOD—Biomedical Image Quantification, version 3.506; 2013. Available online: https://www.pmod.com/web/ (accessed on 15 May 2024).
- Patlak, C.S.; Blasberg, R.G. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J. Cereb. Blood Flow. Metab. 1985, 5, 584–590. [Google Scholar] [CrossRef] [PubMed]
- MedCalc Software BVBA, Ostend, Belgium. MedCalc Statistical Software, version 18.9.1; 2018. Available online: http://www.medcalc.org (accessed on 10 April 2024).
- Lajtos, I.; Czernin, J.; Dahlbom, M.; Daver, F.; Emri, M.; Farshchi-Heydari, S.; Forgacs, A.; Hoh, C.K.; Joszai, I.; Krizsan, A.K.; et al. Cold wall effect eliminating method to determine the contrast recovery coefficient for small animal PET scanners using the NEMA NU-4 image quality phantom. Phys. Med. Biol. 2014, 59, 2727. [Google Scholar] [CrossRef] [PubMed]
- Protonotarios, N.E.; Fokas, A.S.; Vrachliotis, A.; Marinakis, V.; Dikaios, N.; Kastis, G.A. Reconstruction of preclinical PET images via Chebyshev polynomial approximation of the sinogram. Appl. Sci. 2022, 12, 3335. [Google Scholar] [CrossRef]
- Gear, J.; Chiesa, C.; Lassmann, M.; Gabiña, P.M.; Tran-Gia, J.; Stokke, C.; Flux, G.; Committee, E.D. EANM Dosimetry Committee series on standard operational procedures for internal dosimetry for 131I mIBG treatment of neuroendocrine tumours. EJNMMI Phys. 2020, 7, 15. [Google Scholar] [CrossRef]
- Wong, K.P.; Sha, W.; Zhang, X.; Huang, S.C. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice. J. Nuc. Med. 2011, 52, 800–807. [Google Scholar] [CrossRef]
Slope : (mL/ccm/min) | ||||
---|---|---|---|---|
Reconstruction Algorithm | ||||
Mice | FBP | SRT | Tera-Tomo 4-5 | Tera-Tomo 4-13 |
M1 | 0.098 | 0.105 | 0.091 | 0.098 |
M2 | 0.051 | 0.054 | 0.096 | 0.098 |
M3 | 0.055 | 0.062 | 0.069 | 0.069 |
M4 | 0.089 | 0.094 | 0.090 | 0.089 |
M5 | 0.060 | 0.065 | 0.134 | 0.151 |
M6 | 0.077 | 0.079 | 0.099 | 0.102 |
M7 | 0.046 | 0.052 | 0.101 | 0.115 |
Metabolic Value (mol/min/100 g) | ||||
---|---|---|---|---|
Reconstruction Algorithm | ||||
Mice | FBP | SRT | Tera-Tomo 4-5 | Tera-Tomo 4-13 |
M1 | 70.50 | 75.41 | 64.98 | 70.49 |
M2 | 36.81 | 38.63 | 68.84 | 70.62 |
M3 | 39.50 | 44.14 | 49.61 | 49.65 |
M4 | 63.82 | 67.59 | 64.88 | 63.66 |
M5 | 42.96 | 46.39 | 96.34 | 108.04 |
M6 | 55.03 | 56.92 | 71.00 | 73.43 |
M7 | 33.10 | 37.14 | 72.58 | 82.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrachliotis, A.; Gaitanis, A.; Protonotarios, N.E.; Kastis, G.A.; Costaridou, L. Noninvasive Quantification of Glucose Metabolism in Mice Myocardium Using the Spline Reconstruction Technique. J. Imaging 2024, 10, 170. https://doi.org/10.3390/jimaging10070170
Vrachliotis A, Gaitanis A, Protonotarios NE, Kastis GA, Costaridou L. Noninvasive Quantification of Glucose Metabolism in Mice Myocardium Using the Spline Reconstruction Technique. Journal of Imaging. 2024; 10(7):170. https://doi.org/10.3390/jimaging10070170
Chicago/Turabian StyleVrachliotis, Alexandros, Anastasios Gaitanis, Nicholas E. Protonotarios, George A. Kastis, and Lena Costaridou. 2024. "Noninvasive Quantification of Glucose Metabolism in Mice Myocardium Using the Spline Reconstruction Technique" Journal of Imaging 10, no. 7: 170. https://doi.org/10.3390/jimaging10070170
APA StyleVrachliotis, A., Gaitanis, A., Protonotarios, N. E., Kastis, G. A., & Costaridou, L. (2024). Noninvasive Quantification of Glucose Metabolism in Mice Myocardium Using the Spline Reconstruction Technique. Journal of Imaging, 10(7), 170. https://doi.org/10.3390/jimaging10070170