A Multi-Task Model for Pulmonary Nodule Segmentation and Classification
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Materials and Data Preprocessing
3.1.1. Materials
3.1.2. Data Augmentation and Preprocessing
3.2. Method
3.2.1. The Overall Structure of the Model
3.2.2. Coarse Seg-Net
3.2.3. Fine Seg-Net
3.2.4. Class-Net
3.2.5. Experiment Details
3.2.6. Loss Function
4. Experimental Results
4.1. Evaluation Metrics
4.2. Overall Performance Comparison with Other Multi-Task Networks
4.3. Comparison of Segmentation Results
4.4. Comparison of Benign and Malignant Classification Results
4.5. Visual Results
4.6. Ablation Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, H.; Li, J.; Zhang, L.; Cao, Y.; Yu, X.; Sun, J. Design of lung nodules segmentation and recognition algorithm based on deep learning. BMC Bioinform. 2021, 22, 314. [Google Scholar] [CrossRef] [PubMed]
- Armato, S.G., III; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.; Hoffman, E.A.; et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans. Med. Phys. 2011, 38, 915–931. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Sun, Z.; Pan, M.; Pang, J.; He, Z.; Shen, J. UUnet: An effective cascade Unet for automatic segmentation of renal parenchyma. In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 5–7 December 2021; pp. 1–6. [Google Scholar]
- Liu, H.; Cao, H.; Song, E.; Ma, G.; Xu, X.; Jin, R.; Hung, C.-C. A cascaded dual-pathway residual network for lung nodule segmentation in CT images. Phys. Medica 2019, 63, 112–121. [Google Scholar] [CrossRef]
- Wang, B.; Chen, K.; Tian, X.; Yang, Y.; Zhang, X. An effective deep network for automatic segmentation of complex lung tumors in CT images. Med. Phys. 2021, 48, 5004–5016. [Google Scholar] [CrossRef] [PubMed]
- Pezzano, G.; Ripoll, V.R.; Radeva, P. CoLe-CNN: Context-learning convolutional neural network with adaptive loss function for lung nodule segmentation. Comput. Methods Programs Biomed. 2021, 198, 105792. [Google Scholar] [CrossRef]
- Zhu, L.; Zhu, H.; Yang, S.; Wang, P.; Yu, Y. HR-MPF: High-resolution representation network with multi-scale progressive fusion for pulmonary nodule segmentation and classification. EURASIP J. Image Video Process. 2021, 2021, 34. [Google Scholar] [CrossRef]
- Singadkar, G.; Mahajan, A.; Thakur, M.; Talbar, S. Deep deconvolutional residual network based automatic lung nodule segmentation. J. Digit. Imaging 2020, 33, 678–684. [Google Scholar] [CrossRef]
- Lyu, J.; Ling, S.H. Using multi-level convolutional neural network for classification of lung nodules on CT images. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 686–689. [Google Scholar]
- Onishi, Y.; Teramoto, A.; Tsujimoto, M.; Tsukamoto, T.; Saito, K.; Toyama, H.; Imaizumi, K.; Fujita, H. Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks. Biomed. Res. Int. 2019, 1, 6051939. [Google Scholar] [CrossRef]
- Onishi, Y.; Teramoto, A.; Tsujimoto, M.; Tsukamoto, T.; Saito, K.; Toyama, H.; Imaizumi, K.; Fujita, H. Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 173–178. [Google Scholar] [CrossRef]
- Zhai, P.; Tao, Y.; Chen, H.; Cai, T.; Li, J. Multi-task learning for lung nodule classification on chest CT. IEEE Access 2020, 8, 180317–180327. [Google Scholar] [CrossRef]
- Naik, A.; Edla, D.R.; Kuppili, V. Lung nodule classification on computed tomography images using fractalnet. Wirel. Pers. Commun. 2021, 119, 1209–1229. [Google Scholar] [CrossRef]
- Zhang, B.; Qi, S.; Monkam, P.; Li, C.; Yang, F.; Yao, Y.-D.; Qian, W. Ensemble learners of multiple deep CNNs for pulmonary nodules classification using CT images. IEEE Access 2019, 7, 110358–110371. [Google Scholar] [CrossRef]
- Amyar, A.; Modzelewski, R.; Li, H.; Ruan, S. Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation. Comput. Biol. Med. 2020, 126, 104037. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Dou, Q.; Chen, H.; Qin, J.; Heng, P.-A. Multi-task deep model with margin ranking loss for lung nodule analysis. IEEE Trans. Med. Imaging 2019, 39, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, T.; Li, M.; Bueno, R.; Jayender, J. 3D deep learning based classification of pulmonary ground glass opacity nodules with automatic segmentation. Comput. Med. Imaging Graph. 2021, 88, 101814. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the Computer Vision—ECCV 2014 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Part V. pp. 740–755. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Proceedings of the Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, 14 September 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 240–248. [Google Scholar]
- Kong, S.; Shen, X.; Lin, Z.; Mech, R.; Fowlkes, C. Photo aesthetics ranking network with attributes and content adaptation. In Proceedings of the Computer Vision—ECCV 2016 European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Part I; pp. 662–679. [Google Scholar]
- Xie, Y.; Zhang, J.; Xia, Y.; Shen, C. A mutual bootstrapping model for automated skin lesion segmentation and classification. IEEE Trans. Med. Imaging 2020, 39, 2482–2493. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Zhao, L.; Wei, X.; Zhang, Q. Classification of benign and malignant pulmonary nodules based on deep learning. In Proceedings of the 2018 5th International Conference on Information Science and Control Engineering (ICISCE), Zhengzhou, China, 20–22 July 2018; pp. 156–160. [Google Scholar]
- Calheiros, J.L.L.; de Amorim, L.B.V.; de Lima, L.L.; de Lima Filho, A.F.; Ferreira Júnior, J.R.; de Oliveira, M.C. The effects of perinodular features on solid lung nodule classification. J. Digit. Imaging 2021, 34, 798–810. [Google Scholar] [CrossRef]
- Tyagi, S.; Talbar, S.N. CSE-GAN: A 3D conditional generative adversarial network with concurrent squeeze-and-excitation blocks for lung nodule segmentation. Comput. Biol. Med. 2022, 147, 105781. [Google Scholar] [CrossRef]
- Lan, T.; Li, Y.; Murugi, J.K.; Ding, Y.; Qin, Z. Run: Residual U-Net for computer-aided detection of pulmonary nodules without candidate selection. arXiv 2018, arXiv:1805.11856. [Google Scholar]
- Sarker, M.M.K.; Rashwan, H.A.; Akram, F.; Banu, S.F.; Saleh, A.; Singh, V.K.; Chowdhury, F.U.; Abdulwahab, S.; Romani, S.; Radeva, P.; et al. SLSDeep: Skin lesion segmentation based on dilated residual and pyramid pooling networks. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2018, Proceedings of the 21st International Conference, Granada, Spain, 16–20 September 2018; Part II; Springer: Berlin/Heidelberg, Germany, 2018; pp. 21–29. [Google Scholar]
- Wu, B.; Zhou, Z.; Wang, J.; Wang, Y. Joint learning for pulmonary nodule segmentation, attributes and malignancy prediction. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 1109–1113. [Google Scholar]
- Chen, W.; Wang, Q.; Yang, D.; Zhang, X.; Liu, C.; Li, Y. End-to-End multi-task learning for lung nodule segmentation and diagnosis. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 6710–6717. [Google Scholar]
- Ni, Y.; Xie, Z.; Zheng, D.; Yang, Y.; Wang, W. Two-stage multitask U-Net construction for pulmonary nodule segmentation and malignancy risk prediction. Quant. Imaging Med. Surg. 2022, 12, 292. [Google Scholar] [CrossRef]
- Jung, J.; Hong, H.; Goo, J.M. Ground-glass nodule segmentation in chest CT images using asymmetric multi-phase deformable model and pulmonary vessel removal. Comput. Biol. Med. 2018, 92, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Liu, H.; Song, E.; Hung, C.-C.; Ma, G.; Xu, X.; Jin, R.; Lu, J. Dual-branch residual network for lung nodule segmentation. Appl. Soft Comput. 2020, 86, 105934. [Google Scholar] [CrossRef]
- Shen, S.; Han, S.X.; Aberle, D.R.; Bui, A.A.T.; Hsu, W. Explainable Hierarchical Semantic Convolutional Neural Network for Lung Cancer Diagnosis. In Proceedings of the CVPR Workshops 2019, Long Beach, CA, USA, 15–20 June 2019; pp. 63–66. [Google Scholar]
- Huang, H.; Wu, R.; Li, Y.; Peng, C. Self-supervised transfer learning based on domain adaptation for benign-malignant lung nodule classification on thoracic CT. IEEE J. Biomed. Health Inform. 2022, 26, 3860–3871. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Pham, T.D. Classification of COVID-19 chest X-rays with deep learning: New models or fine tuning? Health Inf. Sci. Syst. 2021, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chaudhari, P.; Yang, H.; Lam, M.; Ravichandran, A.; Bhotika, R.; Soatto, S. Rethinking the hyperparameters for fine-tuning. arXiv 2020, arXiv:2002.11770. [Google Scholar]
- Subramanian, M.; Shanmugavadivel, K.; Nandhini, P.S. On fine-tuning deep learning models using transfer learning and hyper-parameters optimization for disease identification in maize leaves. Neural Comput. Appl. 2022, 34, 13951–13968. [Google Scholar] [CrossRef]
- Han, L.; Huang, Z.; Liu, Y.; Ye, L.; Li, D.; Yao, Z.; Wang, C.; Zhang, Y.; Yang, H.; Tan, Z.; et al. MicroRNA-106a regulates autophagy-related cell death and EMT by targeting TP53INP1 in lung cancer with bone metastasis. Cell Death Dis. 2021, 12, 1037. [Google Scholar] [CrossRef]
- Araki, Y.; Arihiro, K.; Yamaguchi, K.; Sakamoto, S.; Horimasu, Y.; Masuda, T.; Miyamoto, S.; Nakashima, T.; Iwamoto, H.; Fujitaka, K.; et al. Analysis of microRNA expression in liquid-based cytology samples may be useful for primary lung cancer diagnosis. Am. J. Clin. Pathol. 2021, 156, 644–652. [Google Scholar] [CrossRef]
- Boicean, A.; Boeras, I.; Birsan, S.; Ichim, C.; Todor, S.B.; Onisor, D.M.; Brusnic, O.; Bacila, C.; Dura, H.; Roman-Filip, C.; et al. In Pursuit of Novel Markers: Unraveling the Potential of miR-106, CEA and CA 19-9 in Gastric Adenocarcinoma Diagnosis and Staging. Int. J. Mol. Sci. 2024, 25, 7898. [Google Scholar] [CrossRef]
- Lobera, E.S.; Varela, M.A.; Jimenez, R.L.; Moreno, R.B. miRNA as biomarker in lung cancer. Mol. Biol. Rep. 2023, 50, 9521–9527. [Google Scholar] [CrossRef]
- Mangiavillano, B.; Spatola, F.; Facciorusso, A.; De Nucci, G.; Ligresti, D.; Eusebi, L.H.; Lisotti, A.; Auriemma, F.; Lamonaca, L.; Paduano, D.; et al. Transesophageal endoscopic ultrasound in the diagnosis of the lung masses: A multicenter experience with fine-needle aspiration and fine-needle biopsy needles. Eur. J. Gastroenterol. Hepatol. 2022, 34, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Ho, E.; Hegde, P. Endoscopic ultrasound in interventional pulmonology. Shanghai Chest 2020, 4, 17. [Google Scholar] [CrossRef]
- Boicean, A.; Prisca, D.; Bratu, D.G.; Bacila, C.I.; Tanasescu, C.; Chicea, R.; Fleaca, S.R.; Birsan, S.A.; Ichim, C.; Mohor, C.I.; et al. Uncommon Presentation of Gastric Duplication Cyst with Left-Sided Portal Hypertension: A Ca se Report and Literature Review. Diagnostics 2024, 14, 675. [Google Scholar] [CrossRef] [PubMed]
Tasks | Segmentation | Classification | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Methods | DI (%) | JA (%) | ACC (%) | Recall (%) | SPE (%) | ACC (%) | AUC (%) | SEN (%) | SPE (%) | |
[30] | 73.9 | - | - | - | - | 97.6 | - | - | - | |
[31] | 86.4 | 77.1 | - | - | - | 87.1 | - | - | - | |
[1] | 80.5 | - | - | 80.5 | - | 87.3 | 90.7 | - | - | |
Ours | 83.2 | 71.2 | 96.3 | 92.5 | 97.7 | 91.9 | 93.5 | 81.4 | 95.0 |
Methods | Year | DI (%) | JA (%) | ACC (%) | Recall (%) | SPE (%) |
---|---|---|---|---|---|---|
[33] | 2018 | 78.0 | 64.0 | - | 86.0 | - |
[4] | 2019 | 81.6 | 68.9 | - | 87.3 | - |
[34] | 2020 | 82.7 | 70.5 | - | 89.4 | - |
[6] | 2021 | 82.5 | 70.2 | - | 82.3 | - |
[32] | 2022 | 83.0 | 71.0 | - | - | - |
Ours | 83.2 | 71.2 | 96.3 | 92.5 | 97.7 |
Methods | Year | ACC (%) | AUC (%) | SEN (%) | SPE (%) |
---|---|---|---|---|---|
[25] | 2018 | 83.5 | 91.2 | 80.5 | 86.0 |
[35] | 2019 | 84.2 | 85.6 | 70.5 | 88.9 |
[26] | 2021 | 84.3 | 91.6 | 84.5 | 83.8 |
[36] | 2022 | 91.1 | 95.8 | - | - |
Ours | 91.9 | 93.5 | 81.4 | 95.0 |
Coarse Seg-Net | Class-Net | ACC (%) | AUC (%) | SEN (%) | SPE (%) |
---|---|---|---|---|---|
✕ | √ | 84.2 | 90.6 | 80.1 | 92.5 |
√ | √ | 91.9 | 93.5 | 81.4 | 95.0 |
Coarse Seg-Net | Fine Seg-Net | DI (%) | JA (%) | ACC (%) | Recall (%) | SPE (%) |
---|---|---|---|---|---|---|
√ | ✕ | 80.1 | 66.8 | 94.9 | 93.4 | 98.2 |
√ | √ | 83.2 | 71.2 | 96.3 | 92.5 | 97.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, T.; Zhang, R. A Multi-Task Model for Pulmonary Nodule Segmentation and Classification. J. Imaging 2024, 10, 234. https://doi.org/10.3390/jimaging10090234
Tang T, Zhang R. A Multi-Task Model for Pulmonary Nodule Segmentation and Classification. Journal of Imaging. 2024; 10(9):234. https://doi.org/10.3390/jimaging10090234
Chicago/Turabian StyleTang, Tiequn, and Rongfu Zhang. 2024. "A Multi-Task Model for Pulmonary Nodule Segmentation and Classification" Journal of Imaging 10, no. 9: 234. https://doi.org/10.3390/jimaging10090234
APA StyleTang, T., & Zhang, R. (2024). A Multi-Task Model for Pulmonary Nodule Segmentation and Classification. Journal of Imaging, 10(9), 234. https://doi.org/10.3390/jimaging10090234