Evolutionary-Driven Convolutional Deep Belief Network for the Classification of Macular Edema in Retinal Fundus Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database of Macular Edema
2.2. Methods
2.2.1. Restricted Boltzmann Machine
2.2.2. Convolutional Restricted Boltzmann Machine
3. Proposed Convolutional Deep Belief Network
4. Results and Discussion
- Group 1 (Residual Networks):
- –
- ResNet50 (1) and ResNet101 (2) belong to the family of residual networks incorporating skip connections to alleviate the vanishing gradient problem and facilitate the training of deeper architectures. ResNet50 employs 50 layers, achieving a judicious balance between depth and computational efficiency, while ResNet101, with its 101 layers, provides enhanced representational capacity.
- Group 2 (Classical and Modern Convolutional Approaches):
- –
- DenseNet121 (3) leverages dense connectivity whereby each layer receives the aggregated feature maps of all preceding layers, thereby promoting improved gradient flow and efficient feature reuse.
- –
- VGG16 (4) represents a classical CNN architecture characterized by a straightforward sequential arrangement of convolutional layers with small filters; its simplicity remains competitive in performance.
- –
- ConvNeXt Small (6) revisits traditional convolutional architectures by integrating modern design principles inspired by transformer-based models, refining conventional blocks while maintaining efficiency.
- Group 3 (Inception-Based Architectures):
- –
- InceptionV3 (5) utilizes parallel convolutional paths with filters of various sizes within the so-called “Inception modules”, thereby efficiently capturing multi-scale features.
- –
- InceptionResNetV2 (7) synergistically combines the Inception framework with residual connections, further enhancing gradient propagation and reducing the complexity of the training process.
- Group 4 (Depthwise Separable Convolution and Neural Architecture Search):
- –
- Xception (8) decomposes standard convolutional operations into depthwise and pointwise convolutions, thus increasing efficiency while preserving the depth of representation.
- –
- NASNet Large (9) is derived from a Neural Architecture Search strategy, which autonomously discovers an optimized network topology tailored for superior accuracy in large-scale vision tasks.
- –
- MobileNet (10) similarly employs depthwise separable convolutions, albeit with a strong emphasis on lightweight design, rendering it particularly well-suited for computationally constrained environments.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ME | Macular Edema |
DR | Diabetic Retinopathy |
BM | Boltzmann Machine |
RBM | Restricted Boltzmann Machine |
DBN | Deep Belief Network |
CDBN | Convolutional Deep Belief Network |
UMAE | High Specialities Medical Unit |
RFI | Retinal Fundus Images |
References
- Gurreri, A.; Pazzaglia, A. Diabetic Macular Edema: State of Art and Intraocular Pharmacological Approaches. Adv. Exp. Med. Biol. 2021, 1307, 375–389. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Calderon, G.D.; Juarez, O.H.; Hernandez, G.E.; Punzo, S.M.; De la Cruz, Z.D. Oxidative stress and diabetic retinopathy: Development and treatment. Eye 2017, 31, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Ciulla, T.A.; Amador, A.G.; Zinman, B. Diabetic Retinopathy: Vascular Pathophysiology and Emerging Therapies. Lancet Diabetes Endocrinol. 2015, 3, 159–167. [Google Scholar]
- Romero-Aroca, P. Diabetic Macular Edema: Advances in Pathophysiology and Treatment Strategies. Prog. Retin. Eye Res. 2021, 75, 100823. [Google Scholar]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Giancardo, L.; Meriaudeau, F.; Karnowski, T.P.; Li, Y.; Garg, S.; Tobin, K.W., Jr.; Chaum, E. Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med. Image Anal. 2012, 16, 216–226. [Google Scholar] [CrossRef]
- Quellec, G.; Charriére, K.; Lamard, M.; Massin, P.; Cochener, B. Automated Retinal Lesion Detection Using Deep Learning. IEEE Trans. Med. Imaging 2018, 37, 482–490. [Google Scholar]
- Sundaram, S.; Selvamani, M.; Raju, S.K.; Ramaswamy, S.; Islam, S.; Cha, J.H.; Almujally, N.A.; Elaraby, A. Diabetic Retinopathy and Diabetic Macular Edema Detection Using Ensemble Based Convolutional Neural Networks. Diagnostics 2023, 13, 1001. [Google Scholar] [CrossRef]
- Nguyen, D.M.H.; Alam, H.M.T.; Nguyen, T.; Srivastav, D.; Profitlich, H.J.; Le, N.; Sonntag, D. Deep Learning for Ophthalmology: The State-of-the-Art and Future Trends. arXiv 2025, arXiv:2501.04073. [Google Scholar]
- Parmar, U.P.S.; Surico, P.L.; Singh, R.B.; Romano, F.; Salati, C.; Spadea, L.; Musa, M.; Gagliano, C.; Mori, T.; Zeppieri, M. Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases. Medicina 2024, 60, 527. [Google Scholar] [CrossRef] [PubMed]
- Mutawa, A.M.; Alnajdi, S.; Sruthi, S. Transfer Learning for Diabetic Retinopathy Detection: A Study of Dataset Combination and Model Performance. Appl. Sci. 2023, 13, 5685. [Google Scholar] [CrossRef]
- Chavan, R.; Pete, D. Automatic multi-disease classification on retinal images using multilevel glowworm swarm convolutional neural network. J. Eng. Appl. Sci. 2024, 71, 26. [Google Scholar] [CrossRef]
- Ünver, H.M.; Kökver, Y.; Duman, E.; Erdem, O.A. Statistical Edge Detection and Circular Hough Transform for Optic Disk Localization. Appl. Sci. 2019, 9, 350. [Google Scholar] [CrossRef]
- Almotiri, J.; Elleithy, K.; Elleithy, A. Retinal Vessels Segmentation Techniques and Algorithms: A Survey. Appl. Sci. 2018, 8, 155. [Google Scholar] [CrossRef]
- Fischer, A.; Igel, C. An Introduction to Restricted Boltzmann Machines. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications; CIARP 2012, Lecture Notes in Computer Science; Alvarez, L., Mejail, M., Gomez, L., Jacobo, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7441. [Google Scholar] [CrossRef]
- LeCun, Y.; Chopra, S.; Hinton, G. Energy-Based Models in Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 1641–1654. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R. Deep Belief Networks: Advances, Challenges, and Applications. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 1569–1580. [Google Scholar]
- Lee, H.; Grosse, R.; Ranganath, R.; Ng, A.Y. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML’09, New York, NY, USA, 14–18 June 2009; pp. 609–616. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’16, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Valdez, S.I.; Hernández, A.; Botello, S. A Boltzmann based estimation of distribution algorithm. Inf. Sci. 2013, 236, 126–137. [Google Scholar] [CrossRef]
- Hashemi, M.; Meybodi, M.R. Univariate Marginal Distribution Algorithm in Combination with Extremal Optimization (EO, GEO). In Proceedings of the Neural Information Processing, Shanghai, China, 13–17 November 2011; Lu, B.L., Zhang, L., Kwok, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 220–227. [Google Scholar]
- Dong, K.; Zhou, C.; Ruan, Y.; Li, Y. MobileNetV2 Model for Image Classification. In Proceedings of the 2020 2nd International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, 18–20 December 2020. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 22–25 July 2017; pp. 4700–4708. [Google Scholar]
- Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. arXiv 2018, arXiv:1707.07012. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv 2017, arXiv:1610.02357. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. arXiv 2016, arXiv:1602.07261. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. arXiv 2015, arXiv:1512.00567. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for MobileNetV3. arXiv 2019, arXiv:1905.02244. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. arXiv 2022, arXiv:2201.03545. [Google Scholar]
Model | Accuracy | F1 Score | Recall | Precision | Time (s) |
---|---|---|---|---|---|
MobileNetV3 [23] | 0.3235 | 0.1581 | 0.3235 | 0.1046 | |
DenseNet121 [24] | 0.3235 | 0.1581 | 0.3235 | 0.1046 | |
NASNetLarge [25] | 0.3235 | 0.1581 | 0.3235 | 0.1046 | |
Xception [26] | 0.3348 | 0.1679 | 0.3348 | 0.1121 | |
InceptionResNetV2 [27] | 0.3348 | 0.1679 | 0.3348 | 0.1121 | |
InceptionV3 [28] | 0.5 | 0.4359 | 0.5 | 0.7816 | |
MobileNetV3Large [29] | 0.6199 | 0.5295 | 0.6199 | 0.7316 | |
EfficientNetB7 [30] | 0.6765 | 0.6702 | 0.6805 | 0.7641 | |
VGG16 [31] | 0.7420 | 0.7152 | 0.7420 | 0.7517 | |
CDBN [19] | 0.7720 | 0.7632 | 0.7666 | 0.7637 | |
ResNet50 [32] | 0.8212 | 0.8184 | 0.8212 | 0.8338 | |
ResNet101 [32] | 0.8484 | 0.8477 | 0.8484 | 0.8629 | |
ConvNeXtSmall [33] | 0.8959 | 0.8909 | 0.8959 | 0.9104 | |
Proposed CDBN | 0.9264 | 0.9258 | 0.9258 | 0.9259 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Ramírez, R.A.; Cruz-Aceves, I.; Hernández-Aguirre, A.; Trujillo-Sánchez, G.P.; Hernandez-González, M.A. Evolutionary-Driven Convolutional Deep Belief Network for the Classification of Macular Edema in Retinal Fundus Images. J. Imaging 2025, 11, 123. https://doi.org/10.3390/jimaging11040123
García-Ramírez RA, Cruz-Aceves I, Hernández-Aguirre A, Trujillo-Sánchez GP, Hernandez-González MA. Evolutionary-Driven Convolutional Deep Belief Network for the Classification of Macular Edema in Retinal Fundus Images. Journal of Imaging. 2025; 11(4):123. https://doi.org/10.3390/jimaging11040123
Chicago/Turabian StyleGarcía-Ramírez, Rafael A., Ivan Cruz-Aceves, Arturo Hernández-Aguirre, Gloria P. Trujillo-Sánchez, and Martha A. Hernandez-González. 2025. "Evolutionary-Driven Convolutional Deep Belief Network for the Classification of Macular Edema in Retinal Fundus Images" Journal of Imaging 11, no. 4: 123. https://doi.org/10.3390/jimaging11040123
APA StyleGarcía-Ramírez, R. A., Cruz-Aceves, I., Hernández-Aguirre, A., Trujillo-Sánchez, G. P., & Hernandez-González, M. A. (2025). Evolutionary-Driven Convolutional Deep Belief Network for the Classification of Macular Edema in Retinal Fundus Images. Journal of Imaging, 11(4), 123. https://doi.org/10.3390/jimaging11040123