Previous Issue
Volume 11, September
 
 

Tomography, Volume 11, Issue 10 (October 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 2997 KB  
Article
Diagnostic Performance of GPT-4o Compared to Radiology Residents in Emergency Abdominal Tomography Cases
by Ahmet Tanyeri, Rıdvan Akbulut, Cuma Gündoğdu, Tuğba Öztürk, Büşra Ceylan, Nasır Fırat Yalçın, Ömer Dural, Selin Kasap, Mehmet Burak Çildağ, Alparslan Ünsal and Yelda Özsunar
Tomography 2025, 11(10), 108; https://doi.org/10.3390/tomography11100108 - 26 Sep 2025
Abstract
Purpose: This study aimed to evaluate the diagnostic performance of GPT-4 Omni (GPT-4o) in emergency abdominal computed tomography (CT) cases compared to radiology residents with varying levels of experience, under conditions that closely mimic real clinical scenarios. Material and Methods: A total of [...] Read more.
Purpose: This study aimed to evaluate the diagnostic performance of GPT-4 Omni (GPT-4o) in emergency abdominal computed tomography (CT) cases compared to radiology residents with varying levels of experience, under conditions that closely mimic real clinical scenarios. Material and Methods: A total of 45 emergency cases were categorized into three levels of difficulty (easy, moderate, and difficult) and evaluated by six radiology residents with varying levels of experience (limited: R1–R2; intermediate: R3–R4; advanced: R5–R6) and GPT-4o. Cases were presented sequentially to both groups with consistent clinical data and CT images. Each case included 4 to 7 CT slice images, resulting in a total of 243 images. The participants were asked to provide the single most likely diagnosis for each case. GPT-4o’s CT image interpretation performance without clinical data and hallucination rate were evaluated. Results: Overall diagnostic accuracy rates were 76% for R1–R2, 89% for R3, 82% for R4–R5, 84% for R6, and 82% for GPT-4o. Case difficulty significantly affected the diagnostic accuracy for both the residents and GPT-4o, with accuracy decreasing as case complexity increased (p < 0.001). No statistically significant differences in diagnostic accuracy were found between GPT-4o and the residents, regardless of the experience level or case difficulty (p > 0.05). GPT-4o demonstrated a hallucination rate of 75%. Conclusions: GPT-4o demonstrated a diagnostic accuracy comparable to that of radiology residents in emergency abdominal CT cases. However, its dependence on structured prompts and high hallucination rate indicates the need for further optimization before clinical integration. Full article
Show Figures

Figure 1

14 pages, 1100 KB  
Article
Bedside Small-Bowel Challenge vs. Fluoroscopic Series for SBO: A Cost Effectiveness Analysis
by Aravinda Krishna Ganapathy, Liam Cunningham, M. Hunter Lanier, Selasi Nakhaima, Madelyn Thiel, Daniel Hoffman, Obeid Ilahi, David H. Ballard and Vincent M. Mellnick
Tomography 2025, 11(10), 107; https://doi.org/10.3390/tomography11100107 - 26 Sep 2025
Abstract
Background: Small bowel obstruction (SBO) accounts for 12–16% of surgical hospital admissions and can lead to complications such as bowel ischemia. Traditional management requires transporting patients to the Radiology Department (RD) for a fluoroscopic small bowel series, occupying resources and time. This study [...] Read more.
Background: Small bowel obstruction (SBO) accounts for 12–16% of surgical hospital admissions and can lead to complications such as bowel ischemia. Traditional management requires transporting patients to the Radiology Department (RD) for a fluoroscopic small bowel series, occupying resources and time. This study evaluates the efficacy and efficiency of the Small Bowel Challenge Exam, a bedside alternative. Methods: A retrospective analysis was performed on 85 SBO patients from January 2018 to December 2023 at an academic tertiary care facility, comparing the traditional fluoroscopic series (37 patients) to the bedside Small Bowel Challenge Exam (48 patients). Key metrics analyzed included hospital resource utilization, overall costs, and length of stay. Results: Gender and race distributions were similar between groups (p = 0.268 and p = 0.808, respectively). Median total costs were lower in the challenge group (USD 1243 vs. USD 1472; p = 0.1229), significantly so when excluding CT scan costs (USD 993.5 vs. USD 1270; p = 0.0500). Core costs also significantly favored the challenge group (USD 389.6 vs. USD 615; p < 0.0001). Length of stay and variable costs showed no significant differences (p = 0.3846 and p = 0.8065, respectively). Additional imaging frequencies were comparable (p = 0.96 for CT scans; p = 0.97 for XR exams). Conclusions: The Small Bowel Challenge Exam reduces certain costs and logistical burdens without prolonging length of stay, suggesting more efficient use of hospital resources. Further research is recommended to evaluate broader implementation and long-term impacts. Full article
Show Figures

Figure 1

17 pages, 2326 KB  
Article
Flow-Compensated vs. Monopolar Diffusion Encodings: Differences in Lesion Detectability Regarding Size and Position in Liver Diffusion-Weighted MRI
by Alessandra Moldenhauer, Frederik B. Laun, Hannes Seuss, Sebastian Bickelhaupt, Bianca Reithmeier, Thomas Benkert, Michael Uder, Marc Saake and Tobit Führes
Tomography 2025, 11(10), 106; https://doi.org/10.3390/tomography11100106 - 23 Sep 2025
Viewed by 73
Abstract
Background/Objectives: Diffusion-weighted imaging (DWI) of the liver is prone to cardiac motion-induced signal dropout, which can be reduced using flow-compensated (FloCo) instead of monopolar (MP) diffusion encodings. This study examined differences in lesion detection capabilities between FloCo and MP DWI and whether [...] Read more.
Background/Objectives: Diffusion-weighted imaging (DWI) of the liver is prone to cardiac motion-induced signal dropout, which can be reduced using flow-compensated (FloCo) instead of monopolar (MP) diffusion encodings. This study examined differences in lesion detection capabilities between FloCo and MP DWI and whether visibility depends on lesion size and position. Methods: Forty patients with at least one known or suspected focal liver lesion (FLL) underwent FloCo and MP DWI. For both sequences, b = 800 s/mm2 images were used to manually segment FLLs, which were then sorted by size and location (liver segment). The number of detected lesions, the sensitivity, and the contrast-to-noise ratio (CNR) were calculated and compared across sequences, sizes, and locations. Results: Significantly more lesions were detected using FloCo DWI compared to MP DWI (1211 vs. 1154; p < 0.001). In total, 1258 unique lesions were detected, 104 of which were identified only by FloCo DWI, and 47 of which only by MP DWI. The sensitivities of FloCo DWI and MP DWI were 96.3% (95% CI: 95.1–97.2%) and 91.7% (95% CI: 90.1–93.2%), respectively. The largest additional lesion found with only one of the two sequences measured 10.9 mm in FloCo DWI and 8.2 mm in MP DWI. In relative numbers, more additional FloCo lesions were found in the left liver lobe than in the right liver lobe (6.4% vs. 3.5%). The lesion CNR was significantly higher for FloCo DWI than for MP DWI (p < 0.05) for all evaluated size intervals and liver segments. Conclusions: FloCo DWI appears to enhance the detectability of FLLs compared to MP DWI, particularly for small liver lesions and lesions in the left liver lobe. Full article
(This article belongs to the Section Abdominal Imaging)
Show Figures

Figure 1

Previous Issue
Back to TopTop