Biocontrol of the Common Carp (Cyprinus carpio) in Australia: A Review and Future Directions
Abstract
:1. Introduction
2. The Essential Information Required for Potential Viral Biocontrol of Carp
2.1. Carp Biology in Australia
2.1.1. Distribution Models of Carp in Australia and Biomass Estimates
2.1.2. Genomic and Transcriptomic Map of Carp in Australia
2.2. Viral Epidemiology
2.3. Safety of the Virus
2.4. Efficacy of the Virus
2.5. Epidemiological Modelling of Virus Release and Spread
2.6. Evolution of the Released Virus
2.7. Broad-Scale Control Measure(s) to Complement the Virus
2.8. Ecological Concerns
2.9. Social Risks
2.10. Restoration Benefits from Carp Control
3. Final Comments and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simberloff, D. Invasive Species: What Everyone Needs to Know; Oxford University Press: New York, NY, USA, 2013; p. 11. [Google Scholar]
- Nature’s Dangerous Decline ‘Unprecedented’; Species Extinction Rates ‘Accelerating’. Media Release; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES): Bonn, Germany, 2019; Available online: https://www.ipbes.net/news/Media-Release-Global-Assessment (accessed on 28 December 2019).
- Kearney, S.G.; Carwardine, J.; Reside, A.E.; Fisher, D.O.; Maron, M.; Doherty, T.S.; Legge, S.; Silcock, J.; Woinarski, J.C.Z.; Garnett, S.T.; et al. The threats to Australia’s imperilled species and implications for a national conservation response. Pac. Conserv. Boil. 2019, 25, 231. [Google Scholar] [CrossRef]
- Cresswell, I.D.; Murphy, H. Biodiversity: Freshwater species and ecosystems. In Australia State of the Environment 2016; Australian Government Department of the Environment and Energy: Canberra, Australia, 2016. Available online: https://soe.environment.gov.au/theme/biodiversity/topic/2016/freshwater-species-and-ecosystems (accessed on 28 December 2019). [CrossRef]
- Haynes, G.D.; Gilligan, D.; Grewe, P.; Nicholas, F. Population genetics and management units of invasive common carpCyprinus carpioin the Murray-Darling Basin, Australia. J. Fish Boil. 2009, 75, 295–320. [Google Scholar] [CrossRef] [PubMed]
- Shearer, K.; Mulley, J. The Introduction and Distribution of the Carp, Cyprinus carpio Linnaeus, in Australia. Mar. Freshw. Res. 1978, 29, 551. [Google Scholar] [CrossRef]
- Koehn, J.D. Carp (Cyprinus carpio) as a powerful invader in Australian waterways. Freshw. Boil. 2004, 49, 882–894. [Google Scholar] [CrossRef]
- Hedrick, R.P.; Gilad, O.; Yun, S.; Spangenberg, J.V.; Marty, G.D.; Nordhausen, R.W.; Kebus, M.J.; Bercovier, H.; Eldar, A. A Herpesvirus Associated with Mass Mortality of Juvenile and Adult Koi, a Strain of Common Carp. J. Aquat. Anim. Health 2000, 12, 44–57. [Google Scholar] [CrossRef]
- McColl, K.A.; Cooke, B.D.; Sunarto, A. Viral biocontrol of invasive vertebrates: Lessons from the past applied to cyprinid herpesvirus-3 and carp (Cyprinus carpio) control in Australia. Biol. Control 2014, 72, 109–117. [Google Scholar] [CrossRef]
- Vilizzi, L.; Walker, K.F. Age and growth of the common carp, Cyprinus carpio, in the River Murray, Australia: Validation, consistency of age interpretation, and growth models. Environ. Biol. Fishes 1999, 54, 77–106. [Google Scholar] [CrossRef]
- Brown, P.; Gilligan, D. Optimising an integrated pest-management strategy for a spatially structured population of common carp (Cyprinus carpio) using meta-population modelling. Mar. Freshw. Res. 2014, 65, 538–550. [Google Scholar] [CrossRef]
- Conallin, A.J.; Smith, B.B.; Thwaites, L.A.; Walker, K.F.; Gillanders, B.M. Exploiting the innate behaviour of common carp, Cyprinus carpio, to limit invasion and spawning in wetlands of the River Murray, Australia. Fish. Manag. Ecol. 2016, 23, 431–449. [Google Scholar] [CrossRef]
- Koehn, J.D.; Todd, C.R.; Zampatti, B.P.; Stuart, I.G.; Conallin, A.; Thwaites, L.; Ye, Q. Using a Population Model to Inform the Management of River Flows and Invasive Carp (Cyprinus carpio). Environ. Manag. 2017, 61, 432–442. [Google Scholar] [CrossRef]
- Stuart, I.; Fanson, B.; Lyon, J.; Stocks, J.; Brooks, S.; Norris, A.; Thwaites, L.; Beitzel, M.; Hutchison, M.; Ye, Q.; et al. A National Estimate of Carp Biomass for Australia; Final Report; Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning: Heidelberg, Australia; Australia for Fisheries Research and Development Corporation: Canberra, Australia, 2019. [Google Scholar]
- Todd, C.R.; Koehn, J.D.; Brown, T.R.; Fanson, B.; Brooks, S.; Stuart, I. Modelling Carp Biomass: Estimates for the Year 2023; Final Report; Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning: Heidelberg, Australia; Australia for Fisheries Research and Development Corporation: Canberra, Australia, 2019. [Google Scholar]
- McColl, K.A.; Sunarto, A.; Slater, J.; Bell, K.; Asmus, M.; Fulton, W.; Hall, K.; Brown, P.; Gilligan, D.; Hoad, J.; et al. Cyprinid herpesvirus 3 as a potential biological control agent for carp (Cyprinus carpio) in Australia: Susceptibility of non-target species. J. Fish Dis. 2016, 40, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Engelsma, M.; Way, K.; Dodge, M.; Voorbergen-Laarman, M.; Panzarin, V.; Abbadi, M.; El-Matbouli, M.; Skall, H.F.; Kahns, S.; Stone, D. Detection of novel strains of cyprinid herpesvirus closely related to koi herpesvirus. Dis. Aquat. Org. 2013, 107, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimmett, S.G.; Warg, J.V.; Getchell, R.; Johnson, D.J.; Bowser, P.R. An Unusual Koi Herpesvirus Associated with a Mortality Event of Common Carp Cyprinus carpio in New York State, USA. J. Wildl. Dis. 2006, 42, 658–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.-R.; Bently, J.; Beck, L.; Reed, A.; Miller-Morgan, T.; Heidel, J.R.; Kent, M.L.; Rockey, D.D.; Jin, L. Analysis of koi herpesvirus latency in wild common carp and ornamental koi in Oregon, USA. J. Virol. Methods 2013, 187, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Suárez, N.M.; Wilkie, G.; Dong, C.; Bergmann, S.M.; Lee, P.-Y.A.; Davison, A.J.; Vanderplasschen, A.; Boutier, M. Genomic and biologic comparisons of cyprinid herpesvirus 3 strains. Vet. Res. 2018, 49, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopf, R.K.; Boutier, M.; Finlayson, C.M.; Hodges, K.; Humphries, P.; King, A.; Kingsford, R.T.; Marshall, J.; McGinness, H.; Thresher, R.; et al. Biocontrol in Australia: Can a carp herpesvirus (CyHV-3) deliver safe and effective ecological restoration? Boil. Invasions 2019, 21, 1857–1870. [Google Scholar] [CrossRef]
- Perelberg, A.; Smirnov, M.; Hutoran, M.; Diamant, A.; Bejerano, Y.; Kotler, M. Epidemiological description of a new viral disease afflicting cultured Cyprinus carpio in Israel. Isr. J. Aquac. Bamidgeh 2003, 55, 5–12. [Google Scholar]
- Sunarto, A.; Rukyani, A.; Itami, T. Indonesian experience on the outbreak of koi herpesvirus in koi and carp (Cyprinus carpio). Bull. Fish Res. Agen. 2005, 2, 15–21. [Google Scholar]
- Uchii, K.; Matsui, K.; Iida, T.; Kawabata, Z. Distribution of the introduced cyprinid herpesvirus 3 in a wild population of common carp, Cyprinus carpiol. J. Fish Dis. 2009, 32, 857–864. [Google Scholar] [CrossRef]
- Ito, T.; Sano, M.; Kurita, J.; Yuasa, K.; Iida, T. Carp Larvae Are Not Susceptible to Koi Herpesvirus. Fish Pathol. 2007, 42, 107–109. [Google Scholar] [CrossRef] [Green Version]
- Raj, V.S.; Fournier, G.; Rakus, K.; Ronsmans, M.; Ouyang, P.; Michel, B.; Delforges, C.; Costes, B.; Farnir, F.; Leroy, B.; et al. Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells. Vet. Res. 2011, 42, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronsmans, M.; Boutier, M.; Rakus, K.; Farnir, F.; Desmecht, D.; Ectors, F.; Vandecan, M.; Lieffrig, F.; Melard, C.; Vanderplasschen, A. Sensitivity and Permissivity of Cyprinus Carpio to Cyprinid Herpesvirus 3 during the Early Stages of Its Development: Importance of the Epidermal Mucus as an Innate Immune Barrier. Vet. Res. 2014, 45, 100. [Google Scholar] [CrossRef] [PubMed]
- Gilad, O.; Yun, S.; Adkison, M.A.; Way, K.; Willits, N.H.; Bercovier, H.; Hedrick, R.P. Molecular comparison of isolates of an emerging fish pathogen, koi herpesvirus, and the effect of water temperature on mortality of experimentally infected koi. J. Gen. Virol. 2003, 84, 2661–2667. [Google Scholar] [CrossRef]
- Costes, B.; Raj, V.S.; Michel, B.; Fournier, G.; Thirion, M.; Gillet, L.; Mast, J.; Lieffrig, F.; Bremont, M.; Vanderplasschen, A. The Major Portal of Entry of Koi Herpesvirus in Cyprinus carpio is the Skin. J. Virol. 2009, 83, 2819–2830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, T.; Yoshida, N.; Kasai, H.; Yoshimizu, M. Survival of Koi Herpesvirus (KHV) in Environmental Water. Fish Pathol. 2006, 41, 153–157. [Google Scholar] [CrossRef] [Green Version]
- McColl, K. Final Report: Phase 3 of the Carp Herpesvirus Project (CyHV-3); PestSmart Toolkit publication; Invasive Animals Cooperative Research Centre: Canberra, Australia, 2016. [Google Scholar]
- Eide, K.E.; Miller-Morgan, T.; Heidel, J.R.; Kent, M.L.; Bildfell, R.J.; LaPatra, S.; Watson, G.; Jin, L. Investigation of Koi Herpesvirus Latency in Koi. J. Virol. 2011, 85, 4954–4962. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Chen, S.; Russell, D.S.; Löhr, C.; Milston-Clements, R.; Song, T.; Miller-Morgan, T.; Jin, L. Analysis of stress factors associated with KHV reactivation and pathological effects from KHV reactivation. Virus Res. 2017, 240, 200–206. [Google Scholar] [CrossRef]
- McColl, K.A.; Sunarto, A.; Neave, M.J. Biocontrol of Carp: More Than Just a Herpesvirus. Front. Microbiol. 2018, 9, 2288. [Google Scholar] [CrossRef]
- Assessment of Zoonotic Risk from Infectious Salmon Anaemia Virus; Scientific Committee on Animal Health and Animal Welfare: European Commission, Health & Consumer Protection Directorate-General: Brussels, Belgium, 2000; Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_scah_out44_en.pdf (accessed on 2 January 2019).
- Roper, K.; Ford, L. Cyprinid Herpesvirus 3 and Its Relevance to Human Health; Final Report; Australian National University: Canberra, Australia; Australia for Fisheries Research and Development Corporation: Canberra, Australia, 2019. [Google Scholar]
- Bretzinger, A.; Fischer-Scherl, T.; Oumouna, M.; Hoffmann, R.; Truyen, U. Mass mortalities in koi, Cyprinus carpio, associated with gill and skin disease. Bull. Eur. Ass. Fish Pathol. 1999, 19, 182–185. [Google Scholar]
- Kempter, J.; Sadowski, J.; Schütze, H.; Fischer, U.; Dauber, M.; Fichtner, D.; Panicz, R.; Bergmann, S.M. Koi Herpes Virus: Do Acipenserid Restitution Programs Pose a Threat to Carp Farms in the Disease-Free Zones? Acta Ichthyol. Piscat. 2009, 39, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Fabian, M.; Bäumer, A.; Steinhagen, D. Do wild fish species contribute to the transmission of koi herpesvirus to carp in hatchery ponds? J. Fish Dis. 2012, 36, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.-Y.; Won, K.-M.; Kim, J.-W.; Jee, B.-Y.; Park, M.A.; Hong, S. Detection of koi herpesvirus (KHV) in healthy cyprinid seed stock. Dis. Aquat. Org. 2014, 112, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaede, L.; Steinbrück, J.; Bergmann, S.M.; Jäger, K.; Gräfe, H.; Schoon, H.A.; Speck, S.; Truyen, U. Koi herpesvirus infection in experimentally infected common carp Cyprinus carpio (Linnaeus, 1758) and three potential carrier fish species Carassius carassius (Linnaeus, 1758); Rutilus rutilus (Linnaeus, 1758); and Tinca tinca (Linnaeus, 1758) by quantita. J. Appl. Ichthyol. 2017, 30, 776–784. [Google Scholar] [CrossRef]
- Pospichal, A.; Pokorova, D.; Vesely, T.; Piackova, V. Susceptibility of the topmouth gudgeon (Pseudorasbora parva) to CyHV-3 under no-stress and stress conditions. Vet. Med. 2018, 63, 229–239. [Google Scholar] [CrossRef]
- Minamoto, T.; Honjo, M.N.; Yamanaka, H.; Tanaka, N.; Itayama, T.; Kawabata, Z. Detection of cyprinid herpesvirus-3 DNA in lake plankton. Res. Vet. Sci. 2011, 90, 530–532. [Google Scholar] [CrossRef]
- Kielpinski, M.; Kempter, J.; Panicz, R.; Sadowski, J.; Schutze, H.; Ohlemeyer, S.; Bergmann, S.M. Detection of KHV in freshwater mussels and crustaceans from ponds with KHV history in common carp (Cyprinus carpio). Isr. J. Aquac. Bamidgeh 2010, 62, 28–37. [Google Scholar]
- El-Matbouli, M.; Soliman, H. Transmission of Cyprinid herpesvirus-3 (CyHV-3) from goldfish to naïve common carp by cohabitation. Res. Vet. Sci. 2011, 90, 536–539. [Google Scholar] [CrossRef]
- Yuasa, K.; Kurita, J.; Kawana, M.; Kiryu, I.; Ohseko, N.; Sano, M. Development of mRNA-specific RT-PCR for the detection of koi herpesvirus (KHV) replication stage. Dis. Aquat. Org. 2012, 100, 11–18. [Google Scholar] [CrossRef]
- Boutier, M.; Donohoe, O.; Kopf, R.K.; Humphries, P.; Becker, J.A.; Marshall, J.; Vanderplasschen, A. Biocontrol of Carp: The Australian Plan Does Not Stand Up to a Rational Analysis of Safety and Efficacy. Front. Microbiol. 2019, 10, 882. [Google Scholar] [CrossRef]
- Palmiera, L.; Sorel, O.; Van Campe, W.; Boudry, C.; Roels, S.; Myster, F.; Reschner, A.; Coulie, P.G.; Kerkhofs, P.; Vanderplasschen, A.; et al. An essential role for gamma-herpesvirus latency-associated nuclear antigen homolog in an acute lymphoproliferative disease of cattle. Proc. Natl. Acad. Sci. USA 2013, 110, E1933–E1942. [Google Scholar] [CrossRef] [Green Version]
- Yuasa, K.; Sano, M.; Oseko, N. Goldfish is Not a Susceptible Host of Koi Herpesvirus (KHV) Disease. Fish Pathol. 2013, 48, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Thresher, R.E.; Allman, J.; Stremick-Thompson, L. Impacts of an invasive virus (CyHV-3) on established invasive populations of common carp (Cyprinus carpio) in North America. Boil. Invasions 2018, 20, 1703–1718. [Google Scholar] [CrossRef]
- Fenner, F.; Woodroofe, G.M. Changes in the virulence and antigenic structure of strains of myxoma virus recovered from Australian wild rabbits between 1950 and 1964. Aust. J. Exp. Boil. Med. Sci. 1965, 43, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Di Giallonardo, F.; Holmes, E.C. Viral biocontrol: Grand experiments in disease emergence and evolution. Trends Microbiol. 2014, 23, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McColl, K.A.; Sunarto, A.; Holmes, E.C. Cyprinid herpesvirus 3 and its evolutionary future as a biological control agent for carp in Australia. Virol. J. 2016, 13, 206. [Google Scholar] [CrossRef] [Green Version]
- Yuasa, K.; Ito, T.; Sano, M. Effect of Water Temperature on Mortality and Virus Shedding in Carp Experimentally Infected with Koi Herpesvirus. Fish Pathol. 2008, 43, 83–85. [Google Scholar] [CrossRef] [Green Version]
- Pikarsky, E.; Ronen, A.; Abramowitz, J.; Levavi-Sivan, B.; Hutoran, M.; Shapira, Y.; Steinitz, M.; Perelberg, A.; Soffer, D.; Kotler, M. The pathogenesis of acute viral diseases in fish induced by the carp interstitial nephritis and gill necrosis virus. J. Virol. 2004, 78, 9544–9551. [Google Scholar] [CrossRef] [Green Version]
- Sunarto, A.; Liongue, C.; McColl, K.A.; Adams, M.M.; Bulach, D.M.; Crane, M.; Schat, K.A.; Slobedman, B.; Barnes, A.; Ward, A.C.; et al. Koi Herpesvirus Encodes and Expresses a Functional Interleukin-10. J. Virol. 2012, 86, 11512–11520. [Google Scholar] [CrossRef] [Green Version]
- Sunarto, A.; McColl, K.A. Expression of immune-related genes of common carp during cyprinid herpesvirus 3 infection. Dis. Aquat. Org. 2015, 113, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Neave, M.; Sunarto, A.; McColl, K.A. Transcriptomic analysis of common carp anterior kidney during Cyprinid herpesvirus 3 infection: Immunoglobulin repertoire and homologue functional divergence. Sci. Rep. 2017, 7, 41531. [Google Scholar] [CrossRef] [Green Version]
- Watanuki, H.; Yamaguchi, T.; Sakai, M. Suppression in function of phagocytic cells in common carp Cyprinus carpio L. injected with estradiol, progesterone or 11-ketotestosterone. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2002, 132, 407–413. [Google Scholar] [CrossRef]
- Stuart, I.G.; Jones, M. Large, regulated forest floodplain is an ideal recruitment zone for non-native common carp (Cyprinus carpio L.). Mar. Freshw. Res. 2006, 57, 333–347. [Google Scholar] [CrossRef]
- Sunarto, A.; McColl, K.A.; Crane, M.; Sumiati, T.; Hyatt, A.D.; Barnes, A.; Walker, P.J. Isolation and characterization of koi herpesvirus (KHV) from Indonesia: Identification of a new genetic lineage. J. Fish Dis. 2010, 34, 87–101. [Google Scholar] [CrossRef]
- Sunarto, A.; McColl, K.A.; Crane, M.S.J.; Schat, K.A.; Slobedman, B.; Barnes, A.; Walker, P.J. Characteristics of cyprinid herpesvirus 3 in different phases of infection: Implications for disease transmission and control. Virus Res. 2014, 188, 45–53. [Google Scholar] [CrossRef]
- McColl, K.A.; Crane, M.S.J. Cyprinid Herpesvirus 3, CyHV-3: Its Potential as a Biological Control Agent for Carp in Australia; PestSmart Toolkit publication; Invasive Animals Cooperative Research Centre: Canberra, Australia, 2013. [Google Scholar]
- Durr, P.A.; Davis, S.; Joehnk, K.; Graham, K.; Hopf, J.; Arakala, A.; McColl, K.A.; Taylor, S.; Chen, Y.; Sengupta, A.; et al. Development of Hydrological, Ecological and Epidemiological Modelling to Inform a CyHV3 Release Strategy for the Biocontrol of Carp in the Murray Darling Basin. Part A. In Integrated Ecological and Epidemiological Modelling; Final Report; CSIRO-Australian Animal Health Laboratory: Geelong, Australia; Australia for Fisheries Research and Development Corporation: Canberra, Australia, 2019. [Google Scholar]
- Hedrick, R.P.; Waltzek, T.B.; McDowell, T.S. Susceptibility of koi carp, common carp, goldfish, and goldfish x common carp hybrids to cyprinid herpesvirus-2 and herpesvirus-3. J. Aquat. Anim. Health 2006, 18, 26–34. [Google Scholar] [CrossRef]
- Bergmann, S.M.; Sadowski, J.; Kielpinski, M.; Bartlomiejczyk, M.; Fichtner, D.; Riebe, R.; Lenk, M.; Kempter, J. Susceptibility of koi x crucian carp and koi x goldfish hybrids to koi herpesvirus (KHV) and the development of KHV disease (KHVD). J. Fish Dis. 2010, 33, 267–272. [Google Scholar] [CrossRef]
- Geoghegan, J.; Duchene, S.; Holmes, E.C. Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathog. 2017, 13, e1006215. [Google Scholar] [CrossRef]
- Geoghegan, J.; Holmes, E.C. Predicting virus emergence amid evolutionary noise. Open Boil. 2017, 7, 170189. [Google Scholar] [CrossRef] [Green Version]
- Kerr, P.; Liu, J.; Cattadori, I.; Ghedin, E.; Read, A.; Holmes, E.C. Myxoma Virus and the Leporipoxviruses: An Evolutionary Paradigm. Viruses 2015, 7, 1020–1061. [Google Scholar] [CrossRef]
- Mahar, J.; Nicholson, L.; Eden, J.-S.; Duchêne, S.; Kerr, P.J.; Duckworth, J.; Ward, V.K.; Holmes, E.C.; Strive, T. Benign Rabbit Caliciviruses Exhibit Evolutionary Dynamics Similar to Those of Their Virulent Relatives. J. Virol. 2016, 90, 9317–9329. [Google Scholar] [CrossRef] [Green Version]
- Di Giallonardo, F.; Holmes, E.C. Exploring Host–Pathogen Interactions through Biological Control. PLoS Pathog. 2015, 11, e1004865. [Google Scholar] [CrossRef]
- Saunders, G.R.; Cooke, B.; McColl, K.; Shine, R.; Peacock, T. Modern approaches for the biological control of vertebrate pests: An Australian perspective. Biol. Control 2010, 52, 288–295. [Google Scholar] [CrossRef]
- Conallin, A.J.; Smith, B.B.; Thwaites, L.A.; Walker, K.F.; Gillanders, B.M. Environmental Water Allocations in regulated lowland rivers may encourage offstream movements and spawning by common carp, Cyprinus carpio: Implications for wetland rehabilitation. Mar. Freshw. Res. 2012, 63, 865–877. [Google Scholar] [CrossRef]
- Davidson, S. Carp crusades. Ecos 2002, 112, 8–12. [Google Scholar]
- Wedekind, C. Synergistic Genetic Biocontrol Options for Common Carp (Cyprinus Carpio); Final Report; Department of Ecology and Evolution, University of Lausanne: Lausanne, Switzerland; Fisheries Research and Development Corporation: Canberra, Australia, 2019. [Google Scholar]
- Thresher, R.; Van De Kamp, J.; Campbell, G.; Grewe, P.; Canning, M.; Barney, M.; Bax, N.J.; Dunham, R.; Su, B.; Fulton, W. Sex-ratio-biasing constructs for the control of invasive lower vertebrates. Nat. Biotechnol. 2014, 32, 424–427. [Google Scholar] [CrossRef]
- Akbari, O.S.; Bellen, H.J.; Bier, E.; Bullock, S.L.; Burt, A.; Church, G.M.; Cook, K.; Duchek, P.; Edwards, O.R.; Esvelt, K.M.; et al. Safeguarding gene drive experiments in the laboratory. Science 2015, 349, 927–929. [Google Scholar] [CrossRef] [Green Version]
- Neville, H. Trojan Males and the Genetics of Non-Native Control. 2016. Available online: https://www.tu.org/blog-posts/trojan-males-and-the-genetics-of-non-native-control (accessed on 14 August 2017).
- Cotton, S.; Wedekind, C. Control of introduced species using Trojan sex chromosomes. Trends Ecol. Evol. 2007, 22, 441–443. [Google Scholar] [CrossRef]
- Maselko, M.; Heinsch, S.; Chacón, J.M.; Harcombe, W.R.; Smanski, M. Engineering species-like barriers to sexual reproduction. Nat. Commun. 2017, 8, 883. [Google Scholar] [CrossRef] [Green Version]
- NCCP. The National Carp Control Plan Strategic Research and Technology Plan 2017–2019; Fisheries Research and Development Corporation: Canberra, Australia, 2019. Available online: http://carp.gov.au/what-we-are-doing/research/nccp-research-projects (accessed on 10 March 2020).
- Beckett, S.; Caley, P.; Hill, M.; Nelson, S.; Henderson, B. Biocontrol of European Carp: Ecological Risk Assessment for the Release of Cyprinid Herpesvirus 3 (CyHV-3) for Carp Biocontrol in Australia; Final Report; CSIRO Data 61; Canberra, Australia Australia for Fisheries Research and Development Corporation: Canberra, Australia, 2019. [Google Scholar]
- Olsen, J.; Cooke, B.D.; Trost, S.; Judge, D. Is wedge-tailed eagle, Aquila audax, survival and breeding success closely linked to the abundance of European rabbits, Oryctolagus cuniculus? Wildl. Res. 2014, 41, 95–105. [Google Scholar] [CrossRef]
- Cliff, H.B.; Jones, M.E.; Johnson, C.N.; Pech, R.P.; Heyward, R.P.; Norbury, G.L. Short-term pain before long-term gain? Suppression of invasive primary prey temporarily increases predation on native lizards. Boil. Invasions 2020, 22, 2063–2078. [Google Scholar] [CrossRef]
- Bureau of Resource Sciences. Rabbit Calicivirus Disease: A Report under the Biological Control Act 1984; Bureau of Resource Sciences: Canberra, Australia, 1996. [Google Scholar]
- Brookes, J.D.; Hipsey, M.R. Water Quality Risk Assessment of Carp Biocontrol for Australian Waterways; Final Report; Environment Institute, University of Adelaide, Australia for Fisheries Research and Development Corporation: Canberra, Australia, 2019. [Google Scholar]
- Silva, L.G.M.; Bell, K.; Baumgartner, L.J. Clean-Up Procedures Applied for Fish Kill Events: A Review for the National Carp Control Plan; Final Report; Australia for Fisheries Research and Development Corporation: Canberra, Australia, 2019. [Google Scholar]
- Tilley, A.; Colquhoun, E.; O’Keefe, E.; Nash, S.; McDonald, D.; Evans, T.; Gillespie, G.; Hardwick, D.; Beavis, S.; Francina, C.; et al. Options for Utilisation of Carp Biomass; Final Report; Australia for Fisheries Research and Development Corporation: Canberra, Australia, 2019. [Google Scholar]
- Zhang, A.; Carter, L.; Curnock, M.; Mankad, A. Biocontrol of European Carp: Ecological and Social Risk Assessment for the Release of Cyprinid Herpesvirus 3 (CyHV-3) for Carp Biocontrol in Australia; Final Report; CSIRO Land and Water: Dutton Park, Queensland, Australia; Australia for Fisheries Research and Development Corporation: Canberra, Australia, 2019. [Google Scholar]
- Nichols, S.J.; Gawne, B.; Richards, R.; Lintermans, M.; Thompson, R. NCCP: The Likely Medium-to Long-Term Ecological Outcomes of Major Carp Population Reductions; Final Report; Institute for Applied Ecology, University of Canberra, Australia for Fisheries Research and Development Corporation: Canberra, Australia, 2019. [Google Scholar]
- Cooke, B.; Chudleigh, P.; Simpson, S.; Saunders, G.R. The Economic Benefits of the Biological Control of Rabbits in Australia, 1950–2011. Aust. Econ. Hist. Rev. 2013, 53, 91–107. [Google Scholar] [CrossRef]
- Knowlton, N. Doom and gloom won’t save the world. Nature 2017, 544, 271. [Google Scholar] [CrossRef] [Green Version]
Information Required | Knowns | Unknowns |
---|---|---|
Carp biology in Australia |
|
|
Viral epidemiology |
|
|
Safety of the virus(species-specificity) |
| |
Efficacy of the virus |
|
|
Epidemiological modelling of virus release and spread |
|
|
Evolution of the released virus |
|
|
Broad- scale control measure(s) to complement the virus |
|
|
Ecological concerns |
|
|
Social risks |
|
|
Restoration benefits from carp control |
|
|
Technology | Strengths | Weaknesses | Comments |
---|---|---|---|
Trojan Y chromosome |
|
|
|
Daughterless carp |
|
|
|
Gene-drive |
|
|
|
Self-stocking incompatible-male system (see [78]) |
|
|
|
More virulent strain of CyHV-3 |
|
|
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McColl, K.A.; Sunarto, A. Biocontrol of the Common Carp (Cyprinus carpio) in Australia: A Review and Future Directions. Fishes 2020, 5, 17. https://doi.org/10.3390/fishes5020017
McColl KA, Sunarto A. Biocontrol of the Common Carp (Cyprinus carpio) in Australia: A Review and Future Directions. Fishes. 2020; 5(2):17. https://doi.org/10.3390/fishes5020017
Chicago/Turabian StyleMcColl, Kenneth A, and Agus Sunarto. 2020. "Biocontrol of the Common Carp (Cyprinus carpio) in Australia: A Review and Future Directions" Fishes 5, no. 2: 17. https://doi.org/10.3390/fishes5020017