Evaluation of Meat Meal as a Replacer for Fish Meal in Diet on Growth Performance, Feed Utilization, Chemical Composition, Hematology, and Innate Immune Responses of Olive Flounder (Paralichthys olivaceus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet Formulation
2.2. Experimental Fish and Culturing Conditions
2.3. Sample Collection and Biological Measurements of the Experimental Fish
2.4. Hematological Analysis of Olive Flounder
2.5. Innate Immune Responses of Olive Flounder
2.6. Determination of the Chemical Composition of Olive Flounder and Experimental Diets
2.7. Statistical Analysis
3. Results
3.1. Performance of Fish in the Feeding Trial
3.2. Proximate Composition of the Whole-Body Olive Flounder
3.3. Plasma Chemistry of Olive Flounder
3.4. Innate Immune Responses of Olive Flounder
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Meeting the Sustainable Development Goals. In The State of World Fisheries and Aquaculture 2018; FAO: Rome, Italy, 2018; Available online: https://www.fao.org/documents/card/es/c/I9540EN (accessed on 26 September 2022).
- FAO. Towards Blue Transformation. In The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Kim, K.W.; Kim, K.D.; Han, H.S.; Won, S.; Moniruzzaman, M.; Lee, J.H.; Bai, S.C. Evaluation of the dietary protein requirement of a selectively bred (F-5 generation) strain of olive flounder, Paralichthys olivaceus. Turk. J. Fish. Aquat. Sci. 2017, 17, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- KOSIS. Korean Statistical Information Service, Korea. 2022. Available online: https://kosis.kr/eng/ (accessed on 26 September 2022).
- Aragão, C.; Gonçalves, A.T.; Costas, B.; Azeredo, R.; Xavier, M.J.; Engrola, S. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals 2022, 12, 1211. [Google Scholar] [CrossRef] [PubMed]
- Glencross, B.D.; Baily, J.; Berntssen, M.H.; Hardy, R.; MacKenzie, S.; Tocher, D.R. Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Rev. Aquac. 2020, 12, 703–758. [Google Scholar] [CrossRef] [Green Version]
- FAO. A Quarterly Update on World Seafood Markets. In Globefish Highlights January 2020 ISSUE, with Jan.–Sep. 2019 Statistics; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Hamidoghli, A.; Won, S.; Farris, N.W.; Bae, J.; Choi, W.; Yun, H.; Bai, S.C. Solid state fermented plant protein sources as fish meal replacers in whiteleg shrimp Litopaeneus vannamei. Anim. Feed Sci. Technol. 2020, 264, 114474. [Google Scholar] [CrossRef]
- Choi, W.; Hamidoghli, A.; Rivero, C.J.; Bae, J.; Lee, S.; Lee, B.J.; Hur, S.; Han, H.; Choi, Y.H.; Bai, S.C. Animal and plant proteins as alternative ingredients in diets for sub-adult olive flounder Paralichthys olivaceus at farm conditions. Aquac. Res. 2022, 53, 2739–2749. [Google Scholar] [CrossRef]
- Kim, J.; Cho, S.H.; Kim, T.; Hur, S.W. Substitution effect of fish meal with various sources of animal by-product meals in feed on growth, feed utilization, body composition, haematology and non-specific immune response of olive flounder (Paralichthys olivaceus, Temminck & Schlegel, 1846). Aquac. Res. 2021, 52, 2802–2817. [Google Scholar] [CrossRef]
- Dossou, S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Dawood, M.A.O.; Basuini, M.F.; El-Hais, A.M.; Olivier, A. Effect of partial replacement of fish meal by fermented rapeseed meal on growth, immune response and oxidative condition of red sea bream juvenile, Pagrus major. Aquaculture 2018, 490, 228–235. [Google Scholar] [CrossRef]
- Lu, F.; Haga, Y.; Satoh, S. Effects of replacing fish meal with rendered animal protein and plant protein sources on growth response, biological indices, and amino acid availability for rainbow trout Oncorhynchus mykiss. Fish. Sci. 2015, 81, 95–105. [Google Scholar] [CrossRef]
- Millamena, O.M.; Golez, N.V. Evaluation of processed meat solubles as replacement for fish meal in diet for juvenile grouper Epinephelus coioides (Hamilton). Aquac. Res. 2001, 32, 281–287. [Google Scholar] [CrossRef]
- Gatlin, D.M., III; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, A.; Nelson, R.; et al. Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquac. Res. 2007, 38, 551–579. [Google Scholar] [CrossRef]
- Cho, S.H.; Lee, S.-M.; Park, B.-H.; Park, I.-S.; Choi, C.Y.; Lee, S.-M.; Min, B.H.; Hur, S.-B.; Lim, Y.S. Effect of Partial Dietary Substitution of Meat Meal for Fish Meal on the Growth and Body Composition of the Juvenile Olive Flounder Paralichthys olivaceus. J. Fish. Sci. Technol. 2005, 8, 138–141. [Google Scholar] [CrossRef] [Green Version]
- Ha, M.S.; Cho, S.H.; Kim, T. Dietary substitution of fish meal by meat meal: Effects on juvenile olive flounder (Paralichthys olivaceus) growth performance, feed utilization, haematology, biochemical profile and disease resistance against Streptococcus iniae. Aquac. Nutr. 2021, 27, 1888–1902. [Google Scholar] [CrossRef]
- Moutinho, S.; Peres, H.; Serra, C.; Martínez-Llorens, S.; Tomás-Vidal, A.; Jover-Cerdá, M.; Oliva-Teles, A. Meat and bone meal as partial replacement for fish meal in diets for gilthead seabream (Sparus aurata) juveniles: Growth, feed efficiency, amino acid utilization, and economic efficiency. Aquaculture 2017, 468, 271–277. [Google Scholar] [CrossRef]
- Sato, T.; Kikuchi, K. Meat Meal as a Protein Source in the Diet of Juvenile Japanese Flounder. Fish. Sci. 1997, 63, 877–880. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.C.; Barlow, C.G.; Rodgers, L.J.; Ruscoe, I. Potential of meat meal to replace fish meal in extruded dry diets for barramundi, Lates calcarifer (Bloch). I. Growth performance. Aquac. Res. 2003, 34, 23–32. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, S.; Cui, Y.; Lei, W.; Zhu, X.; Yang, Y.; Yu, Y. Effect of replacement of dietary fish meal by meat and bone meal and poultry by-product meal on growth and feed utilization of gibel carp, Carassius auratus gibelio. Aquac. Nutr. 2004, 10, 289–294. [Google Scholar] [CrossRef]
- Lee, S.-M.; Cho, S.H.; Kim, K.-D. Effects of Dietary Protein and Energy Levels on Growth and Body Composition of Juvenile Flounder (Paralichthys olivaceus). J. World Aquac. Soc. 2000, 31, 306–315. [Google Scholar] [CrossRef]
- Kim, K.W.; Wang, X.J.; Bai, S.C. Optimum dietary protein level for maximum growth of juvenile olive flounder Paralichthys olivaceus (Temminck et Schlegel). Aquac. Res. 2002, 33, 673–679. [Google Scholar] [CrossRef]
- Lange, S.; Guđmundsdottir, B.K.; Magnadottir, B. Humoral immune parameters of cultured Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish. Immunol. 2001, 11, 523–535. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, S.; Wang, W.; Tan, B.; Dong, X.; Yang, Q.; Liu, H.; Zhang, S. The Apparent Digestibility Coefficients of 13 Selected Animal Feedstuff for Cobia, Rachycentron canadum. J. World Aquac. Soc. 2017, 48, 280–289. [Google Scholar] [CrossRef]
- Cho, S.H. Effect of Dietary Protein and Lipid Levels on Compensatory Growth of Juvenile Olive Flounder (Paralichthys olivaceus) Reared in Suboptimal Temperature. Asian Australas. J. Anim. Sci. 2011, 24, 407–413. [Google Scholar] [CrossRef]
- Kim, K.-D.; Kang, Y.J.; Lee, H.M.; Kim, K.-W.; Jang, M.-S.; Choi, S.-M.; Lee, S.-M.; Cho, S.H. Effects of Dietary Protein and Lipid Levels on Growth and Body Composition of Subadult Olive Flounder, Paralichthys olivaceus, at a Suboptimal Water Temperature. J. World Aquac. Soc. 2010, 41, 263–269. [Google Scholar] [CrossRef]
- Kureshy, N.; Davis, D.A.; Arnold, C.R. Partial Replacement of Fish Meal with Meat-and-Body Meal, Flash-Dried Poultry By-Product Meal, and Enzyme-Digested Poultry By-Product Meal in Practical Diets for Juvenile Red Drum. N. Am. J. Aquac. 2000, 62, 266–272. [Google Scholar] [CrossRef]
- Millamena, O.M. Replacement of fish meal by animal by-product meals in a practical diet for grow-out culture of grouper Epinephelus coioides. Aquaculture 2002, 204, 75–84. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Q.; Cao, H.; Tong, T.; Huang, G.; Li, W. Replacement of fish meal by meat and bone meal in diets for juvenile snakehead Ophiocephalus argus. Fish. Sci. 2015, 81, 723–729. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lee, S.M. The use of meat meal as a dietary protein source replacing fish meal in juvenile rockfish Sebastes schlegeli. J. Aquac. 2005, 18, 92–97. [Google Scholar]
- Stone, D.A.; Allan, G.L.; Parkinson, S.; Rowland, S.J. Replacement of fish meal in diets for Australian silver perch, Bidyanus bidyanus: III. Digestibility and growth using meat meal products. Aquaculture 2000, 186, 311–326. [Google Scholar] [CrossRef]
- Hu, L.; Yun, B.; Xue, M.; Wang, J.; Wu, X.; Zheng, Y.; Han, F. Effects of fish meal quality and fish meal substitution by animal protein blend on growth performance, flesh quality and liver histology of Japanese seabass (Lateolabrax japonicus). Aquaculture 2013, 372–375, 52–61. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, S.; Cui, Y.; Zhu, X.; Lei, W.; Yang, Y. Partial and total replacement of fishmeal with poultry by-product meal in diets for gibel carp, Carassius auratus gibelio Bloch. Aquac. Res. 2006, 37, 40–48. [Google Scholar] [CrossRef]
- Hernández, C.; Olvera-Novoa, M.A.; Aguilar-Vejar, K.; González-Rodríguez, B.; de la Parra, I.A. Partial replacement of fish meal by porcine meat meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture 2008, 277, 244–250. [Google Scholar] [CrossRef]
- Ha, M.S.; Lee, K.W.; Kim, J.; Yun, A.; Jeong, H.S.; Lee, M.J.; Baek, S.I.; Cho, S.H.; Kim, K.W.; Lim, S.G.; et al. Dietary substitution effect of fish meal with chicken by-product meal on growth, feed utilization, body composition, haematology and non-specific immune responses of olive flounder (Paralichthys olivaceus). Aquac. Nutr. 2021, 27, 315–326. [Google Scholar] [CrossRef]
- Kim, Y.C.; Yoo, G.Y.; Wang, X.; Lee, S.; Shin, I.S.; Bai, S.C. Long Term Feeding Effects of Dietary Dehulled Soybean Meal as a Fish Meal Replacer in Growing Olive Flounder Paralichthys olivaceus. Asian Australas. J. Anim. Sci. 2008, 21, 868–872. [Google Scholar] [CrossRef]
- Seong, M.; Lee, S.; Lee, S.; Song, Y.; Bae, J.; Chang, K.; Bai, S.C. The effects of different levels of dietary fermented plant-based protein concentrate on growth, hematology and innate immune responses in juvenile olive flounder, Paralichthys olivaceus. Aquaculture 2018, 483, 196–202. [Google Scholar] [CrossRef]
- Ahmed, I.; Reshi, Q.M.; Fazio, F. The influence of the endogenous and exogenous factors on hematological parameters in different fish species: A review. Aquac. Int. 2020, 28, 869–899. [Google Scholar] [CrossRef]
- Anderson, D.P. Immunostimulants, adjuvants, and vaccine carriers in fish: Applications to aquaculture. Annu. Rev. Fish Dis. 1992, 2, 281–307. [Google Scholar] [CrossRef]
- Wu, Y.-R.; Gong, Q.-F.; Fang, H.; Liang, W.-W.; Chen, M.; He, R.-J. Effect of Sophora flavescens on non-specific immune response of tilapia (GIFT Oreochromis niloticus) and disease resistance against Streptococcus agalactiae. Fish Shellfish Immunol. 2013, 34, 220–227. [Google Scholar] [CrossRef]
- McCord, J.M.; Fridovich, I. Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef]
- Dawood, M.A.; Koshio, S.; Ishikawa, M.; Yokoyama, S. Immune responses and stress resistance in red sea bream, Pagrus major, after oral administration of heat-killed Lactobacillus plantarum and vitamin C. Fish Shellfish Immunol. 2016, 54, 266–275. [Google Scholar] [CrossRef]
- Adel, M.; Yeganeh, S.; Dadar, M.; Sakai, M.; Dawood, M.A. Effects of dietary Spirulina platensis on growth performance, humoral and mucosal immune responses and disease resistance in juvenile great sturgeon (Huso huso Linnaeus, 1754). Fish Shellfish. Immunol. 2016, 56, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Luo, L. Effects of different levels of soybean meal inclusion in replacement for fish meal on growth, digestive enzymes and transaminase activities in practical diets for juvenile tilapia, Oreochromis niloticus × O. aureus. Anim. Feed. Sci. Technol. 2011, 168, 80–87. [Google Scholar] [CrossRef]
Experimental Diets | ||||||
---|---|---|---|---|---|---|
MM0 | MM10 | MM20 | MM30 | MM40 | MM50 | |
Ingredient (%, DM) | ||||||
Fish meal (FM) 1 | 65.0 | 58.5 | 52.0 | 45.5 | 39.0 | 32.5 |
Meat meal (MM) 2 | 7.4 | 14.7 | 22.0 | 29.4 | 36.7 | |
Dehulled soybean meal | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 |
Wheat flour | 16.5 | 15.8 | 15.2 | 14.6 | 13.9 | 13.3 |
Fish oil 3 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Soybean oil | 2.0 | 1.8 | 1.6 | 1.4 | 1.2 | 1.0 |
Vitamin mix 4 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Mineral mix 5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Choline | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Nutrients (%, DM) | ||||||
Dry matter | 94.3 | 94.1 | 94.0 | 94.3 | 94.2 | 94.3 |
Crude protein | 55.3 | 55.3 | 55.6 | 55.1 | 55.5 | 55.3 |
Crude lipid | 10.3 | 10.5 | 10.9 | 10.4 | 10.8 | 10.7 |
Ash | 12.4 | 12.5 | 13.0 | 12.9 | 13.4 | 12.5 |
Experimental Diets | Initial Weight (g/fish) | Final Weight (g/fish) | Survival (%) | Weight Gain (g/fish) | SGR 1 (%/day) |
---|---|---|---|---|---|
MM0 | 14.7 ± 0.00 | 55.3 ± 0.35 | 97.5 ± 1.14 | 40.6 ± 0.35 a | 2.36 ± 0.011 a |
MM10 | 14.7 ± 0.00 | 55.6 ± 0.49 | 96.7 ± 1.67 | 40.9 ± 0.50 a | 2.37 ± 0.016 a |
MM20 | 14.7 ± 0.00 | 54.7 ± 0.40 | 100.0 ± 0.00 | 40.0 ± 0.40 ab | 2.34 ± 0.013 ab |
MM30 | 14.7 ± 0.01 | 54.0 ± 0.49 | 95.0 ± 2.89 | 39.3 ± 0.49 b | 2.32 ± 0.016 bc |
MM40 | 14.7 ± 0.01 | 52.7 ± 0.37 | 98.3 ± 1.67 | 38.0 ± 0.37 c | 2.28 ± 0.013 c |
MM50 | 14.7 ± 0.01 | 52.7 ± 0.31 | 100.0 ± 0.00 | 38.0 ± 0.31 c | 2.28 ± 0.010 c |
p-value | >0.3 | <0.001 | <0.001 |
Orthogonal Polynomial Contrast a | Regression Analysis | ||||||
---|---|---|---|---|---|---|---|
Dependent Variables | Linear | Quadratic | Cubic | Equation | p-Value | R2 | Ymax (%) |
Weight gain | 0.0001 | 0.3824 | 0.0894 | Y = 0.00009395X3 − 0.007644X2 + 0.09283X + 40.6283 | <0.001 | 0.7865 | X = 7.0 |
SGR | 0.0001 | 0.4056 | 0.0929 | Y = 0.000003159X3 − 0.0002562X2 + 0.003123X + 2.3647 | <0.001 | 0.7755 | X = 7.0 |
FER | 0.0001 | 0.8686 | 0.1050 | Y = 0.000002158X3 − 0.0001594X2 + 0.001406X + 1.0158 | <0.001 | 0.7540 | X = 4.9 |
PER | 0.0034 | 0.2494 | 0.0457 | Y = 0.000006433X3 − 0.0004363X2 + 0.004538X + 1.7929 | <0.009 | 0.5290 | X = 6.0 |
Experimental Diets | Feed Consumption (g/fish) | FER 1 | PER 2 | PR 3 | CF 4 | VSI 5 | HIS 6 |
---|---|---|---|---|---|---|---|
MM0 | 41.0 ± 0.62 | 1.02 ± 0.008 a | 1.79 ± 0.018 a | 33.90 ± 0.938 | 1.29 ± 0.002 a | 3.16 ± 0.002 | 1.22 ± 0.001 |
MM10 | 41.4 ± 0.70 | 1.02 ± 0.011 a | 1.79 ± 0.013 a | 31.49 ± 1.397 | 1.29 ± 0.001 ab | 3.16 ± 0.000 | 1.22 ± 0.001 |
MM20 | 40.2 ± 0.08 | 1.00 ± 0.010 ab | 1.79 ± 0.018 a | 31.72 ± 1.915 | 1.28 ± 0.000 b | 3.16 ± 0.000 | 1.22 ± 0.000 |
MM30 | 42.3 ± 1.22 | 0.97 ± 0.011 bc | 1.68 ± 0.035 b | 28.81 ± 2.669 | 1.28 ± 0.000 ab | 3.16 ± 0.001 | 1.22 ± 0.000 |
MM40 | 40.3 ± 0.68 | 0.96 ± 0.009 c | 1.70 ± 0.031 b | 29.38 ± 2.291 | 1.28 ± 0.000 b | 3.16 ± 0.000 | 1.22 ± 0.000 |
MM50 | 39.6 ± 0.04 | 0.96 ± 0.009 c | 1.73 ± 0.016 ab | 29.55 ± 2.187 | 1.28 ± 0.001 ab | 3.16 ± 0.000 | 1.22 ± 0.000 |
p-value | >0.1 | < 0.002 | < 0.02 | >0.3 | <0.04 | >0.9 | >0.4 |
Experimental Diets | Moisture | Crude Protein | Crude Lipid | Ash |
---|---|---|---|---|
MM0 | 74.7 ± 0.11 b | 16.5 ± 0.09 | 3.0 ± 0.01 b | 3.4 ± 0.01 |
MM10 | 75.6 ± 0.84 ab | 16.3 ± 0.66 | 3.0 ± 0.05 b | 3.4 ± 0.15 |
MM20 | 76.6 ± 0.62 ab | 16.3 ± 0.68 | 3.1 ± 0.05 b | 3.6 ± 0.08 |
MM30 | 75.0 ± 0.16 b | 16.4 ± 0.18 | 3.0 ± 0.02 b | 3.5 ± 0.09 |
MM40 | 76.5 ± 0.49 ab | 15.9 ± 0.76 | 3.2 ± 0.03 a | 3.4 ± 0.13 |
MM50 | 77.2 ± 0.88 a | 15.8 ± 0.81 | 3.2 ± 0.02 a | 3.7 ± 0.14 |
p-value | <0.04 | >0.9 | <0.002 | >0.3 |
Experimental Diets | AST (U/L) | ALT (U/L) | ALP (U/L) | T-BIL (mg/dL) | T-CHO (mg/dL) | TG (mg/dL) | TP (g/dL) | ALB (g/dL) |
---|---|---|---|---|---|---|---|---|
MM0 | 18.1 ± 0.61 | 5.9 ± 0.34 | 156.8 ± 8.38 | 0.3 ± 0.03 | 239.1 ± 3.93 | 389.1 ± 4.24 | 3.9 ± 0.05 | 1.0 ± 0.03 |
MM10 | 18.2 ± 0.70 | 5.8 ± 0.22 | 157.9 ± 4.01 | 0.3 ± 0.03 | 241.0 ± 5.18 | 388.3 ± 5.77 | 3.9 ± 0.06 | 0.9 ± 0.04 |
MM20 | 18.3 ± 0.50 | 5.9 ± 0.20 | 156.8 ± 4.57 | 0.3 ± 0.02 | 240.7 ± 5.42 | 389.4 ± 7.37 | 3.9 ± 0.06 | 1.0 ± 0.04 |
MM30 | 18.7 ± 0.73 | 5.9 ± 0.31 | 156.9 ± 6.17 | 0.3 ± 0.03 | 240.3 ± 4.73 | 387.7 ± 6.29 | 3.9 ± 0.05 | 0.9 ± 0.03 |
MM40 | 18.3 ± 0.93 | 5.8 ± 0.22 | 156.8 ± 4.68 | 0.3 ± 0.03 | 240.7 ± 5.25 | 387.7 ± 5.52 | 3.9 ± 0.04 | 0.9 ± 0.05 |
MM50 | 18.3 ± 0.65 | 5.8 ± 0.22 | 157.4 ± 4.84 | 0.3 ± 0.02 | 240.0 ± 5.14 | 386.6 ± 6.58 | 3.9 ± 0.05 | 0.8 ± 0.06 |
p-value | >0.9 | >0.9 | >0.9 | >0.1 | >0.9 | >0.9 | >0.9 | >0.3 |
Experimental Diets | SOD Activity (%) | Lysozyme Activity (U/mL) |
---|---|---|
MM0 | 70.01 ± 1.648 | 0.144 ± 0.016 |
MM10 | 68.06 ± 0.549 | 0.121 ± 0.024 |
MM20 | 68.85 ± 1.256 | 0.092 ± 0.005 |
MM30 | 67.96 ± 0.632 | 0.089 ± 0.012 |
MM40 | 68.60 ± 0.541 | 0.094 ± 0.004 |
MM50 | 67.96 ± 0.353 | 0.085 ± 0.015 |
p-value | >0.6 | >0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaman, M.F.U.; Li, R.; Cho, S.H. Evaluation of Meat Meal as a Replacer for Fish Meal in Diet on Growth Performance, Feed Utilization, Chemical Composition, Hematology, and Innate Immune Responses of Olive Flounder (Paralichthys olivaceus). Fishes 2022, 7, 343. https://doi.org/10.3390/fishes7060343
Zaman MFU, Li R, Cho SH. Evaluation of Meat Meal as a Replacer for Fish Meal in Diet on Growth Performance, Feed Utilization, Chemical Composition, Hematology, and Innate Immune Responses of Olive Flounder (Paralichthys olivaceus). Fishes. 2022; 7(6):343. https://doi.org/10.3390/fishes7060343
Chicago/Turabian StyleZaman, Md. Farid Uz, Ran Li, and Sung Hwoan Cho. 2022. "Evaluation of Meat Meal as a Replacer for Fish Meal in Diet on Growth Performance, Feed Utilization, Chemical Composition, Hematology, and Innate Immune Responses of Olive Flounder (Paralichthys olivaceus)" Fishes 7, no. 6: 343. https://doi.org/10.3390/fishes7060343
APA StyleZaman, M. F. U., Li, R., & Cho, S. H. (2022). Evaluation of Meat Meal as a Replacer for Fish Meal in Diet on Growth Performance, Feed Utilization, Chemical Composition, Hematology, and Innate Immune Responses of Olive Flounder (Paralichthys olivaceus). Fishes, 7(6), 343. https://doi.org/10.3390/fishes7060343