Determination of Organ Blood Flow in Pelteobagrus fulvidraco, Ctenopharyngodon idella, and Micropterus salmoides by Fluorescent Microspheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Animals
2.3. Dorsal Aorta and Heart Cannulation
2.4. Sample Preparation
2.5. Standard Curve and Recovery Rate
2.6. Calculation of Regional Organ Perfusion
2.7. Statistical Analysis
3. Results
3.1. Methodology
3.2. Organs/Tissues Weight
3.3. OBFs of YC at Different Temperatures
3.4. OBFs of YC, LB, and GC at the Same Temperature
4. Discussion
4.1. Organs Weight
4.2. OBFs of YC at Different Temperatures
4.3. Comparison of OBFs among YC, LB, and GC at the Same Temperature
4.4. Comparison of OBF between Fish and Other Animals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Clarke, A.; Johnston, N.M. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 1999, 68, 893–905. [Google Scholar] [CrossRef]
- Killen, S.S.; Atkinson, D.; Glazier, D.S. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol. Lett. 2010, 13, 184–193. [Google Scholar] [CrossRef]
- Hu, Q.; Nelson, T.J.; Seymour, R.S. Regional femoral bone blood flow rates in laying and non-laying chickens estimated with fluorescent microspheres. J. Exp. Biol. 2021, 224, jeb242597. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.-S.; Elwell-Cuddy, T.; Baynes, R.; Tell, L.; Davis, J.; Maunsell, F.; Riviere, J.; Lin, Z. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part III: Sheep and goat. J. Vet. Pharmacol. Ther. 2020, 44, 456–477. [Google Scholar] [CrossRef]
- Lin, Z.; Li, M.; Wang, Y.S.; Tell, L.A.; Baynes, R.E.; Davis, J.L.; Vickroy, T.W.; Riviere, J.E. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part I: Cattle and swine. J. Vet. Pharmacol. Ther. 2020, 43, 385–420. [Google Scholar] [CrossRef]
- Meng, L.; Wang, Y.; Zhang, L.; McDonagh, D.L. Heterogeneity and Variability in Pressure Autoregulation of Organ Blood Flow: Lessons Learned over 100+ Years. Crit. Care Med. 2019, 47, 436–448. [Google Scholar] [CrossRef]
- Wang, Y.S.; Li, M.; Tell, L.A.; Baynes, R.E.; Davis, J.L.; Vickroy, T.W.; Riviere, J.E.; Lin, Z. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part II: Chicken and turkey. J. Vet. Pharmacol. Ther. 2020, 44, 423–455. [Google Scholar] [CrossRef]
- Barron, M.G.; Tarr, B.D.; Hayton, W.L. Temperature-dependence of cardiac output and regional blood flow in rainbow trout, Salmo gairdneri Richardson. J. Fish Biol. 1987, 31, 735–744. [Google Scholar] [CrossRef]
- Neutze, J.; Wyler, F.; Rudolph, A. Use of radioactive microspheres to assess distribution of cardiac output in rabbits. J. Am. J. Physiol. 1968, 215, 486–495. [Google Scholar] [CrossRef]
- Schimmel, C.; Frazer, D.; Glenny, R.W.; Physiology, C. Extending fluorescent microsphere methods for regional organ blood flow to 13 simultaneous colors. Am. J. Physiol.-Heart C 2001, 280, H2496–H2506. [Google Scholar] [CrossRef]
- Forsberg, F.; Liu, J.-B.; Russell, K.M.; Guthrie, S.L.; Goldberg, B.B. Volume flow estimation using time domain correlation and ultrasonic flowmetry. J. Ultras. Med. 1995, 21, 1037–1045. [Google Scholar] [CrossRef]
- Eun, H.C. Evaluation of skin blood flow by laser Doppler flowmetry. Clin. Dermatol. 1995, 13, 337–347. [Google Scholar] [CrossRef]
- Henson, R. Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Smits, G.J.; Roman, R.J.; Lombard, J.H. Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow. J. Appl. Physiol. 1986, 61, 666–672. [Google Scholar] [CrossRef]
- Tabrizchi, R.; Pugsley, M.K. Methods of blood flow measurement in the arterial circulatory system. J. Pharmacol. Toxicol. Meth. 2000, 44, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Glenny, R.W. Blood flow measurements using fluorescent microspheres. In Analytical Spectroscopy Library; Elsevier: Amsterdam, The Netherlands, 1995; Volume 6, pp. 255–280. [Google Scholar]
- Prinzen, F.W.; Bassingthwaighte, J.B. Blood flow distributions by microsphere deposition methods. Cardiovasc. Res. 2000, 45, 13–21. [Google Scholar] [CrossRef]
- CFFA. China Fishery Statistics Yearbook 2019; China Agriculture Press: Beijing, China, 2023. [Google Scholar]
- Lucchetti, D.; Fabrizi, L.; Guandalini, E.; Podestà, E.; Marvasi, L.; Zaghini, A.; Coni, E. Long depletion time of enrofloxacin in rainbow trout (Oncorhynchus mykiss). Antimicrob. Agents Chemother. 2004, 48, 3912–3917. [Google Scholar] [CrossRef]
- Xu, N.; Li, M.; Chou, W.C.; Lin, Z. A physiologically based pharmacokinetic model of doxycycline for predicting tissue residues and withdrawal intervals in grass carp (Ctenopharyngodon idella). Food Chem. Toxicol. 2020, 137, 111127. [Google Scholar] [CrossRef]
- Qiang, J.; Zhong, C.Y.; Bao, J.W.; Liang, M.; Liang, C.; Li, H.X.; He, J.; Xu, P. The effects of temperature and dissolved oxygen on the growth, survival and oxidative capacity of newly hatched hybrid yellow catfish larvae (Tachysurus fulvidraco♀ × Pseudobagrus vachellii♂). J. Therm. Biol. 2019, 86, 102436. [Google Scholar] [CrossRef]
- Canty, A.A.; Farrell, A.P. Intrinsic regulation of flow in an isolated tail preparation of the ocean pout (Macrozoarces americanus). Can. J. Zool. 1985, 63, 2013–2020. [Google Scholar] [CrossRef]
- Randall, D.J.; Daxboeck, C. Cardiovascular changes in the rainbow trout (Salmo gairdneri Richardson) during exercise. Can. J. Zool. 1982, 60, 1135–1140. [Google Scholar] [CrossRef]
- Elander, A.; Idström, J.P.; Holm, S.; Scherstén, T.; Bylund-Fellenius, A.C. Metabolic adaptation to reduced muscle blood flow. II. Mechanisms and beneficial effects. Amer. J. Physiol. 1985, 249, E70–E76. [Google Scholar] [CrossRef] [PubMed]
- Kent, B.; Pierce, M.; Pierce, E. Blood flow distribution in Squalus acanthias: A sequel. J. Bull. Mt Desert Biol. Lab. 1973, 13, 64–66. [Google Scholar]
Organs/Tissues | Percentage (%) | ||
---|---|---|---|
Yellow Catfish | Grass Carp | Largemouth Bass | |
Skin | 5.88 ± 1.35 | 3.47 ± 0.10 | 2.73 ± 0.82 |
Muscle | 32.26 ± 2.87 | 41.85 ± 2.23 | 39.64 ± 8.82 |
Heart | 0.12 ± 0.02 | 0.07 ± 0.01 | 0.05 ± 0.01 |
Liver | 1.58 ± 0.31 | 1.02 ± 0.17 | 1.54 ± 0.45 |
Spleen | 0.09 ± 0.03 | 0.16 ± 0.05 | 0.06 ± 0.02 |
Gill | 2.63 ± 0.39 | 1.67 ± 0.19 | 1.89 ± 0.50 |
Kidney | 0.97 ± 0.20 | 0.36 ± 0.10 | 0.12 ± 0.03 |
Swim bladder | 0.85 ± 0.09 | 0.71 ± 0.02 | 0.40 ± 0.16 |
Gut | 0.90 ± 0.13 | 1.44 ± 0.59 | 1.51 ± 0.33 |
Blood | 2.21 ± 0.06 | 5.80 ± 0.01 | 1.18 ± 0.12 |
Remainder | 52.59 ± 4.21 | 43.45 ± 2.32 | 50.79 ± 5.06 |
Organs/Tissues | Vb (mL/min/g) | ||
---|---|---|---|
20 °C | 25 °C | 30 °C | |
Skin | 0.34 ± 0.27 a | 0.21 ± 0.13 b | 0.10 ± 0.05 b |
Muscle | 0.23 ± 0.22 a | 0.24 ± 0.17 a | 0.16 ± 0.18 a |
Heart | 2.86 ± 1.58 a | 6.40 ± 5.51 a | 7.14 ± 5.10 a |
Liver | 0.39 ± 0.28 a | 0.76 ± 0.71 a | 0.44 ± 0.20 a |
Spleen | 3.59 ± 2.37 a | 2.23 ± 2.01 a | 2.26 ± 2.16 a |
Gill | 0.69 ± 0.73 a | 0.54 ± 0.53 a | 1.31 ± 1.04 a |
Kidney | 0.32 ± 0.17 a | 0.85 ± 0.44 a | 0.33 ± 0.19 a |
Swim bladder | 0.28 ± 0.21 a | 0.44 ± 0.65 a | 0.19 ± 0.15 a |
Gut | 0.23 ± 0.19 a | 0.28 ± 0.18 a | 0.24 ± 0.15 a |
Remainder | 0.39 ± 0.47 a | 0.59 ± 0.34 a | 0.11 ± 0.07 a |
Organs/Tissues | Vb (mL/min/g) | ||
---|---|---|---|
Yellow Cartfish | Grass Carp | Largemouth Bass | |
Skin | 0.21 ± 0.13 b | 3.72 ± 2.96 a | 0.40 ± 0.38 b |
Muscle | 0.24 ± 0.17 b | 5.78 ± 0.91 a | 9.47 ± 1.03 b |
Heart | 6.40 ± 5.51 a | 9.55 ± 6.38 a | 8.80 ± 3.17 a |
Liver | 0.76 ± 0.71 b | 6.92 ± 5.88 a | 0.71 ± 0.76 b |
Spleen | 2.23 ± 2.01 a | 1.00 ± 0.58 a | 2.33 ± 1.41 a |
Gill | 0.54 ± 0.53 a | 6.70 ± 4.23 a | 2.72 ± 2.68 a |
Kidney | 0.85 ± 0.44 b | 10.3 ± 7.23 a | 3.01 ± 0.59 b |
Swim bladder | 0.44 ± 0.65 b | 2.06 ± 1.39 a | 1.22 ± 0.22 b |
Gut | 0.28 ± 0.18 b | 2.81 ± 1.83 a | 0.54 ± 0.30 b |
Remainder | 0.59 ± 0.34 b | 6.04 ± 3.31 a | 4.11 ± 2.22 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, N.; Zhang, H.; Yang, Q.; Zhou, S.; Ai, X. Determination of Organ Blood Flow in Pelteobagrus fulvidraco, Ctenopharyngodon idella, and Micropterus salmoides by Fluorescent Microspheres. Fishes 2024, 9, 328. https://doi.org/10.3390/fishes9080328
Xu N, Zhang H, Yang Q, Zhou S, Ai X. Determination of Organ Blood Flow in Pelteobagrus fulvidraco, Ctenopharyngodon idella, and Micropterus salmoides by Fluorescent Microspheres. Fishes. 2024; 9(8):328. https://doi.org/10.3390/fishes9080328
Chicago/Turabian StyleXu, Ning, Huan Zhang, Qiuhong Yang, Shun Zhou, and Xiaohui Ai. 2024. "Determination of Organ Blood Flow in Pelteobagrus fulvidraco, Ctenopharyngodon idella, and Micropterus salmoides by Fluorescent Microspheres" Fishes 9, no. 8: 328. https://doi.org/10.3390/fishes9080328