Automatic Control and System Theory and Advanced Applications—Volume 2
- In Duca et al., Event-Based PID Control of a Flexible Manufacturing Process, Inventions, 7(4), 86, 2022, the control problem arising in manufacturing processes is discussed. In these cases, the information necessary to design the control action often does not come at regular intervals; therefore, an event-based control action is usually adopted. The solution proposed by the authors is based on an event-based PID controller tested on a conveyor transportation system. The event-based technique allows the PID controller to adapt the information flow from the field, thus ensuring an efficient, reliable, and timely control action. Numerical and experimental results are discussed, showing that the proposed approach improves the system’s performance and assessing the possibility of adopting it in further complex scenarios;
- Simion et al., Mobile Visual Servoing Based Control of a Complex Autonomous System Assisting a Manufacturing Technology on a Mechatronics Line, Inventions 7(3), 47, 2022, and in the companion paper by Ionescu et al., Communication and Control of an Assembly, Disassembly and Repair Flexible Manufacturing Technology on a Mechatronics Line Assisted by an Autonomous Robotic System, Inventions, 7(2), 43, 2002, the invention of a modeling and control environment devoted to complex autonomous systems is the main focus. The environment includes a mechatronic line for manufacturing purposes. An accurate mathematical analysis of the control system, the precise design of the environment, its realization, and testing are reported, providing interesting results and showing the effectiveness of the invented solution. The companion paper addresses the control and communication problems connected to the invented environment, analyzing the robustness of the control system in the presence of noise and uncertainties.
- Heidari et al., Design of a Research Laboratory Drive System for a Synchronous Reluctance Motor for Vector Control and Performance Analysis, Inventions, 6(4), 64, 2022, proposes the realization of a novel synchronous reluctance motor. The paper discusses in detail the control problems linked with the proposed solution and the control applications of the motor. In particular, the realized motor is controlled by adopting a vector control approach, and the test setup is conceived to allow a complete characterization of motor performance in terms of speed and torque. It should be noted that the test setup also allows for real-time validation.
- Schmitt et al., Incorporating Human Preferences in Decision Making for Dynamic Multi-Objective Optimization in Model Predictive Control, Inventions, 7(3), 46, 2022, proposes another automatic control-related invention where an automated decision-making procedure incorporating human preferences is discussed developing an emergent application in model predictive control scenarios.
- Moutsopoulou et al., Robust Control and Active Vibration Suppression in Dynamics of Smart Systems, Inventions, 8(1), 47, 2023, discusses a smart device based on piezoelectric materials and especially its control for suppressing active vibrations, which decrease the device performance. The control is based on an controller, which exploits vibration control strategies.
Author Contributions
Funding
Conflicts of Interest
References
- Levine, W.S. The Control Handbook (Three Volume Set); CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Tien, C.J.; Tsai, M.T. The Optimal Daily Dispatch of Ice-Storage Air-Conditioning Systems. Inventions 2023, 8, 62. [Google Scholar] [CrossRef]
- Al-Amyal, F.; Számel, L.; Hamouda, M. An enhanced direct instantaneous torque control of switched reluctance motor drives using ant colony optimization. Ain Shams Eng. J. 2023, 14, 101967. [Google Scholar] [CrossRef]
- Albalawi, H.; Zaid, S.A.; El-Shimy, M.E.; Kassem, A.M. Ant Colony Optimized Controller for Fast Direct Torque Control of Induction Motor. Sustainability 2023, 15, 3740. [Google Scholar] [CrossRef]
- Zhang, Q.; Chan, F.T.; Fu, X. Improved Ant Colony Optimization for the Operational Aircraft Maintenance Routing Problem with Cruise Speed Control. J. Adv. Transp. 2023, 2023, 8390619. [Google Scholar] [CrossRef]
- Wu, L.; Huang, X.; Cui, J.; Liu, C.; Xiao, W. Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot. Expert Syst. Appl. 2023, 215, 119410. [Google Scholar] [CrossRef]
- Li, Q.; Huang, F.; Lin, X. The evaluation system for intelligent recycling of cold energy from LNG vessels. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2023; Volume 2584, p. 012024. [Google Scholar]
- Yan, J.; Fu, X.; Lin, X. Design of an Intelligent Control System for Cold Energy Recovery on LNG Vessels. In Proceedings of the 2023 4th IEEE International Conference on Mechatronics Technology and Intelligent Manufacturing (ICMTIM), Nanjing, China, 26–28 May 2023; pp. 89–92. [Google Scholar]
- Vassilyev, S.; Kelina, A.Y.; Kudinov, Y.I.; Pashchenko, F.F. Intelligent control systems. Procedia Comput. Sci. 2017, 103, 623–628. [Google Scholar] [CrossRef]
- Mokhatab, S.; Mak, J.Y.; Valappil, J.V.; Wood, D. Handbook of Liquefied Natural Gas; Gulf Professional Publishing: Oxford, UK, 2013. [Google Scholar]
- Agll, A.A.; Galy, A.A.; Eswiasi, A.A.; Terfas, O.A. Sustainable energy investigation for local resource application. In Proceedings of the 2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), Benghazi, India, 21–23 May 2023; pp. 862–867. [Google Scholar]
- Yue, D.; Gao, H.; Liu, Z.; Wei, L.; Liu, Y.; Zuo, X. Potential energy recovery and direct reuse system of hydraulic hybrid excavators based on the digital pump. Energies 2023, 16, 5229. [Google Scholar] [CrossRef]
- Rybak, A.; Meskhi, B.; Pelipenko, A.; Rudoy, D.; Olshevskaya, A.; Serdyukova, Y.; Odabashyan, M.; Alentsov, E. Mathematical modelling of the hydromechanical drive of the test bench for plunger hydraulic cylinders with energy recovery. In Proceedings of the E3S Web of Conferences, Malang, Indonesia, 1–2 November 2023; EDP Sciences: Les Ulis, France, 2023; Volume 413, p. 02047. [Google Scholar]
- Ding, J. Research on Energy-fed Suspension Control System of New Energy Vehicles Based on Energy Flow Analysis. In Proceedings of the E3S Web of Conferences, Malang, Indonesia, 1–2 November 2023; EDP Sciences: Les Ulis, France, 2023; Volume 375, p. 03012. [Google Scholar]
- Petrochenkov, A.; Ilyushin, P.; Mishurinskikh, S.; Kozlov, A. Development of a Method for Improving the Energy Efficiency of Oil Production with an Electrical Submersible Pump. Inventions 2023, 8, 29. [Google Scholar] [CrossRef]
- Pavel Yurievich, I.; Kirill Andreevich, V.; Anton Vadimovich, K. Development of a Digital Well Management System. Appl. Syst. Innov. 2023, 6, 31. [Google Scholar] [CrossRef]
- Wang, Q.; Geng, P.; Qiu, H.; Zhang, J.; Zhao, R. Development of intelligent automatic water intake system for open-pit mine. J. Phys. Conf. Ser. 2023, 2591, 012057. [Google Scholar] [CrossRef]
- Franc, J.P.; Michel, J.M. Fundamentals of Cavitation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; Volume 76. [Google Scholar]
- Lai, H.; Wang, H.; Zhou, Z.; Zhu, R.; Long, Y. Research on Cavitation Performance of Bidirectional Integrated Pump Gate. Energies 2023, 16, 6784. [Google Scholar] [CrossRef]
- Lin, Y.; Feng, J.; Zhao, P.; Ni, X.; Chen, H.; Ye, H.; Zhao, Y.; Pan, W.; Song, B. Optimizing the Control of the Hydraulic Driving System for the Power Shift Gearbox of a Cotton Picker Based on Dual Working Conditions. Processes 2023, 11, 2662. [Google Scholar] [CrossRef]
- Harel, D. Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 1987, 8, 231–274. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Ta, T.T.; Vu, L.M.; Dang, V.T.; Nguyen, D.G.; Le, D.T.; Nguyen, D.D.; Nguyen, T.L. Fractional Order Active Disturbance Rejection Control for Canned Motor Conical Active Magnetic Bearing-Supported Pumps. Inventions 2023, 8, 15. [Google Scholar] [CrossRef]
- Breńkacz, Ł.; Witanowski, Ł.; Drosińska-Komor, M.; Szewczuk-Krypa, N. Research and applications of active bearings: A state-of-the-art review. Mech. Syst. Signal Process. 2021, 151, 107423. [Google Scholar] [CrossRef]
- Supreeth, D.K.; Bekinal, S.I.; Chandranna, S.R.; Doddamani, M. A Review of Superconducting Magnetic Bearings and Their Application. IEEE Trans. Appl. Supercond. 2022, 32, 3800215. [Google Scholar] [CrossRef]
- Hubmann, E.J.; Weissofner, F.; Steinert, D.; Nussbaumer, T.; Kolar, J.W. Novel Acoustic Failure Prediction Method for Active Magnetic Bearing Systems. IEEE/ASME Trans. Mechatronics 2023, 1–12. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Liu, M.; Li, N.; Yu, T. Fuzzy variable gain robust control of active magnetic bearings rigid rotor system. IET Electr. Power Appl. 2023. [Google Scholar] [CrossRef]
- Deng, S.; Cheng, X.; Wu, H.; Hu, Y. Multi-objective optimization configuration of redundant electromagnetic actuators in fault-tolerant control of active magnetic bearing system. ISA Trans. 2023, 140, 293–308. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Liu, M.; Li, N.; Yu, T. Adaptive robust control of active magnetic bearings rigid rotor systems. J. Power Electron. 2023, 23, 1004–1015. [Google Scholar] [CrossRef]
- Gupta, S.; Debnath, S.; Biswas, P.K. Control of an active magnetic bearing system using swarm intelligence-based optimization techniques. Electr. Eng. 2023, 105, 935–952. [Google Scholar] [CrossRef]
- Cui, P.; Du, L.; Zhou, X.; Li, J.; Li, Y.; Wu, Y. Harmonic vibration moment suppression using hybrid repetitive control for active magnetic bearing system. J. Vib. Control 2022, 28, 2421–2434. [Google Scholar] [CrossRef]
- Hsiao, D.C.; Hsieh, M.F. Design and Implementation of Novel Homopolar Magnetic Bearings Incorporated in Reaction Wheel for Satellite Attitude Control. IEEE Access 2023, 11, 66374–66381. [Google Scholar] [CrossRef]
- Muñoz-Caballero, J.; Vergara, D.; Fernández-Arias, P.; Antón-Sancho, Á. Design of a Smart Barrier to Internal Flooding. Inventions 2022, 7, 88. [Google Scholar] [CrossRef]
- Gerundo, C.; Speranza, G.; Pignalosa, A.; Pugliese, F.; De Paola, F. A methodological approach to assess nature-based solutions’ effectiveness in flood hazard reduction: The case study of gudbrandsdalen valley. Environ. Sci. Proc. 2022, 21, 29. [Google Scholar]
- Cavallaro, L.; Iuppa, C.; Foti, E. Effect of Partial Use of Venice Flood Barriers. J. Mar. Sci. Eng. 2017, 5, 58. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.D.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Ardani, F.; Caesaron, D.; Kusnayat, A. Design of Flood Barrier with Developed IoT-Based Flood Detection and Monitoring Systems. J. Tek. Ind. 2023, 25. [Google Scholar]
- Erdbrink, C.; Krzhizhanovskaya, V.; Sloot, P. Controlling flow-induced vibrations of flood barrier gates with data-driven and finite-element modelling. In Comprehensive Flood Risk Management, Proceedings of the 2nd European Conference on Flood Risk Management FLOODrisk2012, Rotterdam, The Netherlands, 20–22 November 2012; Citeseer: University Park, PA, USA, 2012; pp. 20–22. [Google Scholar]
- Wang, S.; Garlock, M.; Deike, L.; Glisic, B. Feasibility of Kinetic Umbrellas as deployable flood barriers during landfalling hurricanes. J. Struct. Eng. 2022, 148, 04022047. [Google Scholar] [CrossRef]
- Åström, K.J.; Wittenmark, B. Adaptive Control; Courier Corporation: Washington, DC, USA, 2013. [Google Scholar]
- Qasim, M.A.; Alwan, N.T.; PraveenKumar, S.; Velkin, V.I.; Agyekum, E.B. A New Maximum Power Point Tracking Technique for Thermoelectric Generator Modules. Inventions 2021, 6, 88. [Google Scholar] [CrossRef]
- Geballe, T.; Hull, G. Seebeck effect in silicon. Phys. Rev. 1955, 98, 940. [Google Scholar] [CrossRef]
- Yuan, D.; Jiang, W.; Sha, A.; Xiao, J.; Wu, W.; Wang, T. Technology method and functional characteristics of road thermoelectric generator system based on Seebeck effect. Appl. Energy 2023, 331, 120459. [Google Scholar] [CrossRef]
- Belman-Flores, J.M.; Rodríguez-Valderrama, D.A.; Ledesma, S.; García-Pabón, J.J.; Hernández, D.; Pardo-Cely, D.M. A Review on Applications of Fuzzy Logic Control for Refrigeration Systems. Appl. Sci. 2022, 12, 1302. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy logic. Computer 1988, 21, 83–93. [Google Scholar] [CrossRef]
- Murari, A.; Vagliasindi, G.; Zedda, M.K.; Felton, R.; Sammon, C.; Fortuna, L.; Arena, P. Fuzzy logic and support vector machine approaches to regime identification in JET. IEEE Trans. Plasma Sci. 2006, 34, 1013–1020. [Google Scholar] [CrossRef]
- Caponetto, R.; Fortuna, L.; Nunnari, G.; Occhipinti, L.; Xibilia, M.G. Soft computing for greenhouse climate control. IEEE Trans. Fuzzy Syst. 2000, 8, 753–760. [Google Scholar]
- Üstüner, M.A.; Mamur, H.; Taşkin, S. Modeling and validation of the thermoelectric generator with considering the change of the Seebeck effect and internal resistance. Turk. J. Electr. Eng. Comput. Sci. 2022, 30, 2688–2706. [Google Scholar] [CrossRef]
- Manna, S.; Singh, D.K.; Akella, A.K.; Kotb, H.; AboRas, K.M.; Zawbaa, H.M.; Kamel, S. Design and implementation of a new adaptive MPPT controller for solar PV systems. Energy Rep. 2023, 9, 1818–1829. [Google Scholar] [CrossRef]
- Mamur, H.; Üstüner, M.A.; Bhuiyan, M.R.A. Future perspective and current situation of maximum power point tracking methods in thermoelectric generators. Sustain. Energy Technol. Assess. 2022, 50, 101824. [Google Scholar] [CrossRef]
- Patra, S.; Muthe, K.P.; Prakash, D.; Singh, A. Low Voltage Self-Operating MPPT Controlled Boost Converter for Thermoelectric Power Generator. IEEE J. Emerg. Sel. Top. Ind. Electron. 2023, 4, 1045–1054. [Google Scholar] [CrossRef]
- Khan, K.; Rashid, S.; Mansoor, M.; Khan, A.; Raza, H.; Zafar, M.H.; Akhtar, N. Data-driven green energy extraction: Machine learning-based MPPT control with efficient fault detection method for the hybrid PV-TEG system. Energy Rep. 2023, 9, 3604–3623. [Google Scholar] [CrossRef]
- Sapuppo, F.; Schembri, F.; Fortuna, L.; Bucolo, M. Microfluidic circuits and systems. IEEE Circuits Syst. Mag. 2009, 9, 6–19. [Google Scholar] [CrossRef]
- Jiang, Y.; Cai, M.; Zhang, D. Lightweight Network DCR-YOLO for Surface Defect Detection on Printed Circuit Boards. Sensors 2023, 23, 7310. [Google Scholar] [CrossRef] [PubMed]
- Saitta, L.; Celano, G.; Cicala, G.; Fragalà, M.E.; Stella, G.; Barcellona, M.; Tosto, C.; Bucolo, M. Projection micro-stereolithography versus master–slave approach to manufacture a micro-optofluidic device for slug flow detection. Int. J. Adv. Manuf. Technol. 2022, 120, 4443–4460. [Google Scholar] [CrossRef]
- Stella, G.; Barcellona, M.; Saitta, L.; Tosto, C.; Cicala, G.; Gulino, A.; Bucolo, M.; Fragalà, M.E. 3D Printing Manufacturing of Polydimethyl-Siloxane/Zinc Oxide Micro-Optofluidic Device for Two-Phase Flows Control. Polymers 2022, 14, 2113. [Google Scholar] [CrossRef] [PubMed]
- Manin, A.A.; Sokolov, S.V.; Novikov, A.I.; Polyakova, M.V.; Demidov, D.N.; Novikova, T.P. Kalman Filter Adaptation to Disturbances of the Observer’s Parameters. Inventions 2021, 6, 80. [Google Scholar] [CrossRef]
- Khodarahmi, M.; Maihami, V. A review on Kalman filter models. Arch. Comput. Methods Eng. 2023, 30, 727–747. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, K.; Cao, Z. System noise variance matrix adaptive Kalman filter method for AUV INS/DVL navigation system. Ocean Eng. 2023, 267, 113269. [Google Scholar] [CrossRef]
- Zhang, L.; Shaoping, W.; Selezneva, M.S.; Neusypin, K.A. A new adaptive Kalman filter for navigation systems of carrier-based aircraft. Chin. J. Aeronaut. 2022, 35, 416–425. [Google Scholar] [CrossRef]
- Wang, Y.; He, M.; Sun, L.; Wu, D.; Wang, Y.; Qing, X. Weighted adaptive Kalman filtering-based diverse information fusion for hole edge crack monitoring. Mech. Syst. Signal Process. 2022, 167, 108534. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, N. Correcting noisy dynamic mode decomposition with Kalman filters. J. Comput. Phys. 2022, 461, 111175. [Google Scholar] [CrossRef]
- Yan, D.; Zhang, W.; Chen, H.; Shi, J. Robust control strategy for multi-UAVs system using MPC combined with Kalman-consensus filter and disturbance observer. ISA Trans. 2023, 135, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Diaz, M.; Charbonnel, P.É.; Chamoin, L. A new Kalman filter approach for structural parameter tracking: Application to the monitoring of damaging structures tested on shaking-tables. Mech. Syst. Signal Process. 2023, 182, 109529. [Google Scholar] [CrossRef]
- Chang, S.Y.; Wu, H.C. Tensor Kalman filter and its applications. IEEE Trans. Knowl. Data Eng. 2022, 35, 6435–6448. [Google Scholar] [CrossRef]
- Stoyanov, I.; Iliev, T.; Fazylova, A.; Yestemessova, G. A Dynamic Control Model of the Blades Position for the Vertical-Axis Wind Generator by a Program Method. Inventions 2023, 8, 120. [Google Scholar] [CrossRef]
- Casini, M. Small vertical axis wind turbines for energy efficiency of buildings. J. Clean Energy Technol. 2016, 4, 56–65. [Google Scholar] [CrossRef]
- Singh, M.M.; Hebbale, A.M.; Prasad, C.D.; Harish, H.; Kumar, M.; Shanthala, K. Design and Simulation of Vertical Axis Windmill for Streetlights. Mater. Today Proc. 2023, 92, 73–77. [Google Scholar] [CrossRef]
- Ahmad, M.; Shahzad, A.; Qadri, M.N.M. An overview of aerodynamic performance analysis of vertical axis wind turbines. Energy Environ. 2023, 34, 2815–2857. [Google Scholar] [CrossRef]
- Bhutta, M.M.A.; Hayat, N.; Farooq, A.U.; Ali, Z.; Jamil, S.R.; Hussain, Z. Vertical axis wind turbine—A review of various configurations and design techniques. Renew. Sustain. Energy Rev. 2012, 16, 1926–1939. [Google Scholar] [CrossRef]
- Neammanee, B.; Sirisumrannukul, S.; Chatratana, S. Development of a wind turbine simulator for wind generator testing. Int. Energy J. 2007, 8. [Google Scholar]
- Fazylova, A.; Tultayev, B.; Iliev, T.; Stoyanov, I.; Beloev, I. Development of a Control Unit for the Angle of Attack of a Vertically Axial Wind Turbine. Energies 2023, 16, 5202. [Google Scholar] [CrossRef]
- Huang, H.; Nong, Z.; Li, G.; Li, J. Research and optimization of a built-in entity vertical axis wind turbine by variable pitch strategy. J. Build. Eng. 2023, 68, 105810. [Google Scholar] [CrossRef]
- Fortuna, L.; Frasca, M.; Buscarino, A. Optimal and Robust Control: Advanced Topics with MATLAB®; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortuna, L.; Buscarino, A. Automatic Control and System Theory and Advanced Applications—Volume 2. Inventions 2024, 9, 5. https://doi.org/10.3390/inventions9010005
Fortuna L, Buscarino A. Automatic Control and System Theory and Advanced Applications—Volume 2. Inventions. 2024; 9(1):5. https://doi.org/10.3390/inventions9010005
Chicago/Turabian StyleFortuna, Luigi, and Arturo Buscarino. 2024. "Automatic Control and System Theory and Advanced Applications—Volume 2" Inventions 9, no. 1: 5. https://doi.org/10.3390/inventions9010005
APA StyleFortuna, L., & Buscarino, A. (2024). Automatic Control and System Theory and Advanced Applications—Volume 2. Inventions, 9(1), 5. https://doi.org/10.3390/inventions9010005