The Association of Body Composition and Musculoskeletal Characteristics with Police Recruit Performance: A Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Setting
2.3. Participants
2.4. Ethical Approvals
2.5. Data Collection
2.5.1. Demographic Data
2.5.2. Cardiorespiratory and Tactical Performance
2.5.3. Radiological Measures
2.5.4. Performance and Fitness Measures
2.6. Variables
2.6.1. Demographic Variables
2.6.2. Performance and Fitness Variables
2.6.3. Radiological Measures
2.6.4. Consideration of Other Variables
2.7. Data Management
2.8. Data Analysis
3. Results
3.1. Participant Characteristics
3.1.1. Demographics
Males | Females | Combined | |
---|---|---|---|
M (SD) | M (SD) | M (SD) | |
n | 16 | 11 | 27 |
Age (years) | 28.2 (7.1) | 34.6 (10.7) | 30.8 (9.1) |
Height (cm) | 178.9 (7.3) | 168.0 (4.6) | 174.5 (8.3) |
Weight (kg) | 78.1 (10.9) | 64.5 (9.1) | 72.7 (12.0) |
Body Mass Index (kg/cm2) | 24.5 (3.7) | 23.1 (3.9) | 23.9 (3.7) |
Physical Performance Examination (seconds) | 109.7 (20.6) | 167.8 (53.4) | 133.4 (46.8) |
Beep Test a (level) | 9.3 (1.0) | 7.5 (1.5) | 8.5 (1.5) |
BPAQ—Current Score | 5.3 (3.2) | 5.7 (4.5) | 5.4 (3.7) |
BPAQ—Previous Score | 26.9 (21.6) | 20.6 (14.7) | 24.3 (19.1) |
BPAQ—Total Score | 16.1 (11.4) | 13.1 (7.9) | 14.9 (10.1) |
Injury Composite b | 3.5 (4.5) | 8.5 (9.3) | 5.8 (7.3) |
3.1.2. Cardiorespiratory Performance
3.1.3. Tactical Performance
3.1.4. Radiological Measures
Males | Females | Combined | |
---|---|---|---|
M (SD) | M (SD) | M (SD) | |
n | 16 | 11 | 27 |
Body Fat (%) | 18.9 (3.7) | 25.9 (5.3) | 21.8 (5.6) |
Waist Circumference (cm) | 93.7 (9.6) | 85.8 (10.2) | 90.4 (10.4) |
Appendicular Lean Mass (kg) | 29.2 (4.8) | 20.2 (2.8) | 25.6 (6.1) |
Hip aBMD (g/cm2) | 1.1 (0.2) | 1.0 (0.1) | 1.0 (0.2) |
Femoral Neck aBMD (g/cm2) | 1.0 (0.2) | 0.9 (0.2) | 1.0 (0.2) |
Lumbar Spine aBMD (g/cm2) | 1.1 (0.1) | 1.1 (0.2) | 1.1 (0.1) |
Distal (4%) Tibia Trabecular vBMD (mg/cm3) | 272.8 (30.9) | 229.1 (33.8) | 255.0 (38.3) |
Distal (4%) Tibia Bone Strength Index (g/cm4) | 1.6 (0.4) | 0.9 (0.3) | 1.3 (0.4) |
Proximal (66%) Tibia Cortical vBMD (mg/cm3) | 1108.3 (22.5) | 1113.0 (25.4) | 1110.2 (23.3) |
Proximal (66%) Tibia Cortical Area (mm2) | 484.9 (75.1) | 374.6 (48.2) | 440.0 (84.8) |
Proximal (66%) Tibia Polar Cross-Sectional Moment of Inertia (mg/cm) | 8390.9 (1922.3) | 4974.7 (1120.4) | 6999.1 (2353.9) |
Mid-thigh Muscle Cross-Sectional Area a (cm2) | 158.4 (25.5) | 118.7 (21.2) | 142.8 (30.6) |
3.2. Association Between DXA-Derived Radiological Measures and Tactical Performance
3.3. Association Between pQCT-Derived Radiological Measures and Tactical Performance
3.4. Association Between DXA-Derived Radiological Measures and Cardiorespiratory Performance
3.5. Association Between pQCT-Derived Radiological Measures and Cardiorespiratory Performance
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korre, M.; Loh, K.; Eshleman, E.J.; Lessa, F.S.; Porto, L.G.; Christophi, C.A.; Kales, S.N. Recruit fitness and police academy performance: A prospective validation study. Occup. Med. 2019, 69, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Marks, D.; Merrigan, J.J.; Martin, J. Do baseline physical fitness measures predict law enforcement academy graduation? Work 2022, 72, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.C.; Merrick, N.; Mosler, A.B.; Allen, G.; Chivers, P.; Hart, N.H. Cardiorespiratory fitness is a risk factor for lower-limb and back injury in law enforcement officers commencing their basic training: A prospective cohort study. Res. Sports Med. 2022, 32, 511–523. [Google Scholar] [CrossRef]
- Léger, L.A.; Lambert, J. A maximal multi-stage 20-m shuttle run test to predict VO2 max. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 49, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Police, W.A. The Recruitment Process. Available online: https://letsjoinforces.wa.gov.au/join-the-team/police-officer/interstate-transition/the-recruitment-process (accessed on 22 January 2025).
- Charman, S.; Bennett, S. Voluntary resignations from the police service: The impact of organisational and occupational stressors on organisational commitment. Polic. Soc. 2022, 32, 159–178. [Google Scholar] [CrossRef]
- Alda, E. Balancing act: Assessing police efficiency amidst staffing shortages through inverse data envelopment analysis. Polic. A J. Policy Pract. 2024, 18, paae038. [Google Scholar] [CrossRef]
- Auditor-General, W.A. New Recruits in the WA Police: 2012, Western Australia Auditor-Generals Report; Office of the Auditor General: Perth, WA, Australia, 2012. [Google Scholar]
- Merrick, N.; Hart, N.H.; Mosler, A.B.; Allen, G.; Murphy, M.C. Injury Profiles of Police Recruits Undergoing Basic Physical Training: A Prospective Cohort Study. J. Occup. Rehabil. 2023, 33, 170–178. [Google Scholar] [CrossRef]
- Lockie, R.G.; Balfany, K.; Bloodgood, A.M.; Moreno, M.R.; Cesario, K.A.; Dulla, J.M.; Dawes, J.J.; Orr, R.M. The Influence of Physical Fitness on Reasons for Academy Separation in Law Enforcement Recruits. Int. J. Environ. Res. Public Health 2019, 16, 372. [Google Scholar] [CrossRef]
- Knapik, J.J.; Graham, B.; Cobbs, J.; Thompson, D.; Steelman, R.; Jones, B.H. A prospective investigation of injury incidence and injury risk factors among Army recruits in military police training. BMC Musculoskelet. Disord. 2013, 14, 32. [Google Scholar] [CrossRef]
- Wang, X.; Wang, P.-s.; Zhou, W. Risk factors of military training-related injuries in recruits of Chinese People’s Armed Police Forces. Chin. J. Traumatol. = Zhonghua Chuang Shang Za Zhi 2003, 6, 12–17. [Google Scholar]
- Murphy, M.C.; George, H.-A.; Naqi, M.; Owen, P.J.; Chivers, P.; Hart, N.H. Musculoskeletal injury epidemiology in law enforcement and firefighter recruits during physical training: A systematic review. BMJ Open Sport Exerc. Med. 2022, 8, e001289. [Google Scholar] [CrossRef] [PubMed]
- Sutton, V.R.; Chivers, P.T.; Hart, N.H.; Wilkie, J.L.C.; Allen, G.; Murphy, M.C. Persistent Disability From Preacademy Injuries Impairs Physical Performance in Police Force Recruits: A Cross-sectional Study. J. Orthop. Sports Phys. Ther. Open 2024, 2, 141–147. [Google Scholar] [CrossRef]
- Murphy, M.C.; Merrick, N.; Cowen, G.; Sutton, V.R.; Allen, G.; Hart, N.H.; Mosler, A.B. Physical and psychological factors related to injury, illness and tactical performance in law enforcement recruits: A systematic review. Inj. Prev. 2025, 31, 9–17. [Google Scholar] [CrossRef]
- Pierce, J.R.; DeGroot, D.W.; Grier, T.L.; Hauret, K.G.; Nindl, B.C.; East, W.B.; McGurk, M.S.; Jones, B.H. Body mass index predicts selected physical fitness attributes but is not associated with performance on military relevant tasks in U.S. Army Soldiers. J. Sci. Med. Sport 2017, 20, S79–S84. [Google Scholar] [CrossRef] [PubMed]
- Feeney, K.A.; Melton, B.F.; Ryan, G.A.; Bland, H.W.; Butler, C.R. The Association Between Body Composition and Performance on Military Fitness Tests. J. Strength Cond. Res. 2024, 39, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Carlock, B.N.; Ruvalcaba, T.J.; Dulla, J.M.; Orr, R.M.; Jay, D.J.; McGuire, M.B. Skeletal Muscle Mass and Fat Mass Relationships With Physical Fitness Test Performance in Law Enforcement Recruits Before Academy. J. Strength Cond. Res. 2021, 35, 1287–1295. [Google Scholar] [CrossRef]
- Combest, T.M.; Khan, J.; Tufano, J.J.; Lane, M.; Watson, N.L.; Altom, K.R.; Moon, J.R. Comparison of Four Body Composition Methods: Circumference Measurements, Eight-Point Bioelectrical Impedance Analysis up to 500 and 1000 kHz to Dual-Energy X-Ray Absorptiometry to Measure Body Fat Percentage. Mil. Med. 2024, 186, e1216–e1226. [Google Scholar] [CrossRef]
- Achamrah, N.; Colange, G.; Delay, J.; Rimbert, A.S.; Folope, V.; Petit, A.; Grigioni, S.B.; Déchelotte, P.; Coëffier, M.S.; Handelsman, D.J. Comparison of body composition assessment by DXA and BIA according to the body mass index: A retrospective study on 3655 measures. PLoS ONE 2018, 13, e0200465. [Google Scholar] [CrossRef]
- Stojković, M.; Heinrich, K.M.; Čvorović, A.; Jeknić, V.; Greco, G.; Kukić, F. Accuracy of body mass index and obesity status in police trainees. Eur. J. Investig. Health Psychol. Educ. 2022, 12, 42–49. [Google Scholar] [CrossRef]
- Nevers, K. Predictors of successful police academy recruits and rationalizations for attrition. Police Pract. Res. 2019, 20, 343–359. [Google Scholar] [CrossRef]
- Vernon, H.D.C. The Neck Disability Index: State-of-the-Art, 1991-2008. J. Manip. Physiol. Ther. 2008, 31, 491–502. [Google Scholar] [CrossRef]
- Chiarotto, A.; Maxwell, L.J.; Terwee, C.B.; Wells, G.A.; Tugwell, P.; Ostelo, R.W. Roland-Morris Disability Questionnaire and Oswestry Disability Index: Which Has Better Measurement Properties for Measuring Physical Functioning in Nonspecific Low Back Pain? Systematic Review and Meta-Analysis. Phys. Ther. 2016, 96, 1620–1637. [Google Scholar] [CrossRef] [PubMed]
- Gummesson, C. The shortened disabilities of the arm, shoulder and hand questionnaire (Quick DASH): Validity and reliability based on responses within the full-length DASH. BMC Musculoskelet. Disord. 2006, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Thorborg, K.; Hölmich, P.; Christensen, R.; Petersen, J.; Roos, E.M. The Copenhagen Hip and Groin Outcome Score (HAGOS): Development and validation according to the COSMIN checklist. Br. J. Sports Med. 2011, 45, 478–491. [Google Scholar] [CrossRef] [PubMed]
- Collins, N.J.; Prinsen, C.A.C.; Christensen, R.; Bartels, E.M.; Terwee, C.B.; Roos, E.M. Knee Injury and Osteoarthritis Outcome Score (KOOS): Systematic review and meta-analysis of measurement properties. Osteoarthr. Cartil. 2016, 24, 1317–1329. [Google Scholar] [CrossRef]
- Negahban, H. Reliability and validity of the foot and ankle outcome score: A validation study from Iran. Clin. Rheumatol. 2010, 29, 479. [Google Scholar] [CrossRef]
- Weeks, B.K.; Beck, B.R. The BPAQ: A bone-specific physical activity assessment instrument. Osteoporos. Int. 2008, 19, 1567–1577. [Google Scholar] [CrossRef]
- McCaskie, C.J.; Sim, M.; Newton, R.U.; Heasman, J.; Rogalski, B.; Hart, N.H. Characterising lower-body musculoskeletal morphology and whole-body composition of elite female and male Australian Football players. BMC Sports Sci. Med. Rehabil. 2022, 14, 168. [Google Scholar] [CrossRef]
- Mesinovic, J.; Breasail, M.Ó.; Burt, L.A.; Shore-Lorenti, C.; Zebaze, R.; Lim, C.Q.E.; Ling, Z.; Ebeling, P.R.; Scott, D.; Zengin, A. Bone imaging modality precision and agreement between DXA, pQCT, and HR-pQCT. JBMR Plus 2025, 9, ziae158. [Google Scholar] [CrossRef]
- Nana, A.; Slater, G.J.; Hopkins, W.G.; Burke, L.M. Effects of Daily Activities on Dual-Energy X-ray Absorptiometry Measurements of Body Composition in Active People. Med. Sci. Sports Exerc. 2012, 44, 180–189. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Doube, M.; Kłosowski, M.M.; Arganda-Carreras, I.; Cordelières, F.P.; Dougherty, R.P.; Jackson, J.S.; Schmid, B.; Hutchinson, J.R.; Shefelbine, S.J. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 2010, 47, 1076–1079. [Google Scholar] [CrossRef] [PubMed]
- Rantalainen, T.; Nikander, R.; Heinonen, A.; Daly, R.M.; Sievanen, H. An open source approach for regional cortical bone mineral density analysis. J. Musculoskelet. Neuronal Interact. 2011, 11, 243–248. [Google Scholar]
- Blew, R.M.; Lee, V.R.; Farr, J.N.; Schiferl, D.J.; Going, S.B. Standardizing evaluation of pQCT image quality in the presence of subject movement: Qualitative versus quantitative assessment. Calcif. Tissue Int. 2014, 94, 202–211. [Google Scholar] [CrossRef]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Hart, N.H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R.U. Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. J. Musculoskelet. Neuronal Interact. 2017, 17, 114–139. [Google Scholar]
- Crawford, K.; Fleishman, K.; Abt, J.P.; Sell, T.C.; Lovalekar, M.; Nagai, T.; Deluzio, J.; Rowe, R.S.; McGrail, M.A.; Lephart, S.M. Less Body Fat Improves Physical and Physiological Performance in Army Soldiers. Mil. Med. 2011, 176, 35–43. [Google Scholar] [CrossRef]
- Nogueira, E.C.; Porto, L.G.G.; Nogueira, R.M.; Martins, W.R.; Fonseca, R.M.C.; Lunardi, C.C.; de Oliveira, R.J. Body Composition is Strongly Associated With Cardiorespiratory Fitness in a Large Brazilian Military Firefighter Cohort: The Brazilian Firefighters Study. J. Strength Cond. Res. 2016, 30, 33–38. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.; Tinsley, G.M.; Bosy-Westphal, A.; Müller, M.J.; Shepherd, J.; Gallagher, D.; Heymsfield, S.B. Total and regional appendicular skeletal muscle mass prediction from dual-energy X-ray absorptiometry body composition models. Sci. Rep 2023, 13, 2590. [Google Scholar] [CrossRef]
- Ng, C.A.; Gandham, A.; Mesinovic, J.; Owen, P.J.; Ebeling, P.R.; Scott, D. Effects of Moderate- to High-Impact Exercise Training on Bone Structure Across the Lifespan: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Bone Miner. Res. 2023, 38, 1612–1634. [Google Scholar] [CrossRef]
- O’Leary, T.J.; Izard, R.M.; Walsh, N.P.; Tang, J.C.Y.; Fraser, W.D.; Greeves, J.P. Skeletal macro- and microstructure adaptations in men undergoing arduous military training. Bone 2019, 125, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, Y.; Schneider, P.; Reiners, C.; Kushida, K.; Yamazaki, K.; Hasegawa, K.; Nagano, A. Estimation of the Architectural Properties of Cortical Bone Using Peripheral Quantitative Computed Tomography. Osteoporos. Int. Other Metab. Bone Dis. 2000, 11, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Tsukasaki, K.; Matsui, Y.; Arai, H.; Harada, A.; Tomida, M.; Takemura, M.; Otsuka, R.; Ando, F.; Shimokata, H. Association of Muscle Strength and Gait Speed with Cross-Sectional Muscle Area Determined by Mid-Thigh Computed Tomography—A Comparison with Skeletal Muscle Mass Measured by Dual-Energy X-Ray Absorptiometry. J. Frailty Aging 2020, 9, 82–89. [Google Scholar] [CrossRef]
- Hart, N.H.; Newton, R.U.; Tan, J.; Rantalainen, T.; Chivers, P.; Siafarikas, A.; Nimphius, S. Biological basis of bone strength: Anatomy, physiology and measurement. J. Musculoskelet. Neuronal Interact. 2020, 20, 347–371. [Google Scholar] [PubMed]
- Schaap, L.A.; Koster, A.; Visser, M. Adiposity, Muscle Mass, and Muscle Strength in Relation to Functional Decline in Older Persons. Epidemiol. Rev. 2012, 35, 51–65. [Google Scholar] [CrossRef]
- Lee, C.; Fleming, N.; Donne, B. Comparison of Balance Variables Across Active and Retired Athletes and Age Matched Controls. Int. J. Exerc. Sci. 2021, 14, 76–92. [Google Scholar]
- McCaskie, C.J.; Sim, M.; Newton, R.U.; Heasman, J.; Rogalski, B.; Hart, N.H. Preseason Body Composition Is Associated With In-season Player Availability in Elite Male Australian Footballers. J. Strength Cond. Res. 2023, 37, 1089–1095. [Google Scholar] [CrossRef]
- Orr, R.M.; Lockie, R.; Milligan, G.; Lim, C.; Dawes, J.J. Use of Physical Fitness Assessments in Tactical Populations. Strength Cond. J. 2022, 44, 106–113. [Google Scholar] [CrossRef]
- Collins, K.S.; Christensen, B.K.; Orr, R.M.; Dulla, J.M.; Dawes, J.J.; Lockie, R.G. Analysis of Total and Segmental Body Composition Relative to Fitness Performance Measures in Law Enforcement Recruits. Int. J. Exerc. Sci. 2022, 15, 245–260. [Google Scholar]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Izard, R.M.; Fraser, W.D.; Negus, C.; Sale, C.; Greeves, J.P. Increased density and periosteal expansion of the tibia in young adult men following short-term arduous training. Bone 2016, 88, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Rinonapoli, G.; Pace, V.; Ruggiero, C.; Ceccarini, P.; Bisaccia, M.; Meccariello, L.; Caraffa, A. Obesity and Bone: A Complex Relationship. Int. J. Mol. Sci. 2021, 22, 13662. [Google Scholar] [CrossRef] [PubMed]
- Vaara, J.P.; Kyröläinen, H.; Niemi, J.; Ohrankämmen, O.; Häkkinen, A.; Kocay, S.; Häkkinen, K. Associations of Maximal Strength and Muscular Endurance Test Scores with Cardiorespiratory Fitness and Body Composition. J. Strength Cond. Res. 2012, 26, 2078–2086. [Google Scholar] [CrossRef]
- Canetti, E.F.D.; Dawes, J.J.; Drysdale, P.H.; Lockie, R.; Kornhauser, C.; Holmes, R.; Schram, B.; Orr, R.M. Relationship Between Metabolic Fitness and Performance in Police Occupational Tasks. J. Sci. Sport Exerc. 2021, 3, 179–185. [Google Scholar] [CrossRef]
- Koltun, K.J.; Sekel, N.M.; Bird, M.B.; Lovalekar, M.; Mi, Q.; Martin, B.J.; Nindl, B.C. Tibial Bone Geometry Is Associated With Bone Stress Injury During Military Training in Men and Women. Front. Physiol. 2022, 13, 803219. [Google Scholar] [CrossRef]
- Erlandson, M.C.; Lorbergs, A.L.; Mathur, S.; Cheung, A.M. Muscle analysis using pQCT, DXA and MRI. Eur. J. Radiol. 2016, 85, 1505–1511. [Google Scholar] [CrossRef]
- Murphy, M.C.; Radavelli-Bagatini, S.; Allen, G.; Hart, N.H.; Mosler, A.B. Essential reporting items within a law enforcement recruit injury and physical performance database: A modified Delphi study. JSAMS Plus 2023, 2, 100035. [Google Scholar] [CrossRef]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gómez, J.; Lilienthal Heitmann, B.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis-part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef] [PubMed]
- Lang, T.F. The bone-muscle relationship in men and women. J. Osteoporos. 2011, 2011, 702735. [Google Scholar] [CrossRef]
- Dunsworth, H.M. Expanding the evolutionary explanations for sex differences in the human skeleton. Evol. Anthropol. Issues News Rev. 2020, 29, 108–116. [Google Scholar] [CrossRef]
Model | Variable | AIC | β | 95% CI | SE | p-Value | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Model 1 | Intercept | 258.32 | −47.293 | −104.269 | 9.684 | 29.070 | 0.104 |
Body Fat Percentage | 8.374 | 6.084 | 10.664 | 1.168 | <0.001 | ||
Age (29 yrs. and below) | 96.484 | 15.06 | 177.908 | 41.544 | 0.02 | ||
Interaction of Age ≥ 30 and Body Fat Percentage | −4.915 | −8.555 | −1.275 | 1.857 | 0.008 | ||
Model 2 | Intercept | 261.47 | −80.450 | −176.179 | 15.280 | 48.842 | 0.100 |
Body Mass Index | 10.759 | 6.662 | 14.857 | 2.091 | <0.001 | ||
Sex (male) | 168.963 | 39.891 | 298.034 | 65.854 | 0.010 | ||
Interaction of Sex and Body Mass Index | −9.893 | −15.284 | −4.502 | 2.751 | <0.001 | ||
Model 3 | Intercept | 276.12 | 138.31 | 61.972 | 214.649 | 38.949 | <0.001 |
Age | 2.456 | 0.991 | 3.922 | 0.748 | 0.001 | ||
Appendicular Lean Mass | −3.151 | −5.361 | −0.941 | 1.128 | 0.005 |
Model | Variable | AIC | β | 95% CI | SE | p-Value | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Model 1 | Intercept | 273.50 | 46.34 | −43.286 | 135.966 | 45.728 | 0.311 |
Proximal (66%) Tibia Polar Cross-Section Moment of Inertia (mg/cm2) | 0.024 | 0.007 | 0.042 | 0.009 | 0.007 | ||
Sex (Male) | 68.738 | −46.254 | 183.731 | 58.671 | 0.241 | ||
Interaction of Polar Cross-Section Moment of Inertia and Sex | −0.025 | −0.045 | −0.006 | 0.010 | 0.012 |
Model | Variable | AIC | β | 95% CI | SE | p-Value | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Model 1 | Intercept | 82.70 | 10.907 | 8.490 | 13.325 | 1.233 | <0.001 |
Sex (Male) | 0.897 | −0.115 | 1.909 | 0.516 | 0.082 | ||
Body fat percentage | −0.133 | −0.224 | −0.043 | 0.046 | 0.004 | ||
Model 2 | Intercept | 89.02 | 8.855 | 5.953 | 11.756 | 1.480 | <0.001 |
Sex (Male) | 1.923 | 1.007 | 2.838 | 0.467 | <0.001 | ||
Body mass index | −0.061 | −0.183 | 0.060 | 0.064 | 0.331 | ||
Model 3 | Intercept | 86.39 | 7.376 | 4.937 | 9.816 | 1.245 | <0.001 |
Age | 0.123 | 0.053 | 0.193 | 0.036 | <0.001 | ||
Appendicular lean mass | −0.065 | −0.112 | −0.019 | 0.024 | 0.006 |
Model | Variable | β | 95% CI | SE | p-Value | ||
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Model 1 | Intercept | 87.27 | 25.694 | 4.404 | 46.984 | 10.862 | 0.018 |
Sex (Male) | 1.715 | 0.841 | 2.589 | 0.446 | <0.001 | ||
Proximal (66%) Cortical Volumetric Bone Mineral Density | −0.016 | −0.036 | 0.003 | 0.010 | 0.093 | ||
Model 2 | Intercept | 89.91 | 7.743 | 4.936 | 10.549 | 1.432 | <0.001 |
Sex (Male) | 1.915 | 0.633 | 3.155 | 0.633 | 0.002 | ||
Proximal (66%) Tibia Cortical Area (mm2) | −0.001 | −0.008 | 0.006 | 0.004 | 0.836 | ||
Model 3 | Intercept | 89.40 | 8.811 | 6.710 | 10.912 | 1.072 | <0.001 |
Age | −0.071 | −0.120 | −0.022 | 0.025 | 0.004 | ||
Proximal (66%) Tibia Polar Cross-Sectional Moment of Inertia (mg/cm) | 0.000 | 8.108−5 | 0.000 | 9.690−5 | 0.005 | ||
Model 4 | Intercept | 72.63 | 6.826 | 4.216 | 9.435 | 1.332 | <0.001 |
Age | −0.063 | −0.114 | −0.013 | 0.026 | 0.014 | ||
Mid-thigh Muscle Cross-Sectional Area (cm2) | 0.026 | 0.012 | 0.041 | 0.007 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutton, V.R.; Murphy, M.C.; McCaskie, C.J.; Chivers, P.T.; Hart, N.H.; Cochrane Wilkie, J.L.; Allen, G.; Dalla Via, J. The Association of Body Composition and Musculoskeletal Characteristics with Police Recruit Performance: A Cross-Sectional Study. J. Funct. Morphol. Kinesiol. 2025, 10, 132. https://doi.org/10.3390/jfmk10020132
Sutton VR, Murphy MC, McCaskie CJ, Chivers PT, Hart NH, Cochrane Wilkie JL, Allen G, Dalla Via J. The Association of Body Composition and Musculoskeletal Characteristics with Police Recruit Performance: A Cross-Sectional Study. Journal of Functional Morphology and Kinesiology. 2025; 10(2):132. https://doi.org/10.3390/jfmk10020132
Chicago/Turabian StyleSutton, Vanessa R., Myles C. Murphy, Callum J. McCaskie, Paola T. Chivers, Nicolas H. Hart, Jodie L. Cochrane Wilkie, Garth Allen, and Jack Dalla Via. 2025. "The Association of Body Composition and Musculoskeletal Characteristics with Police Recruit Performance: A Cross-Sectional Study" Journal of Functional Morphology and Kinesiology 10, no. 2: 132. https://doi.org/10.3390/jfmk10020132
APA StyleSutton, V. R., Murphy, M. C., McCaskie, C. J., Chivers, P. T., Hart, N. H., Cochrane Wilkie, J. L., Allen, G., & Dalla Via, J. (2025). The Association of Body Composition and Musculoskeletal Characteristics with Police Recruit Performance: A Cross-Sectional Study. Journal of Functional Morphology and Kinesiology, 10(2), 132. https://doi.org/10.3390/jfmk10020132