Eccentric Resistance Training in Youth: Perspectives for Long-Term Athletic Development
Abstract
:1. Introduction
1.1. Terminology
1.2. Literature Search
2. Neuromuscular and Metabolic Responses to Exercise in Youth
2.1. Fatigue Resistance
2.2. Metabolic Responses
2.3. Exercise-Induced Muscle Damage
2.4. Repeated Bout Effect
2.5. Eccentric Resistance Training Safety Considerations for Youth Athletes
3. Implications for Eccentric Resistance Training in Youth
3.1. Landing Mechanics
3.2. Eccentric Hamstrings Strength
3.3. Flywheel Inertial Training
4. Other Programming Considerations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ford, P.; de Ste Croix, M.; Lloyd, R.; Meyers, R.; Moosavi, M.; Oliver, J.; Till, K.; Williams, C. The Long-Term Athlete Development Model: Physiological Evidence and Application. J. Sports Sci. 2011. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Cronin, J.B.; Faigenbaum, A.D.; Haff, G.G.; Howard, R.; Kraemer, W.J.; Micheli, L.J.; Myer, G.D.; Oliver, J.L. National Strength and Conditioning Association Position Statement on Long-Term Athletic Development. J. Strength Cond. Res. 2016, 30, 1491–1509. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, M.F.; Mountjoy, M.; Armstrong, N.; Chia, M.; Côté, J.; Emery, C.A.; Faigenbaum, A.; Hall, G.; Kriemler, S.; Léglise, M.; et al. International Olympic Committee Consensus Statement on Youth Athletic Development. Br. J. Sports Med. 2015. [Google Scholar] [CrossRef] [PubMed]
- LaPrade, R.F.; Agel, J.; Baker, J.; Brenner, J.S.; Cordasco, F.A.; Côté, J.; Engebretsen, L.; Feeley, B.T.; Gould, D.; Hainline, B.; et al. AOSSM Early Sport Specialization Consensus Statement. Orthop. J. Sport. Med. 2016. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Faigenbaum, A.D.; Stone, M.H.; Oliver, J.L.; Jeffreys, I.; Moody, J.A.; Brewer, C.; Pierce, K.C.; McCambridge, T.M.; Howard, R.; et al. Position Statement on Youth Resistance Training: The 2014 International Consensus. Br. J. Sports Med. 2014. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.L. The Youth Physical Development Model: A New Approach to Long-Term Athletic Development. Strength Cond. J. 2012. [Google Scholar] [CrossRef]
- Pearson, D.T.; Naughton, G.A.; Torode, M. Predictability of Physiological Testing and the Role of Maturation in Talent Identification for Adolescent Team Sports. J. Sci. Med. Sport. 2006. [Google Scholar] [CrossRef]
- Bourgeois, F.; Gamble, P.; Gill, N.; McGuigan, M. Effects of a Six-Week Strength Training Programme on Change of Direction Performance in Youth Team Sport Athletes. Sports 2017, 5, 83. [Google Scholar] [CrossRef]
- Thomas, C.; Comfort, P.; Jones, P.A.; Dos’Santos, T. A Comparison of Isometric Midthigh-Pull Strength, Vertical Jump, Sprint Speed, and Change-of-Direction Speed in Academy Netball Players. Int. J. Sports Physiol. Perform. 2017. [Google Scholar] [CrossRef]
- McKinlay, B.J.; Wallace, P.J.; Dotan, R.; Long, D.; Tokuno, C.; Gabriel, D.A.; Falk, B. Isometric and Dynamic Strength and Neuromuscular Attributes as Predictors of Vertical Jump Performance in 11- to 13-Year-Old Male Athletes. Appl. Physiol. Nutr. Metab. 2017. [Google Scholar] [CrossRef]
- Secomb, J.L.; Lundgren, L.E.; Farley, O.R.L.; Tran, T.T.; Nimphius, S.; Sheppard, J.M. Relationships between Lower-Body Muscle Structure and Lower-Body Strength, Power, and Muscle-Tendon Complex Stiffness. J. Strength Cond. Res. 2015. [Google Scholar] [CrossRef] [PubMed]
- Peñailillo, L.; Espíldora, F.; Jannas-Vela, S.; Mujika, I.; Zbinden-Foncea, H. Muscle Strength and Speed Performance in Youth Soccer Players. J. Hum. Kinet. 2016. [Google Scholar] [CrossRef] [PubMed]
- Hammami, R.; Chaouachi, A.; Makhlouf, I.; Granacher, U.; Behm, D.G. Associations between Balance and Muscle Strength, Power Performance in Male Youth Athletes of Different Maturity Status. Pediatr. Exerc. Sci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Zwolski, C.; Quatman-Yates, C.; Paterno, M.V. Resistance Training in Youth: Laying the Foundation for Injury Prevention and Physical Literacy. Sports Health. 2017. [Google Scholar] [CrossRef]
- Peitz, M.; Behringer, M.; Granacher, U. A Systematic Review on the Effects of Resistance and Plyometric Training on Physical Fitness in Youth- What Do Comparative Studies Tell Us? PLoS ONE 2018. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Myer, G.D. Resistance Training among Young Athletes: Safety, Efficacy and Injury Prevention Effects. Br. J. Sports Med. 2010. [Google Scholar] [CrossRef]
- Legerlotz, K.; Marzilger, R.; Bohm, S.; Arampatzis, A. Physiological Adaptations Following Resistance Training in Youth Athletes-a Narrative Review. Pediatric Exerc. Sci. 2016. [Google Scholar] [CrossRef]
- Moran, J.; Sandercock, G.R.H.; Ramírez-Campillo, R.; Meylan, C.; Collison, J.; Parry, D.A. A Meta-Analysis of Maturation-Related Variation in Adolescent Boy Athletes’ Adaptations to Short-Term Resistance Training. J. Sports Sci. 2017, 35, 1041–1051. [Google Scholar] [CrossRef]
- Moran, J.; Sandercock, G.; Ramirez-Campillo, R.; Clark, C.C.T.; Fernandes, J.F.T.; Drury, B. A Meta-Analysis of Resistance Training in Female Youth: Its Effect on Muscular Strength, and Shortcomings in the Literature. Sports Med. 2018. [Google Scholar] [CrossRef]
- Lesinski, M.; Prieske, O.; Granacher, U. Effects and Dose-Response Relationships of Resistance Training on Physical Performance in Youth Athletes: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2016, 781–795. [Google Scholar] [CrossRef]
- Behm, D.G.; Young, J.D.; Whitten, J.H.D.; Reid, J.C.; Quigley, P.J.; Low, J.; Li, Y.; Lima, C.D.; Hodgson, D.D.; Chaouachi, A.; et al. Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis. Front. Physiol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Wagle, J.P.; Taber, C.B.; Cunanan, A.J.; Bingham, G.E.; Carroll, K.M.; DeWeese, B.H.; Sato, K.; Stone, M.H. Accentuated Eccentric Loading for Training and Performance: A Review. Sports Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Eccentric Exercise: Physiological Characteristics and Acute Responses. Sports Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic Adaptations to Eccentric Training: A Systematic Review. Sports Med. 2017. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-Davó, J.L.; Botella, J.; Navarro, A.; Tous-Fajardo, J. Effects of adding a weekly eccentric-overload training session on strength and athletic performance in team-handball players. Eur. J. Sport Sci. 2017, 17, 530–538. [Google Scholar] [CrossRef]
- Walker, S.; Blazevich, A.J.; Haff, G.G.; Tufano, J.J.; Newton, R.U.; Häkkinen, K. Greater Strength Gains after Training with Accentuated Eccentric than Traditional Isoinertial Loads in Already Strength-Trained Men. Front. Physiol. 2016, 7. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Theodosiou, K.; Bogdanis, G.C.; Gkantiraga, E.; Gissis, I.; Sambanis, M.; Souglis, A.; Sotiropoulos, A. Multiarticular Isokinetic High-Load Eccentric Training Induces Large Increases in Eccentric and Concentric Strength and Jumping Performance. J. Strength Cond. Res. 2014. [Google Scholar] [CrossRef]
- Brandenburg, J.P.; Docherty, D. The Effects of Accentuated Eccentric Loading on Strength, Muscle Hypertrophy, and Neural Adaptations in Trained Individuals. J. Strength Cond. Res. 2002. [Google Scholar] [CrossRef]
- Vikne, H.; Refsnes, P.E.; Ekmark, M.; Medbø, J.I.; Gundersen, V.; Gundersen, K. Muscular Performance after Concentric and Eccentric Exercise in Trained Men. Med. Sci. Sports Exerc. 2006. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Effects of Accentuated Eccentric Loading on Muscle Properties, Strength, Power, and Speed in Resistance-Trained Rugby Players. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef]
- Carothers, K.; Carothers, K.F.; Alvar, B.A.; Dodd, D.J.; Johanson, J.C.; Kincade, B.J.; Kelly, S.B. Comparison of Muscular Strength Gains Utilizing Eccentric, Standard and Concentric Resistance Training Protocols. J. Strength Cond. Res. 2010. [Google Scholar] [CrossRef]
- Dolezal, S.M.; Frese, D.L.; Llewellyn, T.L. The effects of eccentric, velocity-based training on strength and power in collegiate athletes. Int. J. Exerc. Sci. 2016, 9, 657. [Google Scholar] [PubMed]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Reactive and eccentric strength contribute to stiffness regulation during maximum velocity sprinting in team sport athletes and highly trained sprinters. J. Sports Sci. 2019, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mike, J.N.; Cole, N.; Herrera, C.; Vandusseldorp, T.; Kravitz, L.; Kerksick, C.M. The Effects of Eccentric Action Duration on Muscle Strength, Power Production, Vertical Jump, and Soreness. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Núñez, F.J.; Santalla, A.; Carrasquila, I.; Asian, J.A.; Reina, J.I.; Suarez-Arrones, L.J. The Effects of Unilateral and Bilateral Eccentric Overload Training on Hypertrophy, Muscle Power and COD Performance, and Its Determinants, in Team Sport Players. PLoS ONE 2018. [Google Scholar] [CrossRef] [PubMed]
- Doan, B.K.; Newton, R.U.; Marsit, J.L.; Triplett-McBride, N.T.; Koziris, L.P.; Fry, A.C.; Kraemer, W.J. Effects of Increased Eccentric Loading on Bench Press 1RM. J. Strength Cond. Res. 2002. [Google Scholar] [CrossRef]
- Gonzalo-Skok, O.; Tous-Fajardo, J.; Valero-Campo, C.; Berzosa, C.; Bataller, A.V.; Arjol-Serrano, J.L.; Moras, G.; Mendez-Villanueva, A. Eccentric-Overload Training in Team-Sport Functional Performance: Constant Bilateral Vertical versus Variable Unilateral Multidirectional Movements. Int. J. Sports Physiol. Perform. 2017. [Google Scholar] [CrossRef]
- Bridgeman, L.A.; McGuigan, M.R.; Gill, N.D.; Dulson, D.K. The Effects of Accentuated Eccentric Loading on the Drop Jump Exercise and the Subsequent Postactivation Potentiation Response. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef]
- Munger, C.N.; Archer, D.C.; Leyva, W.D.; Wong, M.A.; Coburn, J.W.; Costa, P.B.; Brown, L.E. Acute Effects of Eccentric Overload on Concentric Front Squat Performance. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef]
- Sheppard, J.; Newton, R.; McGuigan, M. The Effect of Accentuated Eccentric Load on Jump Kinetics in High-Performance Volleyball Players. Int. J. Sports Sci. Coach. 2007. [Google Scholar] [CrossRef]
- Friedmann-Bette, B.; Bauer, T.; Kinscherf, R.; Vorwald, S.; Klute, K.; Bischoff, D.; Müller, H.; Weber, M.A.; Metz, J.; Kauczor, H.U.; et al. Effects of Strength Training with Eccentric Overload on Muscle Adaptation in Male Athletes. Eur. J. Appl. Physiol. 2010. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.M.; Young, K. Using Additional Eccentric Loads to Increase Concentric Performance in the Bench Throw. J. Strength Cond. Res. 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboodarda, S.J.; Byrne, J.M.; Samson, M.; Wilson, B.D.; Mokhtar, A.H.; Behm, D.G. Does Performing Drop Jumps with Additional Eccentric Loading Improve Jump Performance? J. Strength Cond. Res. 2014. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.D.; Massiah, R.G.; Clarke, R.D. The Potentiating Effect of an Accentuated Eccentric Load on Countermovement Jump Performance. J. Strength Cond. Res. 2016. [Google Scholar] [CrossRef]
- Ong, J.H.; Lim, J.; Chong, E.; Tan, F. The Effects of Eccentric Conditioning Stimuli on Subsequent Counter-Movement Jump Performance. J. Strength Cond. Res. 2016. [Google Scholar] [CrossRef]
- Sheppard, J.; Hobson, S.; Barker, M.; Taylor, K.; Chapman, D.; McGuigan, M.; Newton, R. The Effect of Training with Accentuated Eccentric Load Counter-Movement Jumps on Strength and Power Characteristics of High-Performance Volleyball Players. Int. J. Sports Sci. Coach. 2008, 3, 355–363. [Google Scholar] [CrossRef] [Green Version]
- De Hoyo, M.; Pozzo, M.; Sañudo, B.; Carrasco, L.; Gonzalo-Skok, O.; Domínguez-Cobo, S.; Morán-Camacho, E. Effects of a 10-Week in-Season Eccentric-Overload Training Program on Muscle-Injury Prevention and Performance in Junior Elite Soccer Players. Int. J. Sports Physiol. Perform. 2015. [Google Scholar] [CrossRef] [Green Version]
- Tous-Fajardo, J.; Gonzalo-Skok, O.; Arjol-Serrano, J.L.; Tesch, P. Enhancing Change-of-Direction Speed in Soccer Players by Functional Inertial Eccentric Overload and Vibration Training. Int. J. Sports Physiol. Perform. 2016. [Google Scholar] [CrossRef]
- Krommes, K.; Petersen, J.; Nielsen, M.B.; Aagaard, P.; Hölmich, P.; Thorborg, K. Sprint and Jump Performance in Elite Male Soccer Players Following a 10-Week Nordic Hamstring Exercise Protocol: A Randomised Pilot Study. BMC Res. Notes 2017. [Google Scholar] [CrossRef] [Green Version]
- Siddle, J.; Greig, M.; Weaver, K.; Page, R.M.; Harper, D.; Brogden, C.M. Acute Adaptations and Subsequent Preservation of Strength and Speed Measures Following a Nordic Hamstring Curl Intervention: A Randomised Controlled Trial. J. Sports Sci. 2019. [Google Scholar] [CrossRef]
- Ishøi, L.; Hölmich, P.; Aagaard, P.; Thorborg, K.; Bandholm, T.; Serner, A. Effects of the Nordic Hamstring Exercise on Sprint Capacity in Male Football Players: A Randomized Controlled Trial. J. Sports Sci. 2017, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mendiguchia, J.; Martinez-Ruiz, E.; Morin, J.B.; Samozino, P.; Edouard, P.; Alcaraz, P.E.; Esparza-Ros, F.; Mendez-Villanueva, A. Effects of Hamstring-Emphasized Neuromuscular Training on Strength and Sprinting Mechanics in Football Players. Scand. J. Med. Sci. Sports 2015. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G.; Schena, F. Eccentric Resistance Training Increases and Retains Maximal Strength, Muscle Endurance, and Hypertrophy in Trained Men. Appl. Physiol. Nutr. Metab. 2016. [Google Scholar] [CrossRef] [PubMed]
- Franchi, M.V.; Atherton, P.J.; Reeves, N.D.; Flück, M.; Williams, J.; Mitchell, W.K.; Selby, A.; Beltran Valls, R.M.; Narici, M.V. Architectural, Functional and Molecular Responses to Concentric and Eccentric Loading in Human Skeletal Muscle. Acta Physiol. 2014. [Google Scholar] [CrossRef]
- Mjølsnes, R.; Arnason, A.; Østhagen, T.; Raastad, T.; Bahr, R. A 10-Week Randomized Trial Comparing Eccentric vs. Concentric Hamstring Strength Training in Well-Trained Soccer Players. Scand. J. Med. Sci. Sport 2004. [Google Scholar] [CrossRef]
- Bourne, M.N.; Opar, D.A.; Williams, M.D.; Shield, A.J. Eccentric Knee Flexor Strength and Risk of Hamstring Injuries in Rugby Union. Am. J. Sports Med. 2015. [Google Scholar] [CrossRef]
- Al Attar, W.S.A.; Soomro, N.; Sinclair, P.J.; Pappas, E.; Sanders, R.H. Effect of Injury Prevention Programs That Include the Nordic Hamstring Exercise on Hamstring Injury Rates in Soccer Players: A Systematic Review and Meta-Analysis. Sports Med. 2017. [Google Scholar] [CrossRef]
- Tyler, T.F.; Schmitt, B.M.; Nicholas, S.J.; McHugh, M.P. Rehabilitation after Hamstring-Strain Injury Emphasizing Eccentric Strengthening at Long Muscle Lengths: Results of Long-Term Follow-Up. J. Sport Rehabil. 2017. [Google Scholar] [CrossRef]
- Croisier, J.L.; Forthomme, B.; Namurois, M.H.; Vanderthommen, M.; Crielaard, J.M. Hamstring muscle strain recurrence and strength performance disorders. Am. J. Sports Med. 2002, 30, 199–203. [Google Scholar] [CrossRef]
- Proske, U.; Morgan, D.L. Muscle Damage from Eccentric Exercise: Mechanism, Mechanical Signs, Adaptation and Clinical Applications. J. Physiol. 2001. [Google Scholar] [CrossRef]
- Dueweke, J.J.; Awan, T.M.; Mendias, C.L. Regeneration of skeletal muscle after eccentric injury. J. Sport Rehabil. 2017, 26, 171–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing Eccentric Resistance Training—Part 1: A Brief Review of Existing Methods. J. Funct. Morphol. Kinesiol. 2019, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Granacher, U.; Lesinski, M.; Büsch, D.; Muehlbauer, T.; Prieske, O.; Puta, C.; Gollhofer, A.; Behm, D.G. Effects of Resistance Training in Youth Athletes on Muscular Fitness and Athletic Performance: A Conceptual Model for Long-Term Athlete Development. Front. Physiol. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatzikotoulas, K.; Patikas, D.; Ratel, S.; Bassa, E.; Kotzamanidis, C. Central and Peripheral Fatigability in Boys and Men during Maximal Action. Med. Sci. Sports Exerc. 2014. [Google Scholar] [CrossRef]
- Armatas, V.; Bassa, E.; Patikas, D.; Kitsas, I.; Zangelidis, G.; Kotzamanidis, C. Neuromuscular Differences between Men and Prepubescent Boys during a Peak Isometric Knee Extension Intermittent Fatigue Test. Pediatr. Exerc. Sci. 2010. [Google Scholar] [CrossRef]
- Dotan, R.; Mitchell, C.J.; Cohen, R.; Gabriel, D.; Klentrou, P.; Falk, B. Explosive Sport Training and Torque Kinetics in Children. Appl. Physiol. Nutr. Metab. 2013. [Google Scholar] [CrossRef]
- Zafeiridis, A.; Dalamitros, A.; Dipla, K.; Manou, V.; Galanis, N.; Kellis, S. Recovery during High-Intensity Intermittent Anaerobic Exercise in Boys, Teens, and Men. Med. Sci. Sports Exerc. 2005. [Google Scholar] [CrossRef]
- Halin, R.; Germain, P.; Bercier, S.; Kapitaniak, B.; Buttelli, O. Neuromuscular Response of Young Boys versus Men during Sustained Maximal Action. Med. Sci. Sports Exerc. 2003. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Radnor, J.M.; De Ste Croix, M.B.A.; Cronin, J.B.; Oliver, J.L. Changes in Sprint and Jump Performances after Traditional, Plyometric, and Combined Resistance Training in Male Youth Pre- and Post-Peak Height Velocity. J. Strength Cond. Res. 2016. [Google Scholar] [CrossRef]
- Dotan, R.; Mitchell, C.; Cohen, R.; Klentrou, P.; Gabriel, D.; Falk, B. Child—Adult Differences in Muscle Activation—A Review. Pediatr. Exerc. Sci. 2012. [Google Scholar] [CrossRef] [Green Version]
- Falk, B.; Dotan, R. Child-Adult Differences in the Recovery from High-Intensity Exercise. Exerc. Sport Sci. Rev. 2006, 107–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patikas, D.A.; Williams, C.A.; Ratel, S. Exercise-Induced Fatigue in Young People: Advances and Future Perspectives. Eur. J. Appl. Physiol. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, J.R.; Button, D.C.; Chaouachi, A.; Behm, D.G. Prepubescent Males Are Less Susceptible to Neuromuscular Fatigue Following Resistance Exercise. Eur. J. Appl. Physiol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Paraschos, I.; Hassani, A.; Bassa, E.; Hatzikotoulas, K.; Patikas, D.; Kotzamanidis, C. Fatigue Differences between Adults and Prepubertal Males. Int. J. Sports Med. 2007. [Google Scholar] [CrossRef] [PubMed]
- Dipla, K.; Tsirini, T.; Zafeiridis, A.; Manou, V.; Dalamitros, A.; Kellis, E.; Kellis, S. Fatigue Resistance during High-Intensity Intermittent Exercise from Childhood to Adulthood in Males and Females. Eur. J. Appl. Physiol. 2009. [Google Scholar] [CrossRef] [PubMed]
- Croix, M.B.A.D.S.; Deighan, M.A.; Ratel, S.; Armstrong, N. Age-and Sex-Associated Differences in Isokinetic Knee Muscle Endurance between Young Children and Adults. Appl. Physiol. Nutr. Metab. 2009. [Google Scholar] [CrossRef]
- Kotzamanidou, M.; Michailidis, I.; Hatzikotoulas, K.; Hasani, A.; Bassa, E.; Kotzamanidis, C. Differences in Recovery Process between Adult and Prepubertal Males after a Maximal Isokinetic Fatigue Task. Isokinet. Exerc. Sci. 2005, 13, 261–266. [Google Scholar] [CrossRef]
- Piponnier, E.; Martin, V.; Bontemps, B.; Chalchat, E.; Julian, V.; Bocock, O.; Duclos, M.; Ratel, S. Child-Adult Differences in Neuromuscular Fatigue Are Muscle Dependent. J. Appl. Physiol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Streckis, V.; Skurvydas, A.; Ratkevicius, A. Children Are More Susceptible to Central Fatigue than Adults. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2007, 36, 357–363. [Google Scholar] [CrossRef]
- Piponnier, E.; Martin, V.; Chalchat, E.; Bontemps, B.; Julian, V.; Bocock, O.; Duclos, M.; Ratel, S. Effect of MTU Length on Child–Adult Difference in Neuromuscular Fatigue. Med. Sci. Sport. Exerc. 2019. [Google Scholar] [CrossRef] [Green Version]
- Tanina, H.; Nishimura, Y.; Tsuboi, H.; Sakata, T.; Nakamura, T.; Murata, K.Y.; Arakawa, H.; Umezu, Y.; Tajima, F. Fatigue-Related Differences in Erector Spinae between Prepubertal Children and Young Adults Using Surface Electromyographic Power Spectral Analysis. J. Back Musculoskelet. Rehabil. 2017. [Google Scholar] [CrossRef] [PubMed]
- Hatzikotoulas, K.; Patikas, D.; Bassa, E.; Hadjileontiadis, L.; Koutedakis, Y.; Kotzamanidis, C. Submaximal Fatigue and Recovery in Boys and Men. Int. J. Sports Med. 2009. [Google Scholar] [CrossRef] [PubMed]
- Patikas, D.; Kansizoglou, A.; Koutlianos, N.; Williams, C.A.; Hatzikotoulas, K.; Bassa, E.; Kotzamanidis, C. Fatigue and Recovery in Children and Adults during Sustained Actions at 2 Different Submaximal Intensities. Appl. Physiol. Nutr. Metab. 2013. [Google Scholar] [CrossRef] [PubMed]
- Mendell, L.M. The Size Principle: A Rule Describing the Recruitment of Motoneurons. J. Neurophysiol. 2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottaro, M.; Brown, L.E.; Celes, R.; Martorelli, S.; Carregaro, R.; De Brito Vidal, J.C. Effect of Rest Interval on Neuromuscular and Metabolic Responses between Children and Adolescents. Pediatr. Exerc. Sci. 2011. [Google Scholar] [CrossRef] [PubMed]
- Vidal Filho, J.C.D.B.; Ferreira, C.E.S.; Sales, M.P.M.D.; Almeida, J.A.D.; Bottaro, M. Effects of different rest intervals on muscular performance in children. Rev. Educ. Física UEM 2011, 22, 613–622. [Google Scholar]
- Faigenbaum, A.D.; Ratamess, N.A.; McFarland, J.; Kaczmarek, J.; Coraggio, M.J.; Kang, J.; Hoffman, J.R. Effect of Rest Interval Length on Bench Press Performance in Boys, Teens, and Men. Pediatr. Exerc. Sci. 2008, 20, 457–469. [Google Scholar] [CrossRef]
- Tibana, R.A.; Prestes, J.; Da Cunha Nascimento, D.; Martins, O.V.; De Santana, F.S.; Balsamo, S. Higher Muscle Performance in Adolescents Compared with Adults after a Resistance Training Session with Different Rest Intervals. J. Strength Cond. Res. 2012. [Google Scholar] [CrossRef]
- Martin, V.; Kluka, V.; Garcia Vicencio, S.; Maso, F.; Ratel, S. Children Have a Reduced Maximal Voluntary Activation Level of the Adductor Pollicis Muscle Compared to Adults. Eur. J. Appl. Physiol. 2015, 115, 1485–1491. [Google Scholar] [CrossRef]
- Kluka, V.; Martin, V.; Vicencio, S.G.; Jegu, A.G.; Cardenoux, C.; Morio, C.; Coudeyre, E.; Ratel, S. Effect of Muscle Length on Voluntary Activation Level in Children and Adults. Med. Sci. Sports Exerc. 2015, 47, 718–724. [Google Scholar] [CrossRef]
- O’Brien, T.D.; Reeves, N.D.; Baltzopoulos, V.; Jones, D.A.; Maganaris, C.N. In Vivo Measurements of Muscle Specific Tension in Adults and Children. Exp. Physiol. 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosset, J.F.; Mora, I.; Lambertz, D.; Pérot, C. Voluntary Activation of the Triceps Surae in Prepubertal Children. J. Electromyogr. Kinesiol. 2008, 18, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Kluka, V.; Martin, V.; Vicencio, S.G.; Giustiniani, M.; Morel, C.; Morio, C.; Coudeyre, E.; Ratel, S. Effect of Muscle Length on Voluntary Activation of the Plantar Flexors in Boys and Men. Eur. J. Appl. Physiol. 2016, 116, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Belanger, A.Y.; McComas, A.J. Contractile Properties of Human Skeletal Muscle in Childhood and Adolescence. Eur. J. Appl. Physiol. Occup. Physiol. 1989. [Google Scholar] [CrossRef]
- Koh, T.H.H.G.; Eyre, J.A. Maturation of Corticospinal Tracts Assessed by Electromagnetic Stimulation of the Motor Cortex. Arch. Dis. Child. 1988. [Google Scholar] [CrossRef] [Green Version]
- Lexell, J.; Sjöström, M.; Nordlund, A.-S.; Taylor, C.C. Growth and Development of Human Muscle: A Quantitative Morphological Study of Whole Vastus Lateralis from Childhood to Adult Age. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 1992, 15, 404–409. [Google Scholar] [CrossRef]
- Pitt, B.; Dotan, R.; Millar, J.; Long, D.; Tokuno, C.; O’Brien, T.; Falk, B. The Electromyographic Threshold in Boys and Men. Eur. J. Appl. Physiol. 2015, 115, 1273–1281. [Google Scholar] [CrossRef]
- Long, D.; Dotan, R.; Pitt, B.; McKinlay, B.; O’Brien, T.D.; Tokuno, C.; Falk, B. The Electromyographic Threshold in Girls and Women. Pediatr. Exerc. Sci. 2017. [Google Scholar] [CrossRef]
- Dotan, R. Children’s Neuromotor and Muscle-Functional Attributes—Outstanding Issues. Pediatr. Exerc. Sci. 2016, 28, 202–209. [Google Scholar] [CrossRef]
- Lichtwark, G.A.; Barclay, C.J. A Compliant Tendon Increases Fatigue Resistance and Net Efficiency during Fatiguing Cyclic Actions of Mouse Soleus Muscle. Acta Physiol. 2012. [Google Scholar] [CrossRef]
- Ratel, S.; Kluka, V.; Vicencio, S.G.; Jegu, A.G.; Cardenoux, C.; Morio, C.; Coudeyre, E.; Martin, V. Insights into the Mechanisms of Neuromuscular Fatigue in Boys and Men. Med. Sci. Sports Exerc. 2015. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, N.; Barker, A.R.; McManus, A.M. Muscle Metabolism Changes with Age and Maturation: How Do They Relate to Youth Sport Performance? Br. J. Sports Med. 2015, 49, 860–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, Y.; Inbar, O.; Mor-Unikovski, R.; Luder, A.; Dubnov-Raz, G. Recovery of Upper-Body Muscle Power after Short Intensive Exercise: Comparing Boys and Men. Eur. J. Appl. Physiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Engel, F.A.; Sperlich, B.; Stockinger, C.; Hartel, S.; Bos, K.; Holmberg, H.C. The Kinetics of Blood Lactate in Boys during and Following a Single and Repeated All-out Sprints of Cycling Are Different than in Men. Appl. Physiol. Nutr. Metab. 2015. [Google Scholar] [CrossRef]
- Dotan, R.; Ohana, S.; Bediz, C.; Falk, B. Blood Lactate Disappearance Dynamics in Boys and Men Following Exercise of Similar and Dissimilar Peak-Lactate Concentrations. J. Pediatr. Endocrinol. Metab. 2003, 16, 419–429. [Google Scholar] [CrossRef]
- Ratel, S.; Bedu, M.; Hennegrave, A.; Doré, E.; Duché, P. Effects of Age and Recovery Duration on Peak Power Output during Repeated Cycling Sprints. Int. J. Sports Med. 2002, 23, 397–402. [Google Scholar] [CrossRef]
- Kappenstein, J.; Fernández-Fernández, J.; Engel, F.; Ferrauti, A. Effects of Active and Passive Recovery on Blood Lactate and Blood PH after a Repeated Sprint Protocol in Children and Adults. Pediatr. Exerc. Sci. 2015, 27, 77–84. [Google Scholar] [CrossRef]
- Buchheit, M.; Duché, P.; Laursen, P.B.; Ratel, S. Postexercise Heart Rate Recovery in Children: Relationship with Power Output, Blood PH, and Lactate. Appl. Physiol. Nutr. Metab. 2010. [Google Scholar] [CrossRef]
- Beneke, R.; Hütler, M.; Jung, M.; Leithäuser, R.M. Modeling the Blood Lactate Kinetics at Maximal Short-Term Exercise Conditions in Children, Adolescents, and Adults. J. Appl. Physiol. 2005. [Google Scholar] [CrossRef]
- Ratel, S.; Duche, P.; Hennegrave, A.; Van Praagh, E.; Bedu, M. Acid-Base Balance during Repeated Cycling Sprints in Boys and Men. J. Appl. Physiol. 2002, 92, 479–485. [Google Scholar] [CrossRef] [Green Version]
- McCormack, S.E.; McCarthy, M.A.; Farilla, L.; Hrovat, M.I.; Systrom, D.M.; Grinspoon, S.K.; Fleischman, A. Skeletal Muscle Mitochondrial Function Is Associated with Longitudinal Growth Velocity in Children and Adolescents. J. Clin. Endocrinol. Metab. 2011. [Google Scholar] [CrossRef] [PubMed]
- Ratel, S.; Tonson, A.; Le Fur, Y.; Cozzone, P.; Bendahan, D. Comparative Analysis of Skeletal Muscle Oxidative Capacity in Children and Adults: A 31P-MRS Study. Appl. Physiol. Nutr. Metab. 2008. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.J.; Kemp, G.J.; Thompson, C.H.; Radda, G.K. Ageing: Effects on Oxidative Function of Skeletal Muscle in Vivo. Mol. Cell. Biochem. 1997. [Google Scholar] [CrossRef]
- Kappenstein, J.; Ferrauti, A.; Runkel, B.; Fernandez-Fernandez, J.; Müller, K.; Zange, J. Changes in Phosphocreatine Concentration of Skeletal Muscle during High-Intensity Intermittent Exercise in Children and Adults. Eur. J. Appl. Physiol. 2013, 113, 2769–2779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birat, A.; Bourdier, P.; Piponnier, E.; Blazevich, A.J.; Maciejewski, H.; Duché, P.; Ratel, S. Metabolic and Fatigue Profiles Are Comparable between Prepubertal Children and Well-Trained Adult Endurance Athletes. Front. Physiol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Boisseau, N.; Delamarche, P. Metabolic and Hormonal Responses to Exercise in Children and Adolescents. Sports Med. 2000. [Google Scholar] [CrossRef] [PubMed]
- Fleischman, A.; Makimura, H.; Stanley, T.L.; McCarthy, M.A.; Kron, M.; Sun, N.; Chuzi, S.; Hrovat, M.I.; Systrom, D.M.; Grinspoon, S.K. Skeletal Muscle Phosphocreatine Recovery after Submaximal Exercise in Children and Young and Middle-Aged Adults. J. Clin. Endocrinol. Metab. 2010, 95, E69–E74. [Google Scholar] [CrossRef]
- Berg, A.; Kim, S.S.; Keul, J. Skeletal Muscle Enzyme Activities in Healthy Young Subjects. Int. J. Sports Med. 1986. [Google Scholar] [CrossRef]
- Berg, A.; Keul, J. Biochemical changes during exercise in children. In Young Athletes/Biological, Psychological and Educational Perspectives; Malina, R., Ed.; Human Kinetics: Champaign, IL, USA, 1988; pp. 61–77. [Google Scholar]
- Eriksson, B.O.; Gollnick, P.D.; Saltin, B. Muscle Metabolism and Enzyme Activities after Training in Boys 11–13 Years Old. Acta Physiol. Scand. 1973. [Google Scholar] [CrossRef]
- Haralambie, G. Enzyme Activities in Skeletal Muscle of 13-15 Years Old Adolescents. Clin. Respir. Physiol. 1982, 18, 65–74. [Google Scholar]
- Hoppeler, H.; Lüthi, P.; Claassen, H.; Weibel, E.R.; Howald, H. The Ultrastructure of the Normal Human Skeletal Muscle—A Morphometric Analysis on Untrained Men, Women and Well-Trained Orienteers. Pflügers Arch. Eur. J. Physiol. 1973. [Google Scholar] [CrossRef]
- Ratel, S.; Blazevich, A.J. Are Prepubertal Children Metabolically Comparable to Well-Trained Adult Endurance Athletes? Sports Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Eston, R.; Byrne, C.; Twist, C. Muscle function after exercise-induced muscle damage: Considerations for athletic performance in children and adults. J. Exerc. Sci. Fit. 2003, 1, 85–96. [Google Scholar]
- Ratel, S.; Martin, V. Is There a Progressive Withdrawal of Physiological Protections against High-Intensity Exercise-Induced Fatigue during Puberty? Sports 2015, 3, 346–357. [Google Scholar] [CrossRef] [Green Version]
- Kanda, K.; Sugama, K.; Hayashida, H.; Sakuma, J.; Kawakami, Y.; Miura, S.; Yoshioka, H.; Mori, Y.; Suzuki, K. Eccentric Exercise-Induced Delayed-Onset Muscle Soreness and Changes in Markers of Muscle Damage and Inflammation. Exerc. Immunol. Rev. 2013, 19, 72–85. [Google Scholar]
- Hyldahl, R.D.; Hubal, M.J. Lengthening Our Perspective: Morphological, Cellular, and Molecular Responses to Eccentric Exercise. Muscle Nerve 2014. [Google Scholar] [CrossRef]
- Goodall, S.; Thomas, K.; Barwood, M.; Keane, K.; Gonzalez, J.T.; St Clair Gibson, A.; Howatson, G. Neuromuscular Changes and the Rapid Adaptation Following a Bout of Damaging Eccentric Exercise. Acta Physiol. 2017. [Google Scholar] [CrossRef]
- Cleak, M.J.; Eston, R.G. Muscle Soreness, Swelling, Stiffness and Strength Loss after Intense Eccentric Exercise. Br. J. Sports Med. 1992. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.; Howatson, G.; van Someren, K.; Leeder, J.; Pedlar, C. Compression Garments and Recovery from Exercise-Induced Muscle Damage: A Meta-Analysis. Br. J. Sports Med. 2014. [Google Scholar] [CrossRef]
- Cross, R.; Siegler, J.; Marshall, P.; Lovell, R. Scheduling of Training and Recovery during the In-Season Weekly Micro-Cycle: Insights from Team Sport Practitioners. Eur. J. Sport Sci. 2019. [Google Scholar] [CrossRef]
- Winwood, P.W.; Buckley, J.J. Short-Term Effects of Resistance Training Modalities on Performance Measures in Male Adolescents. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Pichardo, A.W.; Oliver, J.L.; Harrison, C.B.; Maulder, P.S.; Lloyd, R.S. Integrating Resistance Training into High School Curriculum. Strength Cond. J. 2019. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Romero-Rodriguez, D.; Montalvo, A.M.; Kiefer, A.W.; Lloyd, R.S.; Myer, G.D. Integrative Neuromuscular Training and Injury Prevention in Youth Athletes. Part I: Identifying Risk Factors. Strength Cond. J. 2016. [Google Scholar] [CrossRef] [Green Version]
- Fort-Vanmeerhaeghe, A.; Romero-Rodriguez, D.; Lloyd, R.S.; Kushner, A.; Myer, G.D. Integrative Neuromuscular Training in Youth Athletes. Part II: Strategies to Prevent Injuries and Improve Performance. Strength Cond. J. 2016. [Google Scholar] [CrossRef] [Green Version]
- Murray, A. Managing the Training Load in Adolescent Athletes. Int. J. Sports Physiol. Perform. 2017. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.J.; Nosaka, K.; Ho, C.C.; Chen, H.L.; Tseng, K.W.; Ratel, S.; Chen, T.C.C. Influence of Maturation Status on Eccentric Exercise-Induced Muscle Damage and the Repeated Bout Effect in Females. Front. Physiol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.C.; Chen, H.L.; Liu, Y.C.; Nosaka, K. Eccentric Exercise-Induced Muscle Damage of Pre-Adolescent and Adolescent Boys in Comparison to Young Men. Eur. J. Appl. Physiol. 2014. [Google Scholar] [CrossRef]
- Deli, C.K.; Fatouros, I.G.; Paschalis, V.; Georgakouli, K.; Zalavras, A.; Avloniti, A.; Koutedakis, Y.; Jamurtas, A.Z. A Comparison of Exercise-Induced Muscle Damage Following Maximal Eccentric Actions in Men and Boys. Pediatr. Exerc. Sci. 2017. [Google Scholar] [CrossRef]
- Dos Santos, R.R.C.; Rossi, R.R.; Rosa, E.C.C.C. Perception of Delayed Onset Muscle Soreness in Children and Adults Trained, Submitted to a Training Session of Force Eccentric. Int. J. Sports Sci. 2016, 6, 23–26. [Google Scholar] [CrossRef]
- Arnett, M.G.; Hyslop, R.; Dennehy, C.A.; Schneider, C.M. Age-Related Variations of Serum CK and CK MB Response in Females. Can. J. Appl. Physiol. 2000. [Google Scholar] [CrossRef]
- Moir, G.; Snyder, B.; Connaboy, C.; Lamont, H.; Davis, S. Using Drop Jumps and Jump Squats to Assess Eccentric and Concentric Force-Velocity Characteristics. Sports 2018, 6, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazaridis, S.; Patikas, D.A.; Bassa, E.; Tsatalas, T.; Hatzikotoulas, K.; Ftikas, C.; Kotzamanidis, C. The Acute Effects of an Intense Stretch-Shortening Cycle Fatigue Protocol on the Neuromechanical Parameters of Lower Limbs in Men and Prepubescent Boys. J. Sports Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Gorianovas, G.; Skurvydas, A.; Streckis, V.; Brazaitis, M.; Kamandulis, S.; McHugh, M.P. Repeated Bout Effect Was More Expressed in Young Adult Males than in Elderly Males and Boys. Biomed Res. Int. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marginson, V.; Rowlands, A.V.; Gleeson, N.P.; Eston, R.G. Comparison of the Symptoms of Exercise-Induced Muscle Damage after an Initial and Repeated Bout of Plyometric Exercise in Men and Boys. J. Appl. Physiol. 2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pullinen, T.; Mero, A.; Huttunen, P.; Pakarinen, A.; Komi, P.V. Resistance Exercise-Induced Hormonal Response under the Influence of Delayed Onset Muscle Soreness in Men and Boys. Scand. J. Med. Sci. Sport. 2011. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.M.C.; Mota, P.; Duarte, J.A.; Appell, H.J. Children Are Less Susceptible to Exercise-Induced Muscle Damage than Adults: A Preliminary Investigation. Pediatr. Exerc. Sci. 1996. [Google Scholar] [CrossRef]
- Duarte, J.A.; Magalhães, J.F.; Monteiro, L.; Almeida-Dias, A.; Soares, J.M.C.; Appell, H.J. Exercise-Induced Signs of Muscle Overuse in Children. Int. J. Sports Med. 1999. [Google Scholar] [CrossRef]
- Webber, L.M.; Byrnes, W.C.; Rowland, T.W.; Foster, V.L. Serum Creatine Kinase Activity and Delayed Onset Muscle Soreness in Prepubescent Children: A Preliminary Study. Pediatr. Exerc. Sci. 2016. [Google Scholar] [CrossRef]
- Hyldahl, R.D.; Chen, T.C.; Nosaka, K. Mechanisms and Mediators of the Skeletal Muscle Repeated Bout Effect. Exerc. Sport Sci. Rev. 2017. [Google Scholar] [CrossRef]
- Nosaka, K.; Aoki, M.S. Repeated bout effect: Research update and future perspective. Braz. J. Biomotricity 2011, 5, 5–15. [Google Scholar]
- McHugh, M.P.; Connolly, D.A.J.; Eston, R.G.; Gleim, G.W. Exercise-Induced Muscle Damage and Potential Mechanisms for the Repeated Bout Effect. Sports Med. 1999. [Google Scholar] [CrossRef] [PubMed]
- Bridgeman, L.A.; Gill, N.D.; Dulson, D.K.; Mcguigan, M.R. The Effect of Exercise-Induced Muscle Damage after a Bout of Accentuated Eccentric Load Drop Jumps and the Repeated Bout Effect. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Pincheira, P.A.; Hoffman, B.W.; Cresswell, A.G.; Carroll, T.J.; Brown, N.A.T.; Lichtwark, G.A. The Repeated Bout Effect Can Occur without Mechanical and Neuromuscular Changes after a Bout of Eccentric Exercise. Scand. J. Med. Sci. Sport. 2018. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, P.M.; Nosaka, K.; Braun, B. Muscle Function after Exercise-Induced Muscle Damage and Rapid Adaptation. Med. Sci. Sports Exerc. 1992. [Google Scholar] [CrossRef]
- Chen, T.C.; Nosaka, K.; Sacco, P. Intensity of Eccentric Exercise, Shift of Optimum Angle, and the Magnitude of Repeated-Bout Effect. J. Appl. Physiol. 2007. [Google Scholar] [CrossRef] [PubMed]
- Kawczyński, A. Force and Electromyographic Responses of the Biceps Brachii after Eccentric Exercise in Athletes and Non-Athletes. J. Hum. Kinet. 2019. [Google Scholar] [CrossRef] [Green Version]
- Croix, M.D.S.; Deighan, M.; Armstrong, N. Functional Eccentric-Concentric Ratio of Knee Extensors and Flexors in Pre-Pubertal Children, Teenagers and Adult Males and Females. Int. J. Sports Med. 2007. [Google Scholar] [CrossRef]
- Philippaerts, R.M.; Vaeyens, R.; Janssens, M.; Van Renterghem, B.; Matthys, D.; Craen, R.; Bourgois, J.; Vrijens, J.; Beunen, G.; Malina, R.M. The Relationship between Peak Height Velocity and Physical Performance in Youth Soccer Players. J. Sports Sci. 2006. [Google Scholar] [CrossRef]
- Van Der Sluis, A.; Elferink-Gemser, M.T.; Brink, M.S.; Visscher, C. Importance of Peak Height Velocity Timing in Terms of Injuries in Talented Soccer Players. Int. J. Sports Med. 2015. [Google Scholar] [CrossRef]
- Rejeb, A.; Johnson, A.; Farooq, A.; Verrelst, R.; Pullinger, S.; Vaeyens, R.; Witvrouw, E. Sports Injuries Aligned to Predicted Mature Height in Highly Trained Middle-Eastern Youth Athletes: A Cohort Study. BMJ Open 2019. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.M.; Williams, S.; Bradley, B.; Sayer, S.; Murray Fisher, J.; Cumming, S. Growing Pains: Maturity Associated Variation in Injury Risk in Academy Football. Eur. J. Sport Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Petushek, E.J.; Sugimoto, D.; Stoolmiller, M.; Smith, G.; Myer, G.D. Evidence-Based Best-Practice Guidelines for Preventing Anterior Cruciate Ligament Injuries in Young Female Athletes: A Systematic Review and Meta-Analysis. Am. J. Sports Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Lubans, D.R.; Morgan, P.J.; Cliff, D.P.; Barnett, L.M.; Okely, A.D. Fundamental Movement Skills in Children and Adolescents. Sport. Med. 2010, 40, 1019–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, H.; Booth, J.N.; Duncan, A.; Fawkner, S. The Effect of Resistance Training Interventions on Fundamental Movement Skills in Youth: A Meta-Analysis. Sport. Med. Open. 2019. [Google Scholar] [CrossRef] [PubMed]
- McKeown, I.; Taylor-McKeown, K.; Woods, C.; Ball, N. Athletic Ability Assessment: A Movement Assessment Protocol for Athletes. Int. J. Sports Phys. Ther. 2014, 9, 862–873. [Google Scholar] [PubMed]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S.; Colosimo, A.J.; McLean, S.G.; Van Den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study. Am. J. Sports Med. 2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santello, M. Review of Motor Control Mechanisms Underlying Impact Absorption from Falls. Gait Posture 2005. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R. Anterior Cruciate Ligament Injuries in Female Athletes: Part 1, Mechanisms and Risk Factors. Am. J. Sports Med. 2006. [Google Scholar] [CrossRef]
- Dierks, T.A.; Manal, K.T.; Hamill, J.; Davis, I.S. Proximal and Distal Influences on Hip and Knee Kinematics in Runners with Patellofemoral Pain during a Prolonged Run. J. Orthop. Sports Phys. Ther. 2008. [Google Scholar] [CrossRef]
- Sigward, S.M.; Pollard, C.D.; Powers, C.M. The Influence of Sex and Maturation on Landing Biomechanics: Implications for Anterior Cruciate Ligament Injury. Scand. J. Med. Sci. Sport. 2012. [Google Scholar] [CrossRef] [Green Version]
- Hass, C.J.; Schick, E.A.; Tillman, M.D.; Chow, J.W.; Brunt, D.; Cauraugh, J.H. Knee Biomechanics during Landings: Comparison of Pre- and Postpubescent Females. Med. Sci. Sports Exerc. 2005. [Google Scholar] [CrossRef] [PubMed]
- Swartz, E.E.; Decoster, L.C.; Russell, P.J.; Croce, R.V. Effects of Developmental Stage and Sex on Lower Extremity Kinematics and Vertical Ground Reaction Forces during Landing. J. Athl. Train. 2005, 40, 9. [Google Scholar] [PubMed]
- Boden, B.P.; Dean, C.S.; Feagin, J.A.; Garrett, W.E. Mechanisms of Anterior Cruciate Ligament Injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Ireland, M.L. Anterior Cruciate Ligament Injury in Female Athletes: Epidemiology. J. Athl. Train. 1999. [Google Scholar] [CrossRef]
- Ford, K.R.; Shapiro, R.; Myer, G.D.; Van Den Bogert, A.J.; Hewett, T.E. Longitudinal Sex Differences during Landing in Knee Abduction in Young Athletes. Med. Sci. Sports Exerc. 2010. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Myer, G.D.; Kiefer, A.W.; Ford, K.R. Longitudinal Increases in Knee Abduction Moments in Females during Adolescent Growth. Med. Sci. Sports Exerc. 2015. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Benet, A.; Mirada, S.; Montalvo, A.M.; Myer, G.D. Sex and Maturation Differences in Performance of Functional Jumping and Landing Deficits in Youth Athletes. J. Sport Rehabil. 2019. [Google Scholar] [CrossRef]
- Caine, D.; Purcell, L.; Maffulli, N. The Child and Adolescent Athlete: A Review of Three Potentially Serious Injuries. BMC Sports Sci. Med. Rehabil. 2014. [Google Scholar] [CrossRef] [Green Version]
- Pollard, C.D.; Sigward, S.M.; Powers, C.M. Limited Hip and Knee Flexion during Landing Is Associated with Increased Frontal Plane Knee Motion and Moments. Clin. Biomech. 2010. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Myer, G.D.; Ford, K.R. Decrease in Neuromuscular Control about the Knee with Maturation in Female Athletes. J. Bone Jt. Surg. Ser. A 2004. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S.; Colosimo, A.J.; McLean, S.G.; van den Bogert, A.J.; Paterno, M.V.; Succop, P. Neuromuscular Control and Valgus Loading of the Knee Predict ACL Injury Risk in Female Athletes. Med. Sci. Sport. Exerc. 2004. [Google Scholar] [CrossRef]
- Schmitz, R.J.; Shultz, S.J.; Nguyen, A.D. Dynamic Valgus Alignment and Functional Strength in Males and Females during Maturation. J. Athl. Train. 2009. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, R.; Kuramochi, R.; Fukubayashi, T. Effect of Injury Prevention Training on Knee Mechanics in Female Adolescents during Puberty. Br. J. Sports Med. 2014. [Google Scholar] [CrossRef] [Green Version]
- Holden, S.; Doherty, C.; Boreham, C.; Delahunt, E. Sex Differences in Sagittal Plane Control Emerge during Adolescent Growth: A Prospective Investigation. Knee Surg. Sport. Traumatol. Arthrosc. 2019. [Google Scholar] [CrossRef]
- Ford, K.R.; Myer, G.D.; Hewett, T.E. Valgus Knee Motion during Landing in High School Female and Male Basketball Players. Med. Sci. Sports Exerc. 2003. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; McClure, S.B.; Onate, J.A.; Guskiewicz, K.M.; Kirkendall, D.T.; Garrett, W.E. Age and Gender Effects on Lower Extremity Kinematics of Youth Soccer Players in a Stop-Jump Task. Am. J. Sports Med. 2005. [Google Scholar] [CrossRef]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.B.A.; Myer, G.D.; Lloyd, R.S. Landing Kinematics in Elite Male Youth Soccer Players of Different Chronologic Ages and Stages of Maturation. J. Athl. Train. 2018. [Google Scholar] [CrossRef]
- Read, P.J.; Oliver, J.L.; Myer, G.D.; De Ste Croix, M.B.A.; Belshaw, A.; Lloyd, R.S. Altered Landing Mechanics Are Shown by Male Youth Soccer Players at Different Stages of Maturation. Phys. Ther. Sport 2018. [Google Scholar] [CrossRef]
- Barber-Westin, S.D.; Noyes, F.R.; Galloway, M. Jump-Land Characteristics and Muscle Strength Development in Young Athletes: A Gender Comparison of 1140 Athletes 9 to 17 Years of Age. Am. J. Sports Med. 2006. [Google Scholar] [CrossRef]
- Quatman, C.E.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Maturation Leads to Gender Differences in Landing Force and Vertical Jump Performance: A Longitudinal Study. Am. J. Sports Med. 2006. [Google Scholar] [CrossRef]
- Di Stefano, L.J.; Martinez, J.C.; Crowley, E.; Matteau, E.; Kerner, M.S.; Boling, M.C.; Nguyen, A.D.; Trojian, T.H. Maturation and Sex Differences in Neuromuscular Characteristics of Youth Athletes. J. Strength Cond. Res. 2015. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.L.; Myer, G.D.; De Ste Croix, M.; Wass, J.; Read, P.J. Comparison of Drop Jump and Tuck Jump Knee Joint Kinematics in Elite Male Youth Soccer Players: Implications for Injury Risk Screening. J. Sport Rehabil. 2019. [Google Scholar] [CrossRef] [PubMed]
- Birat, A.; Sebillaud, D.; Bourdier, P.; Doré, E.; Duché, P.; Blazevich, A.J.; Patikas, D.; Ratel, S. Effect of Drop Height on Vertical Jumping Performance in Pre-, Circa-, and Post-Pubertal Boys and Girls. Pediatr. Exerc. Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.B.A.; Myer, G.D.; Lloyd, R.S. A Prospective Investigation to Evaluate Risk Factors for Lower Extremity Injury Risk in Male Youth Soccer Players. Scand. J. Med. Sci. Sport 2018. [Google Scholar] [CrossRef] [PubMed]
- Irmischer, B.S.; Harris, C.; Pfeiffer, R.P.; DeBeliso, M.A.; Adams, K.J.; Shea, K.G. Effects of a Knee Ligament Injury Prevention Exercise Program on Impact Forces in Women. J. Strength Cond. Res. 2004. [Google Scholar] [CrossRef]
- Hass, C.J.; Schick, E.A.; Chow, J.W.; Tillman, M.D.; Brunt, D.; Cauraugh, J.H. Lower Extremity Biomechanics Differ in Prepubescent and Postpubescent Female Athletes during Stride Jump Landings. J. Appl. Biomech. 2003. [Google Scholar] [CrossRef]
- Leppänen, M.; Pasanen, K.; Kujala, U.M.; Vasankari, T.; Kannus, P.; Äyrämö, S.; Krosshaug, T.; Bahr, R.; Avela, J.; Perttunen, J.; et al. Stiff Landings Are Associated with Increased ACL Injury Risk in Young Female Basketball and Floorball Players. Am. J. Sports Med. 2017. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Slauterbeck, J.R. Preparticipation Physical Examination Using a Box Drop Vertical Jump Test in Young Athletes: The Effects of Puberty and Sex. Clin. J. Sport Med. 2006. [Google Scholar] [CrossRef]
- Paz, G.A.; de Freitas Maia, M.; Santana, H.G.; Miranda, H.; Lima, V.; Willson, J.D. Knee Frontal Plane Projection Angle: A Comparison Study between Drop Vertical Jump and Step-down Tests with Young Volleyball Athletes. J. Sport Rehabil. 2019. [Google Scholar] [CrossRef]
- Ali, N.; Robertson, D.G.E.; Rouhi, G. Sagittal Plane Body Kinematics and Kinetics during Single-Leg Landing from Increasing Vertical Heights and Horizontal Distances: Implications for Risk of Non-Contact ACL Injury. Knee 2014. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Huijing, P.A.; Schenau, G.J.V.I. Drop Jumping. II. The Influence of Dropping Height on the Biomechanics of Drop Jumping. Med. Sci. Sports Exerc. 1987, 19, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Makaruk, H.; Sacewicz, T. The Effect of Drop Height and Body Mass on Drop Jump Intensity. Biol. Sport 2011. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.N.; Bates, B.T.; Dufek, J.S. Contributions of Lower Extremity Joints to Energy Dissipation during Landings. Med. Sci. Sports Exerc. 2000. [Google Scholar] [CrossRef] [PubMed]
- Herrington, L.; Munro, A.; Comfort, P. A Preliminary Study into the Effect of Jumping-Landing Training and Strength Training on Frontal Plane Projection Angle. Man. Ther. 2015. [Google Scholar] [CrossRef]
- Montgomery, M.M.; Shultz, S.J.; Schmitz, R.J.; Wideman, L.; Henson, R.A. Influence of Lean Body Mass and Strength on Landing Energetics. Med. Sci. Sports Exerc. 2012. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, C.; Mattacola, C. Sex Differences in Eccentric Hip-Abductor Strength and Knee-Joint Kinematics When Landing from a Jump. J. Sport Rehabil. 2005. [Google Scholar] [CrossRef]
- Boling, M.; Padua, D. Relationship between Hip Strength and Trunk, Hip, and Knee Kinematics during a Jump-Landing Task in Individuals with Patellofemoral Pain. Int. J. Sports Phys. Ther. 2013, 8, 661. [Google Scholar]
- Baldon, R.D.M.; Lobato, D.F.M.; Carvalho, L.P.; Santiago, P.R.P.; Benze, B.G.; Serrão, F.V. Relationship between Eccentric Hip Torque and Lower-Limb Kinematics: Gender Differences. J. Appl. Biomech. 2011. [Google Scholar] [CrossRef]
- Baldon, R.D.M.; Nakagawa, T.H.; Muniz, T.B.; Amorim, C.F.; Maciel, C.D.; Serrão, F.V. Eccentric Hip Muscle Function in Females with and without Patellofemoral Pain Syndrome. J. Athl. Train. 2009. [Google Scholar] [CrossRef]
- Ramskov, D.; Barton, C.; Nielsen, R.O.; Rasmussen, S. High Eccentric Hip Abduction Strength Reduces the Risk of Developing Patellofemoral Pain among Novice Runners Initiating a Self-Structured Running Program: A 1-Year Observational Study. J. Orthop. Sports Phys. Ther. 2015. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhang, S.; Liu, Y.; Zhang, D.; Xie, B. Do Knee Concentric and Eccentric Strength and Sagittal-Plane Knee Joint Biomechanics Differ between Jumpers and Non-Jumpers in Landing? Hum. Mov. Sci. 2013. [Google Scholar] [CrossRef] [PubMed]
- Strafford, B.W.; van der Steen, P.; Davids, K.; Stone, J.A. Parkour as a Donor Sport for Athletic Development in Youth Team Sports: Insights Through an Ecological Dynamics Lens. Sport. Med. Open 2018. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, G.; Soueres, P.; Watier, B. Strategies of Parkour Practitioners for Executing Soft Precision Landings. J. Sports Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- DiStefano, L.J.; Beltz, E.M.; Root, H.J.; Martinez, J.C.; Houghton, A.; Taranto, N.; Pearce, K.; McConnell, E.; Muscat, C.; Boyle, S.; et al. Sport Sampling Is Associated with Improved Landing Technique in Youth Athletes. Sports Health 2018. [Google Scholar] [CrossRef]
- Standing, R.J.; Maulder, P.S. A Comparison of the Habitual Landing Strategies from Differing Drop Heights of Parkour Practitioners (Traceurs) and Recreationally Trained Individuals. J. Sport. Sci. Med. 2015, 14, 723. [Google Scholar]
- DiCesare, C.A.; Montalvo, A.; Barber Foss, K.D.; Thomas, S.M.; Ford, K.R.; Hewett, T.E.; Jayanthi, N.A.; Stracciolini, A.; Bell, D.R.; Myer, G.D. Lower Extremity Biomechanics Are Altered across Maturation in Sport-Specialized Female Adolescent Athletes. Front. Pediatr. 2019. [Google Scholar] [CrossRef]
- Hall, R.; Foss, K.B.; Hewett, T.E.; Myer, G.D. Sport Specialization’s Association with an Increased Risk of Developing Anterior Knee Pain in Adolescent Female Athletes. J. Sport Rehabil. 2015. [Google Scholar] [CrossRef] [Green Version]
- Madruga-Parera, M.; Romero-Rodríguez, D.; Bishop, C.; Beltran-Valls, M.R.; Latinjak, A.T.; Beato, M.; Fort-Vanmeerhaeghe, A. Effects of Maturation on Lower Limb Neuromuscular Asymmetries in Elite Youth Tennis Players. Sports 2019, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- Atkins, S.J.; Bentley, I.; Hurst, H.T.; Sinclair, J.K.; Hesketh, C. The Presence of Bilateral Imbalance of the Lower Limbs in Elite Youth Soccer Players of Different Ages. J. Strength Cond. Res. 2016. [Google Scholar] [CrossRef]
- Dai, B.; Garrett, W.E.; Gross, M.T.; Padua, D.A.; Queen, R.M.; Yu, B. The Effect of Performance Demands on Lower Extremity Biomechanics during Landing and Cutting Tasks. J. Sport Heal. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Pichardo, A.W.; Oliver, J.L.; Harrison, C.B.; Maulder, P.S.; Lloyd, R.S.; Kandoi, R. Effects of Combined Resistance Training and Weightlifting on Motor Skill Performance of Adolescent Male Athletes. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Chaouachi, A.; Hammami, R.; Kaabi, S.; Chamari, K.; Drinkwater, E.J.; Behm, D.G. Olympic Weightlifting and Plyometric Training with Children Provides Similar or Greater Performance Improvements than Traditional Resistance Training. J. Strength Cond. Res. 2014. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Lake, J.P.; Comfort, P. Load Absorption Force-Time Characteristics Following the Second Pull of Weightlifting Derivatives. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suchomel, T.J.; Giordanelli, M.D.; Geiser, C.F.; Kipp, K. Comparison of Joint Work During Load Absorption Between Weightlifting Derivatives. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef]
- Sugimoto, D.; Myer, G.D.; Barber Foss, K.D.; Pepin, M.J.; Micheli, L.J.; Hewett, T.E. Critical Components of Neuromuscular Training to Reduce ACL Injury Risk in Female Athletes: Meta-Regression Analysis. Br. J. Sports Med. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ericksen, H.M.; Thomas, A.C.; Gribble, P.A.; Armstrong, C.; Rice, M.; Pietrosimone, B. Jump-Landing Biomechanics Following a 4-Week Real-Time Feedback Intervention and Retention. Clin. Biomech. 2016. [Google Scholar] [CrossRef]
- Moran, J.; Sandercock, G.R.H.; Ramírez-Campillo, R.; Meylan, C.; Collison, J.; Parry, D.A. Age-Related Variation in Male Youth Athletes’ Countermovement Jump Following Plyometric Training. J. Strength Cond. Res. 2016. [Google Scholar] [CrossRef]
- Van Dyk, N.; Behan, F.P.; Whiteley, R. Including the Nordic Hamstring Exercise in Injury Prevention Programmes Halves the Rate of Hamstring Injuries: A Systematic Review and Meta-Analysis of 8459 Athletes. Br. J. Sports Med. 2019. [Google Scholar] [CrossRef] [Green Version]
- Kenneally-Dabrowski, C.J.B.; Brown, N.A.T.; Lai, A.K.M.; Perriman, D.; Spratford, W.; Serpell, B.G. Late Swing or Early Stance? A Narrative Review of Hamstring Injury Mechanisms during High-Speed Running. Scand. J. Med. Sci. Sports 2019. [Google Scholar] [CrossRef]
- Higashihara, A.; Nagano, Y.; Ono, T.; Fukubayashi, T. Differences in Hamstring Activation Characteristics between the Acceleration and Maximum-Speed Phases of Sprinting. J. Sports Sci. 2018. [Google Scholar] [CrossRef]
- Higashihara, A.; Nagano, Y.; Ono, T.; Fukubayashi, T. Differences in Activation Properties of the Hamstring Muscles during Overground Sprinting. Gait Posture 2015. [Google Scholar] [CrossRef] [PubMed]
- Schache, A.G.; Dorn, T.W.; Wrigley, T.V.; Brown, N.A.T.; Pandy, M.G. Stretch and Activation of the Human Biarticular Hamstrings across a Range of Running Speeds. Eur. J. Appl. Physiol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Guex, K.; Millet, G.P. Conceptual Framework for Strengthening Exercises to Prevent Hamstring Strains. Sports Med. 2013. [Google Scholar] [CrossRef] [PubMed]
- Chaabene, H.; Negra, Y.; Moran, J.; Prieske, O.; Sammoud, S.; Ramirez-Campillo, R.; Granacher, U. Effects of an Eccentric Hamstrings Training on Components of Physical Performance in Young Female Handball Players. Int. J. Sports Physiol. Perform. 2019, 1, 1–22. [Google Scholar] [CrossRef]
- Markovic, G.; Sarabon, N.; Boban, F.; Zoric, I.; Jelcic, M.; Sos, K.; Scappaticci, M. Nordic Hamstring Strength of Highly Trained Youth Football Players and Its Relation to Sprint Performance. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef]
- Kilding, A.E.; Tunstall, H.; Kuzmic, D. Suitability of FIFA’s “The 11” Training Programme for Young Football Players—Impact on Physical Performance. J. Sport. Sci. Med. 2008, 7, 320. [Google Scholar]
- Hegyi, A.; Csala, D.; Péter, A.; Finni, T.; Cronin, N.J. High-Density Electromyography Activity in Various Hamstring Exercises. Scand. J. Med. Sci. Sport. 2019. [Google Scholar] [CrossRef] [Green Version]
- Bourne, M.N.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of Exercise Selection on Hamstring Muscle Activation. Br. J. Sports Med. 2017. [Google Scholar] [CrossRef] [Green Version]
- Tsaklis, P.; Malliaropoulos, N.; Mendiguchia, J.; Korakakis, V.; Tsapralis, K.; Pyne, D.; Malliaras, P. Muscle and Intensity Based Hamstring Exercise Classification in Elite Female Track and Field Athletes: Implications for Exercise Selection during Rehabilitation. Open Access J. Sport. Med. 2015. [Google Scholar] [CrossRef] [Green Version]
- Valle, X.; Malliaropoulos, N.; Párraga Botero, J.D.; Bikos, G.; Pruna, R.; Mónaco, M.; Maffulli, N. Hamstring and Other Thigh Injuries in Children and Young Athletes. Scand. J. Med. Sci. Sport. 2018. [Google Scholar] [CrossRef]
- Drury, B.; Green, T.; Ramírez-Campillo, R.; Moran, J. Influence of Maturation Status on Eccentric Hamstring Strength Improvements in Youth Male Soccer Players following the Nordic Hamstring Exercise. IJSPP 2019, in press. [Google Scholar]
- Owoeye, O.B.A.; Akinbo, S.R.A.; Tella, B.A.; Olawale, O.A. Efficacy of the FIFA 11+ Warm-up Programme in Male Youth Football: A Cluster Randomised Controlled Trial. J. Sport. Sci. Med. 2014, 13, 321. [Google Scholar]
- Hislop, M.D.; Stokes, K.A.; Williams, S.; McKay, C.D.; England, M.; Kemp, S.P.T.; Trewartha, G. The Efficacy of a Movement Control Exercise Programme to Reduce Injuries in Youth Rugby: A Cluster Randomised Controlled Trial. BMJ Open Sport Exerc. Med. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achenbach, L.; Krutsch, V.; Weber, J.; Nerlich, M.; Luig, P.; Loose, O.; Angele, P.; Krutsch, W. Neuromuscular Exercises Prevent Severe Knee Injury in Adolescent Team Handball Players. Knee Surg. Sport. Traumatol. Arthrosc. 2018. [Google Scholar] [CrossRef]
- Forrest, M.R.L.; Scott, B.R.; Hebert, J.J.; Dempsey, A.R. Injury Prevention Strategies for Adolescent Cricket Pace Bowlers. Sports Med. 2018. [Google Scholar] [CrossRef]
- Reis, I.; Rebelo, A.; Krustrup, P.; Brito, J. Performance Enhancement Effects of Fédération Internationale de Football Association’s “the 11+” Injury Prevention Training Program in Youth Futsal Players. Clin. J. Sport Med. 2013. [Google Scholar] [CrossRef]
- Peek, K.; Gatherer, D.; Bennett, K.J.M.; Fransen, J.; Watsford, M. Muscle Strength Characteristics of the Hamstrings and Quadriceps in Players from a High-Level Youth Football (Soccer) Academy. Res. Sport. Med. 2018. [Google Scholar] [CrossRef]
- Franchi, M.V.; Ellenberger, L.; Javet, M.; Bruhin, B.; Romann, M.; Frey, W.O.; Spörri, J. Maximal Eccentric Hamstrings Strength in Competitive Alpine Skiers: Cross-Sectional Observations from Youth to Elite Level. Front. Physiol. 2019. [Google Scholar] [CrossRef]
- Roe, M.; Malone, S.; Delahunt, E.; Collins, K.; Gissane, C.; Persson, U.M.C.; Murphy, J.C.; Blake, C. Eccentric Knee Flexor Strength Profiles of 341 Elite Male Academy and Senior Gaelic Football Players: Do Body Mass and Previous Hamstring Injury Impact Performance? Phys. Ther. Sport. 2018. [Google Scholar] [CrossRef] [Green Version]
- Ellenbecker, T.S.; Roetert, E.P.; Sueyoshi, T.; Riewald, S. A Descriptive Profile of Age-Specific Knee Extension Flexion Strength in Elite Junior Tennis Players. Br. J. Sports Med. 2007. [Google Scholar] [CrossRef] [Green Version]
- Gerodimos, V.; Mandou, V.; Zafeiridis, A.; Ioakimidis, P. Isokinetic peak torque and hamstring/quadriceps ratios in young basketball players: Effects of age, velocity, and action mode. J. Sports Med. Phys. Fit. 2003, 43, 444. [Google Scholar]
- Sugimoto, D.; Borg, D.R.; Brilliant, A.N.; Meehan, W.P.; Micheli, L.J.; Geminiani, E.T. Effect of Sports and Growth on Hamstrings and Quadriceps Development in Young Female Athletes: Cross-Sectional Study. Sports 2019, 7, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forbes, H.; Bullers, A.; Lovell, A.; McNaughton, L.R.; Polman, R.C.; Siegler, J.C. Relative Torque Profiles of Elite Male Youth Footballers: Effects of Age and Pubertal Development. Int. J. Sports Med. 2009. [Google Scholar] [CrossRef] [PubMed]
- Holm, I.; Steen, H.; Olstad, M. Isokinetic Muscle Performance in Growing Boys from Pre-Teen to Maturity. An Eleven-Year Longitudinal Study. Isokinet. Exerc. Sci. 2005, 13, 153–158. [Google Scholar] [CrossRef]
- Buchanan, P.A.; Vardaxis, V.G. Sex-Related and Age-Related Differences in Knee Strength of Basketball Players Ages 11–17 Years. J. Athl. Train. 2003, 38, 231. [Google Scholar]
- Kellis, S.; Gerodimos, V.; Kellis, E.; Manou, V. Bilateral Isokinetic Concentric and Eccentric Strength Profiles of the Knee Extensors and Flexors in Young Soccer Players. Isokinet. Exerc. Sci. 2001, 9, 31–39. [Google Scholar] [CrossRef]
- Holm, I.; Vøllestad, N. Significant Effect of Gender on Hamstring-to-Quadriceps Strength Ratio and Static Balance in Prepubescent Children from 7 to 12 Years of Age. Am. J. Sports Med. 2008. [Google Scholar] [CrossRef]
- Wild, C.Y.; Steele, J.R.; Munro, B.J. Insufficient Hamstring Strength Compromises Landing Technique in Adolescent Girls. Med. Sci. Sports Exerc. 2013. [Google Scholar] [CrossRef]
- Bencke, J.; Curtis, D.; Krogshede, C.; Jensen, L.K.; Bandholm, T.; Zebis, M.K. Biomechanical Evaluation of the Side-Cutting Manoeuvre Associated with ACL Injury in Young Female Handball Players. Knee Surg. Sport. Traumatol. Arthrosc. 2013. [Google Scholar] [CrossRef]
- Salci, Y.; Yildirim, A.; Celik, O.; Ak, E.; Kocak, S.; Korkusuz, F. The Effects of Eccentric Hamstring Training on Lower Extremity Strength and Landing Kinetics in Recreational Female Athletes. Isokinet. Exerc. Sci. 2013. [Google Scholar] [CrossRef]
- Anastasi, S.M.; Hamzeh, M.A. Does the Eccentric Nordic Hamstring Exercise Have an Effect on Isokinetic Muscle Strength Imbalance and Dynamic Jumping Performance in Female Rugby Union Players? Isokinet. Exerc. Sci. 2011. [Google Scholar] [CrossRef]
- Read, P.J.; Jimenez, P.; Oliver, J.L.; Lloyd, R.S. Injury Prevention in Male Youth Soccer: Current Practices and Perceptions of Practitioners Working at Elite English Academies. J. Sports Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Forbes, H.; Sutcliffe, S.; Lovell, A.; McNaughton, L.R.; Siegler, J.C. Isokinetic Thigh Muscle Ratios in Youth Football: Effect of Age and Dominance. Int. J. Sports Med. 2009. [Google Scholar] [CrossRef] [PubMed]
- Goode, A.P.; Reiman, M.P.; Harris, L.; DeLisa, L.; Kauffman, A.; Beltramo, D.; Poole, C.; Ledbetter, L.; Taylor, A.B. Eccentric Training for Prevention of Hamstring Injuries May Depend on Intervention Compliance: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2015. [Google Scholar] [CrossRef] [Green Version]
- Tansel, R.B.; Salci, Y.; Yildirim, A.; Kocak, S.; Korkusuz, F. Effects of eccentric hamstring strength training on lower extremity strength of 10–12-year-old male basketball players. Isokinet. Exerc. Sci. 2008, 16, 81–85. [Google Scholar] [CrossRef]
- Oakley, A.J.; Jennings, J.; Bishop, C.J. Holistic Hamstring Health: Not Just the Nordic Hamstring Exercise. Br. J. Sports Med. 2018. [Google Scholar] [CrossRef]
- Śliwowski, R.; Jadczak, Ł.; Hejna, R.; Wieczorek, A. The Effects of Individualized Resistance Strength Programs on Knee Muscular Imbalances in Junior Elite Soccer Players. PLoS ONE 2015. [Google Scholar] [CrossRef]
- Duarte, J.P.; Valente-Dos-Santos, J.; Coelho-e-Silva, M.J.; Malina, R.M.; Deprez, D.; Philippaerts, R.; Lenoir, M.; Vaeyens, R. Developmental Changes in Isometric Strength: Longitudinal Study in Adolescent Soccer Players. Int. J. Sports Med. 2018. [Google Scholar] [CrossRef]
- Freeman, B.W.; Young, W.B.; Talpey, S.W.; Smyth, A.M.; Pane, C.L.; Carlon, T.A. The Effects of Sprint Training and the Nordic Hamstring Exercise on Eccentric Hamstring Strength and Sprint Performance in Adolescent Athletes. J. Sports Med. Phys. Fit. 2019. [Google Scholar] [CrossRef]
- Guex, K.; Degache, F.; Morisod, C.; Sailly, M.; Millet, G.P. Hamstring Architectural and Functional Adaptations Following Long vs. Short Muscle Length Eccentric Training. Front. Physiol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Eustace, S.J.; Page, R.M.; Greig, M. Angle-Specific Isokinetic Metrics Highlight Strength Training Needs of Elite Youth Soccer Players. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Eustace, S.J.; Page, R.M.; Greig, M. Isokinetic Strength Differences between Elite Senior and Youth Female Soccer Players Identifies Training Requirements. Phys. Ther. Sport 2019. [Google Scholar] [CrossRef] [PubMed]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Short Biceps Femoris Fascicles and Eccentric Knee Flexor Weakness Increase the Risk of Hamstring Injury in Elite Football (Soccer): A Prospective Cohort Study. Br. J. Sports Med. 2016. [Google Scholar] [CrossRef] [PubMed]
- Potier, T.G.; Alexander, C.M.; Seynnes, O.R. Effects of Eccentric Strength Training on Biceps Femoris Muscle Architecture and Knee Joint Range of Movement. Eur. J. Appl. Physiol. 2009. [Google Scholar] [CrossRef]
- Baroni, B.M.; Geremia, J.M.; Rodrigues, R.; De Azevedo Franke, R.; Karamanidis, K.; Vaz, M.A. Muscle Architecture Adaptations to Knee Extensor Eccentric Training: Rectus Femoris vs. Vastus Lateralis. Muscle Nerve 2013. [Google Scholar] [CrossRef]
- Duclay, J.; Martin, A.; Duclay, A.; Cometti, G.; Pousson, M. Behavior of Fascicles and the Myotendinous Junction of Human Medial Gastrocnemius Following Eccentric Strength Training. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2009, 39, 819–827. [Google Scholar] [CrossRef]
- Presland, J.D.; Timmins, R.G.; Bourne, M.N.; Williams, M.D.; Opar, D.A. The Effect of Nordic Hamstring Exercise Training Volume on Biceps Femoris Long Head Architectural Adaptation. Scand. J. Med. Sci. Sport. 2018. [Google Scholar] [CrossRef]
- Timmins, R.G.; Ruddy, J.D.; Presland, J.; Maniar, N.; Shield, A.J.; Williams, M.D.; Opar, D.A. Architectural Changes of the Biceps Femoris Long Head after Concentric or Eccentric Training. Med. Sci. Sports Exerc. 2016. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Fernandez, D.; Docampo-Blanco, P.; Martinez-Fernandez, J. Changes in Muscle Architecture of Biceps Femoris Induced by Eccentric Strength Training with Nordic Hamstring Exercise. Scand. J. Med. Sci. Sport 2018. [Google Scholar] [CrossRef]
- Lacome, M.; Avrillon, S.; Cholley, Y.; Simpson, B.M.; Guilhem, G.; Buchheit, M. Hamstring Eccentric Strengthening Program: Does Training Volume Matter? Int. J. Sports Physiol. Perform. 2019. [Google Scholar] [CrossRef]
- Ribeiro-Alvares, J.B.; Marques, V.B.; Vaz, M.A.; Baroni, B.M. Four Weeks of Nordic Hamstring Exercise Reduce Muscle Injury Risk Factors in Young Adults. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Morse, C.I.; Tolfrey, K.; Thom, J.M.; Vassilopoulos, V.; Maganaris, C.N.; Narici, M.V. Gastrocnemius Muscle Specific Force in Boys and Men. J. Appl. Physiol. 2008. [Google Scholar] [CrossRef] [PubMed]
- Kubo, K.; Kanehisa, H.; Kawakami, Y.; Fukanaga, T. Growth Changes in the Elastic Properties of Human Tendon Structures. Int. J. Sports Med. 2001. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Cholley, Y.; Nagel, M.; Poulos, N. The Effect of Body Mass on Eccentric Knee-Flexor Strength Assessed with an Instrumented Nordic Hamstring Device (Nordbord) in Football Players. Int. J. Sports Physiol. Perform. 2016, 11, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Pollard, C.W.; Opar, D.A.; Williams, M.D.; Bourne, M.N.; Timmins, R.G. Razor Hamstring Curl and Nordic Hamstring Exercise Architectural Adaptations: Impact of Exercise Selection and Intensity. Scand. J. Med. Sci. Sport 2019. [Google Scholar] [CrossRef] [PubMed]
- Lovell, R.; Knox, M.; Weston, M.; Siegler, J.C.; Brennan, S.; Marshall, P.W.M. Hamstring Injury Prevention in Soccer: Before or after Training? Scand. J. Med. Sci. Sport 2018. [Google Scholar] [CrossRef] [Green Version]
- Moir, G.L.; Erny, K.F.; Davis, S.E.; Guers, J.J.; Witmer, C.A. The Development of a Repetition-Load Scheme for the Eccentric-Only Bench Press Exercise. J. Hum. Kinet. 2013. [Google Scholar] [CrossRef] [Green Version]
- Hahn, D. Stretching the Limits of Maximal Voluntary Eccentric Force Production in Vivo. J. Sport Heal. Sci. 2018. [Google Scholar] [CrossRef]
- Westing, S.H.; Seger, J.Y.; Karlson, E.; Ekblom, B. Eccentric and Concentric Torque-Velocity Characteristics of the Quadriceps Femoris in Man. Eur. J. Appl. Physiol. Occup. Physiol. 1988. [Google Scholar] [CrossRef]
- Wagle, J.P.; Cunanan, A.J.; Carroll, K.M.; Sams, M.L.; Wetmore, A.; Bingham, G.E.; Taber, C.B.; DeWeese, B.H.; Sato, K.; Stuart, C.A.; et al. Accentuated Eccentric Loading and Cluster Set Configurations in the Back Squat. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef]
- Martinez-Aranda, L.M.; Fernandez-Gonzalo, R. Effects of Inertial Setting on Power, Force, Work, and Eccentric Overload during Flywheel Resistance Exercise in Women and Men. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef]
- Festa, L.; Tarperi, C.; Skroce, K.; Boccia, G.; Lippi, G.; La Torre, A.; Schena, F. Effects of Flywheel Strength Training on the Running Economy of Recreational Endurance Runners. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Suarez-Arrones, L.; Lara-Lopez, P.; Torreno, N.; Saez de Villarreal, E.; Di Salvo, V.; Mendez-Villanueva, A. Effects of Strength Training on Body Composition in Young Male Professional Soccer Players. Sports 2019, 7, 104. [Google Scholar] [CrossRef] [Green Version]
- Norrbrand, L.; Pozzo, M.; Tesch, P.A. Flywheel Resistance Training Calls for Greater Eccentric Muscle Activation than Weight Training. Eur. J. Appl. Physiol. 2010. [Google Scholar] [CrossRef]
- Norrbrand, L.; Tous-Fajardo, J.; Vargas, R.; Tesch, P.A. Quadriceps Muscle Use in the Flywheel and Barbell Squat. Aviat. Sp. Environ. Med. 2011. [Google Scholar] [CrossRef]
- Cuenca-Fernández, F.; López-Contreras, G.; Mourão, L.; de Jesus, K.; de Jesus, K.; Zacca, R.; Vilas-Boas, J.P.; Fernandes, R.J.; Arellano, R. Eccentric Flywheel Post-Activation Potentiation Influences Swimming Start Performance Kinetics. J. Sports Sci. 2019. [Google Scholar] [CrossRef]
- Cuenca-Fernández, F.; López-Contreras, G.; Arellano, R. Effect on Swimming Start Performance of Two Types of Activation Protocols: Lunge and YoYo Squat. J. Strength Cond. Res. 2015. [Google Scholar] [CrossRef]
- Beato, M.; Stiff, A.; Coratella, G. Effects of Postactivation Potentiation After an Eccentric Overload Bout on Countermovement Jump and Lower-Limb Muscle Strength. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Beato, M.; De Keijzer, K.L.; Leskauskas, Z.; Allen, W.J.; Dello Iacono, A.; McErlain-Naylor, S.A. Effect of Postactivation Potentiation After Medium vs. High Inertia Eccentric Overload Exercise on Standing Long Jump, Countermovement Jump, and Change of Direction Performance. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, T.R.; García-Gutiérrez, M.T.; Mandić, M.; Lilja, M.; Fernandez-Gonzalo, R. Regional and Muscle-Specific Adaptations in Knee Extensor Hypertrophy Using Flywheel versus Conventional Weight-Stack Resistance Exercise. Appl. Physiol. Nutr. Metab. 2019. [Google Scholar] [CrossRef]
- Illera-Domínguez, V.; Nuell, S.; Carmona, G.; Padullés, J.M.; Padullés, X.; Lloret, M.; Cussó, R.; Alomar, X.; Cadefau, J.A. Early Functional and Morphological Muscle Adaptations during Short-Term Inertial-Squat Training. Front. Physiol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Seynnes, O.R.; De Boer, M.; Narici, M.V. Early Skeletal Muscle Hypertrophy and Architectural Changes in Response to High-Intensity Resistance Training. J. Appl. Physiol. 2007. [Google Scholar] [CrossRef]
- Tesch, P.A.; Ekberg, A.; Lindquist, D.M.; Trieschmann, J.T. Muscle Hypertrophy Following 5-Week Resistance Training Using a Non-Gravity-Dependent Exercise System. Acta Physiol. Scand. 2004. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; García-López, D.; De Paz, J.A. Functional and Muscle-Size Effects of Flywheel Resistance Training with Eccentric-Overload in Professional Handball Players. J. Hum. Kinet. 2017. [Google Scholar] [CrossRef] [Green Version]
- Naczk, M.; Naczk, A.; Brzenczek-Owczarzak, W.; Arlet, J.; Adach, Z. Impact of Inertial Training on Strength and Power Performance in Young Active Men. J. Strength Cond. Res. 2016. [Google Scholar] [CrossRef]
- Sabido, R.; Pombero, L.; Hernández-Davó, J.L. Differential effects of low vs high inertial loads during an eccentric-overload training intervention in rugby union players: A preliminary study. J. Sports Med. Phys. Fit. 2019. [Google Scholar] [CrossRef]
- Fernandez-Gonzalo, R.; Lundberg, T.R.; Alvarez-Alvarez, L.; De Paz, J.A. Muscle Damage Responses and Adaptations to Eccentric-Overload Resistance Exercise in Men and Women. Eur. J. Appl. Physiol. 2014. [Google Scholar] [CrossRef]
- De Hoyo, M.; De La Torre, A.; Pradas, F.; Sañudo, B.; Carrasco, L.; Mateo-Cortes, J.; Domínguez-Cobo, S.; Fernandes, O.; Gonzalo-Skok, O. Effects of Eccentric Overload Bout on Change of Direction and Performance in Soccer Players. Int. J. Sports Med. 2015. [Google Scholar] [CrossRef]
- Horwath, O.; Paulsen, G.; Esping, T.; Seynnes, O.; Olsson, M.C. Isokinetic resistance training combined with eccentric overload improves athletic performance and induces muscle hypertrophy in young ice hockey players. J. Sci. Med. Sport 2019, 22, 821–826. [Google Scholar] [CrossRef] [Green Version]
- Harper, D.J.; Jordan, A.R.; Kiely, J. Relationships Between Eccentric and Concentric Knee Strength Capacities and Maximal Linear Deceleration Ability in Male Academy Soccer Players. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Mechanical Determinants of Faster Change of Direction Speed Performance in Male Athletes. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiteri, T.; Newton, R.U.; Binetti, M.; Hart, N.H.; Sheppard, J.M.; Nimphius, S. Mechanical Determinants of Faster Change of Direction and Agility Performance in Female Basketball Athletes. J. Strength Cond. Res. 2015. [Google Scholar] [CrossRef] [PubMed]
- Meyers, R.W.; Oliver, J.L.; Hughes, M.G.; Cronin, J.B.; Lloyd, R.S. Maximal Sprint Speed in Boys of Increasing Maturity. Pediatr. Exerc. Sci. 2015. [Google Scholar] [CrossRef] [Green Version]
- McCunn, R.; Weston, M.; Hill, J.K.A.; Johnston, R.D.; Gibson, N.V. Influence of Physical Maturity Status on Sprinting Speed among Youth Soccer Players. J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef] [Green Version]
- Rumpf, M.C.; Cronin, J.B.; Oliver, J.; Hughes, M. Kinematics and Kinetics of Maximum Running Speed in Youth across Maturity. Pediatr. Exerc. Sci. 2015. [Google Scholar] [CrossRef]
- Emmonds, S.; Morris, R.; Murray, E.; Robinson, C.; Turner, L.; Jones, B. The Influence of Age and Maturity Status on the Maximum and Explosive Strength Characteristics of Elite Youth Female Soccer Players. Sci. Med. Footb. 2017. [Google Scholar] [CrossRef]
- Meylan, C.M.P.; Cronin, J.B.; Oliver, J.L.; Hopkins, W.G.; Contreras, B. The Effect of Maturation on Adaptations to Strength Training and Detraining in 11–15-Year-Olds. Scand. J. Med. Sci. Sport 2014, 24. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Brownlee, T.E.; O’Boyle, A.; Morgans, R.; Drust, B.; Erskine, R.M. Importance of Speed and Power in Elite Youth Soccer Depends on Maturation Status. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef] [Green Version]
- Brownlee, T.E.; Murtagh, C.F.; Naughton, R.J.; Whitworth-Turner, C.M.; O’Boyle, A.; Morgans, R.; Morton, J.P.; Erskine, R.M.; Drust, B. Isometric Maximal Voluntary Force Evaluated Using an Isometric Mid-Thigh Pull Differentiates English Premier League Youth Soccer Players from a Maturity-Matched Control Group. Sci. Med. Footb. 2018. [Google Scholar] [CrossRef]
- Morris, R.O.; Jones, B.; Myers, T.; Lake, J.; Emmonds, S.; Clarke, N.D.; Singleton, D.; Ellis, M.; Till, K. Isometric Midthigh Pull Characteristics in Elite Youth Male Soccer Players: Comparisons by Age and Maturity Offset. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef] [Green Version]
- Vanrenterghem, J.; Venables, E.; Pataky, T.; Robinson, M.A. The Effect of Running Speed on Knee Mechanical Loading in Females during Side Cutting. J. Biomech. 2012. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An Assessment of Maturity from Anthropometric Measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar]
- Howard, S.M.A.; Cumming, S.P.; Atkinson, M.; Malina, R.M. Biological Maturity-Associated Variance in Peak Power Output and Momentum in Academy Rugby Union Players. Eur. J. Sport Sci. 2016. [Google Scholar] [CrossRef] [Green Version]
- Petré, H.; Wernstål, F.; Mattsson, C.M. Effects of Flywheel Training on Strength-Related Variables: A Meta-Analysis. Sport. Med. Open 2018. [Google Scholar] [CrossRef]
- Seger, J.Y.; Thorstensson, A. Muscle Strength and Myoelectric Activity in Prepubertal and Adult Males and Females. Eur. J. Appl. Physiol. Occup. Physiol. 1994. [Google Scholar] [CrossRef]
- Carroll, K.M.; Wagle, J.P.; Sato, K.; Taber, C.B.; Yoshida, N.; Bingham, G.E.; Stone, M.H. Characterising Overload in Inertial Flywheel Devices for Use in Exercise Training. Sport. Biomech. 2019. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-Davó, J.L.; Pereyra-Gerber, G.T. Influence of Different Inertial Loads on Basic Training Variables during the Flywheel Squat Exercise. Int. J. Sports Physiol. Perform. 2018. [Google Scholar] [CrossRef]
- Piqueras-Sanchiz, F.; Martín-Rodríguez, S.; Martínez-Aranda, L.M.; Lopes, T.R.; Raya-González, J.; García-García, Ó.; Nakamura, F.Y. Effects of Moderate vs. High Iso-Inertial Loads on Power, Velocity, Work and Hamstring Contractile Function after Flywheel Resistance Exercise. PLoS ONE 2019. [Google Scholar] [CrossRef]
- Simpson, M.; Rio, E.; Cook, J. At What Age Do Children and Adolescents Develop Lower Limb Tendon Pathology or Tendinopathy? A Systematic Review and Meta-Analysis. Sports Med. 2016. [Google Scholar] [CrossRef]
- Hagglund, M.; Walden, M.; Zwerver, J.; Ekstrand, J. Epidemiology of Patellar Tendon Injury in Elite Male Soccer Players. Br. J. Sports Med. 2011. [Google Scholar] [CrossRef]
- Le Gall, F.; Carling, C.; Reilly, T.; Vandewalle, H.; Church, J.; Rochcongar, P. Incidence of Injuries in Elite French Youth Soccer Players: A 10-Season Study. Am. J. Sports Med. 2006. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.R.; Villalobos, A. Evaluation and Management of Knee Pain in Young Athletes: Overuse Injuries of the Knee. Transl. Pediatr. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassel, M.; Intziegianni, K.; Risch, L.; Müller, S.; Engel, T.; Mayer, F. Physiological tendon thickness adaptation in adolescent elite athletes: A longitudinal study. Front. Physiol. 2017, 8, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassel, M.; Carlsohn, A.; Fröhlich, K.; John, M.; Riegels, N.; Mayer, F. Tendon Adaptation to Sport-Specific Loading in Adolescent Athletes. Int. J. Sports Med. 2015. [Google Scholar] [CrossRef] [PubMed]
- Cassel, M.; Baur, H.; Hirschmüller, A.; Carlsohn, A.; Fröhlich, K.; Mayer, F. Prevalence of Achilles and Patellar Tendinopathy and Their Association to Intratendinous Changes in Adolescent Athletes. Scand. J. Med. Sci. Sport 2015. [Google Scholar] [CrossRef]
- Cassel, M.; Risch, L.; Intziegianni, K.; Mueller, J.; Stoll, J.; Brecht, P.; Mayer, F. Incidence of Achilles and patellar tendinopathy in adolescent elite athletes. Int. J. Sports Med. 2018, 39, 726–732. [Google Scholar] [CrossRef]
- O’Brien, T.D.; Reeves, N.D.; Baltzopoulos, V.; Jones, D.A.; Maganaris, C.N. Mechanical Properties of the Patellar Tendon in Adults and Children. J. Biomech. 2010. [Google Scholar] [CrossRef]
- Rudavsky, A.; Cook, J.L.; Docking, S. Proximal Patellar Tendon Pathology Can Develop during Adolescence in Young Ballet Dancers—A 2-Year Longitudinal Study. Scand. J. Med. Sci. Sport 2018. [Google Scholar] [CrossRef]
- Mersmann, F.; Bohm, S.; Schroll, A.; Boeth, H.; Duda, G.N.; Arampatzis, A. Muscle and Tendon Adaptation in Adolescent Athletes: A Longitudinal Study. Scand. J. Med. Sci. Sport 2017. [Google Scholar] [CrossRef]
- Mersmann, F.; Bohm, S.; Schroll, A.; Boeth, H.; Duda, G.; Arampatzis, A. Evidence of Imbalanced Adaptation between Muscle and Tendon in Adolescent Athletes. Scand. J. Med. Sci. Sport 2014. [Google Scholar] [CrossRef]
- Pentidis, N.; Mersmann, F.; Bohm, S.; Giannakou, E.; Aggelousis, N.; Arampatzis, A. Triceps Surae Muscle-Tendon Unit Properties in Preadolescent Children: A Comparison of Artistic Gymnastic Athletes and Non-Athletes. Front. Physiol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubo, K.; Ikebukuro, T.; Yata, H.; Tsunoda, N.; Kanehisa, H. Time Course of Changes in Muscle and Tendon Properties during Strength Training and Detraining. J. Strength Cond. Res. 2010. [Google Scholar] [CrossRef] [PubMed]
- Kubo, K.; Ikebukuro, T.; Maki, A.; Yata, H.; Tsunoda, N. Time course of changes in the human Achilles tendon properties and metabolism during training and detraining in vivo. Eur. J. Appl. Physiol. 2012, 112, 2679–2691. [Google Scholar] [CrossRef] [PubMed]
- Mersmann, F.; Bohm, S.; Arampatzis, A. Imbalances in the Development of Muscle and Tendon as Risk Factor for Tendinopathies in Youth Athletes: A Review of Current Evidence and Concepts of Prevention. Front. Physiol. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mersmann, F.; Pentidis, N.; Tsai, M.-S.; Schroll, A.; Arampatzis, A. Patellar Tendon Strain Associates to Tendon Structural Abnormalities in Adolescent Athletes. Front. Physiol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Charcharis, G.; Mersmann, F.; Bohm, S.; Arampatzis, A. Morphological and Mechanical Properties of the Quadriceps Femoris Muscle-Tendon Unit from Adolescence to Adulthood: Effects of Age and Athletic Training. Front. Physiol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Waugh, C.M.; Blazevich, A.J.; Fath, F.; Korff, T. Age-Related Changes in Mechanical Properties of the Achilles Tendon. J. Anat. 2012. [Google Scholar] [CrossRef]
- Waugh, C.M.; Korff, T.; Fath, F.; Blazevich, A.J. Effects of Resistance Training on Tendon Mechanical Properties and Rapid Force Production in Prepubertal Children. J. Appl. Physiol. 2014. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.-C.; Ng, G.Y.-F.; Zhang, Z.-J.; Malliaras, P.; Masci, L.; Fu, S.-N. Changes on Tendon Stiffness and Clinical Outcomes in Athletes Are Associated with Patellar Tendinopathy After Eccentric Exercise. Clin. J. Sport Med. 2017. [Google Scholar] [CrossRef]
- Geremia, J.M.; Baroni, B.M.; Bobbert, M.F.; Bini, R.R.; Lanferdini, F.J.; Vaz, M.A. Effects of High Loading by Eccentric Triceps Surae Training on Achilles Tendon Properties in Humans. Eur. J. Appl. Physiol. 2018. [Google Scholar] [CrossRef]
- Malliaras, P.; Kamal, B.; Nowell, A.; Farley, T.; Dhamu, H.; Simpson, V.; Morrissey, D.; Langberg, H.; Maffulli, N.; Reeves, N.D. Patellar Tendon Adaptation in Relation to Load-Intensity and Action Type. J. Biomech. 2013. [Google Scholar] [CrossRef] [PubMed]
- Frizziero, A.; Vittadini, F.; Fusco, A.; Giombini, A.; Masiero, S. Efficacy of Eccentric Exercise in Lower Limb Tendinopathies in Athletes. J. Sports Med. Phys. Fit. 2016, 56, 1352–1358. [Google Scholar]
- O’Neill, S.; Watson, P.J.; Barry, S. Why are eccentric exercises effective for achilles tendinopathy? Int. J. Sports Phys. Ther. 2015, 10, 552. [Google Scholar] [PubMed]
- Arampatzis, A.; Peper, A.; Bierbaum, S.; Albracht, K. Plasticity of Human Achilles Tendon Mechanical and Morphological Properties in Response to Cyclic Strain. J. Biomech. 2010. [Google Scholar] [CrossRef] [PubMed]
- Bohm, S.; Mersmann, F.; Tettke, M.; Kraft, M.; Arampatzis, A. Human Achilles Tendon Plasticity in Response to Cyclic Strain: Effect of Rate and Duration. J. Exp. Biol. 2014. [Google Scholar] [CrossRef] [Green Version]
- Kongsgaard, M.; Qvortrup, K.; Larsen, J.; Aagaard, P.; Doessing, S.; Hansen, P.; Kjaer, M.; Magnusson, S.P. Fibril Morphology and Tendon Mechanical Properties in Patellar Tendinopathy. Am. J. Sports Med. 2010. [Google Scholar] [CrossRef]
- Sanz-López, F.; Berzosa, C.; Hita-Contreras, F.; Martínez-Amat, A. Effects of Eccentric Overload Training on Patellar Tendon and Vastus Lateralis in Three Days of Consecutive Running. Knee 2017. [Google Scholar] [CrossRef]
- Sanz-López, F.; Martínez-Amat, A.; Hita-Contreras, F.; Valero-Campo, C.; Berzosa, C. Thermographic Assessment of Eccentric Overload Training Within Three Days of a Running Session. J. Strength Cond. Res. 2016. [Google Scholar] [CrossRef]
- Romero-Rodriguez, D.; Gual, G.; Tesch, P.A. Efficacy of an Inertial Resistance Training Paradigm in the Treatment of Patellar Tendinopathy in Athletes: A Case-Series Study. Phys. Ther. Sport 2011. [Google Scholar] [CrossRef]
- Gual, G.; Fort-Vanmeerhaeghe, A.; Romero-Rodríguez, D.; Tesch, P.A. Effects of In-Season Inertial Resistance Training with Eccentric Overload in a Sports Population at Risk for Patellar Tendinopathy. J. Strength Cond. Res. 2016. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing Eccentric Resistance Training—Part 2: Practical Recommendations. J. Funct. Morphol. Kinesiol. 2019, 4, 55. [Google Scholar] [CrossRef] [Green Version]
Study | Age (years) | Sex | Exercise Protocol | Selected Measurements | Outcome |
---|---|---|---|---|---|
[137] Lin et al. (2018) | C: 9–10 (n 13) Ad: 14–15 (n 13) A: 20–24 (n 13) | F | 5 × 6 reps of eccentric elbow flexors. Dumbbell weight set at 60% iMVC. 2 min rest between sets. | MVC, DOMS, CK, Mb, ROM, MPS. | A > Ad > C |
[139] Deli et al. (2017) | C: 11.0 ± 0.2 (n 11) A: 35.3 ± 2.2 (n 15) | M | 5 × 15 reps of eccentric knee extensors. Dynamometer Set at 60° s−1. 2 min rest between sets. | MVC, DOMS, CK and ROM. | A > C |
[143] Lazaridis et al. (2018) | C: 10 ± 0.7 (n 13) A: 25.3 ± 3.3 (n 13) | M | 10 × 10 reps of CMJ. 30 s rest between sets. | iMVC, DJ, EMG, Kstiffness and RPE. | A > C |
[140] dos Santos et al. (2016) | C: 11.3 ± 0.82 (n 10) A: 24.5 ± 5.58 (n 10) | M + F | 5 × 15 reps of eccentric machine chest press. Load set at 110% of 10RM concentric chest press. 3 min rest between sets. | DOMS. | NSD |
[138] Chen et al. (2014) | C: 9.4 ± 0.5 (n 13) Ad: 14.3 ± 0.4 (n 13) A: 22.6 ± 2.0 (n 13) | M | 5 × 6 reps of eccentric elbow flexors. Dynamometer set at 90o s−1. 2 min rest between sets. | MVC, DOMS, CK, Mb, ROM and MPS. | A > Ad > C |
[144] Gorianovas et al. (2013) | C: 11.8 ± 0.9 (n 11) A: 20.8 ± 1.9 (n 11) E: 63.2 ± 3.6 (n 11) | M | 100 drop jumps. DJ box height set at 0.5 m. 30 s rest between reps. | iMVC, LFF, VA, DJ Height, DOMS, CK. | A > E > C |
[146] Pullinen et al. (2011) | A: 31 ± 7 (n 8) Ad: 14 ± 0 (n 8) | M | 3 × sets until exhaustion of concentric knee extensors. Load set at 40% of 1RM bilateral knee extension. 4 min rest between sets. | iMVC, CK, EMG, HR. | A > Ad |
[145] Marginson et al. (2005) | C: 9.9 ± 0.3 (n 10) A: 22.2 ± 2.7 (n 10) | M | 8 × 10 reps of CMJ. 1 min rest between sets. | iMVC, DOMS, CMJ, SJ. | A > C |
[141] Arnett et al. (2000) | C: 10.5 ± 1.1 (n 15) A: 23.4 ± 6.9 (n 15) E: 59.4 ± 10.9 (n 10) | F | 6 × 10 Reps of eccentric leg curl exercise Load Set at 110% 1RM concentric leg curl. 1 min rest between sets. | CK. | A > E > C |
[148] Duarte et al. (1999) | Ad: 13.0 ± 0.5 (n 10) Ad: 13.2 ± 0.7 (n 10) | M | Box step up and down until exhaustion. Tempo Set at 1:1 (1 s up – 1 s down) vs 1:2. | iMVC, DOMS and CK. | 1:2 > 1:1 |
[147] Soares et al. (1996) | C: 12.1 ± 0.2 (n 10) A: 28.3 ± 3.5 (n 10) | M | 5 Sets × 80% 1RM concentric bench press until exhaustion. 90 s rest between sets. | iMVC, DOMS and CK. | A > C |
[149] Webber et al. (1988) | C: 10.4 ± 0.3 (n 16) A: 27.1 ± 0.87 (n 15) | M + F | 30 min downhill running @ 10% gradient. | DOMS and CK. | NSD |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drury, B.; Ratel, S.; Clark, C.C.T.; Fernandes, J.F.T.; Moran, J.; Behm, D.G. Eccentric Resistance Training in Youth: Perspectives for Long-Term Athletic Development. J. Funct. Morphol. Kinesiol. 2019, 4, 70. https://doi.org/10.3390/jfmk4040070
Drury B, Ratel S, Clark CCT, Fernandes JFT, Moran J, Behm DG. Eccentric Resistance Training in Youth: Perspectives for Long-Term Athletic Development. Journal of Functional Morphology and Kinesiology. 2019; 4(4):70. https://doi.org/10.3390/jfmk4040070
Chicago/Turabian StyleDrury, Benjamin, Sébastien Ratel, Cain C.T. Clark, John F.T. Fernandes, Jason Moran, and David G Behm. 2019. "Eccentric Resistance Training in Youth: Perspectives for Long-Term Athletic Development" Journal of Functional Morphology and Kinesiology 4, no. 4: 70. https://doi.org/10.3390/jfmk4040070