Eccentric Exercise: Adaptations and Applications for Health and Performance
Abstract
:1. Introduction
2. Eccentric Exercise: One Muscle Action, Two Uses of Kinetic Energy, Many Modes of Exercise
- (1)
- Recovery of Kinetic Energy: Activities that potentiate force production via ballistic movements involving maximal acceleration with very short surface contact time. These repetitive activities facilitate the recovery of elastic recoil energy and contribute to the coupling phases of the stretch-shortening cycle (SSC) [15,16].
- (2)
3. Eccentric Exercise as a Therapeutic Intervention
4. Eccentric Exercise across the Lifespan
5. Integrating Eccentric Exercise into Sports Training
- (1)
- While inertial flywheel training can be an effective form of eccentric overload training, the magnitude of the eccentric peak force is influenced by the effort and intention of the trainee, with trainees with more experience in flywheel training producing greater peak eccentric force [61]. This may mean that only resistance trained team sport athletes with experience in flywheel training will be able to produce sufficient eccentric overload and therefore benefit from using this form of training. However, it may also mean that such training could be a useful way to introduce lower intensity eccentric training to younger athletes or those with less resistance training experience.
- (2)
- There is the possibility of a velocity specificity of eccentric training (Figure 2), in which high-speed eccentric training may provide a better training stimulus for activities involving fast eccentric actions such as sprinting and jumping than low-speed eccentric training. However, even if this velocity specificity exists, it may still be useful to prescribe a variety of eccentric exercises involving slower and faster muscular actions to improve team sport athletes’ movement capacities.
- (1)
- Consistent practicing of progressively more challenging hopping and jumping tasks by athletes, in which landing mechanics are emphasized. This focus on landing mechanics is important so athletes develop the ability to absorb eccentric forces and improve their movement competency. This approach facilitates improved safety and performance of complex motor skills involved in sport-specific tasks.
- (2)
- Eccentric hamstring strength development should be emphasized to improve youth athletes running and jumping performance and reduce the risk of injury while performing these motor tasks. Such training could involve the Nordic hamstring curl as well as more hip extensor dominant hamstring exercises such as 45° hip extensions. All of these eccentric hamstring exercises can significantly increase eccentric strength and muscle fascicle lengths [64], with such adaptations related to substantial reductions in the risk of hamstring injury [65].
- (3)
- Inertial flywheel training is another option to increase eccentric strength for youth athletes, with some studies demonstrating such exercises produced significant improvements in youth athletes’ jumping, sprinting and change of direction ability. However, low intensity flywheel exercise should be performed initially using flywheels with lower inertia wheels than that used with adult athletes in the same sport.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lindstedt, S.L.; LaStayo, P.C.; Reich, T.E. When active muscles lengthen: Properties and consequences of eccentric contractions. Physiology 2001, 16, 256–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcazar, J.; Csapo, R.; Ara, I.; Alegre, L.M. On the shape of the force-velocity relationship in skeletal muscles: The linear, the hyperbolic, and the double-hyperbolic. Front. Physiol. 2019, 10, 769. [Google Scholar] [CrossRef] [PubMed]
- Franchi, M.V.; Reeves, N.D.; Narici, M.V. Skeletal muscle remodeling in response to eccentric vs. concentric loading: Morphological, molecular, and metabolic adaptations. Front. Physiol. 2017, 8, 447. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, K.C.; Lindstedt, S.L.; LaStayo, P.C. Basic science and clinical use of eccentric contractions: History and uncertainties. J. Sport Health Sci. 2018, 7, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.X.; Li, J.; Jiang, Z.; Gao, J.-H.; Franklin, C.G.; Huang, Y.; Lancaster, J.L.; Yue, G.H. Aging interferes central control mechanism for eccentric muscle contraction. Front. Aging Neurosci. 2014, 6. [Google Scholar] [CrossRef] [Green Version]
- Huijing, P.A.; Baan, G.C. Myofascial force transmission: Muscle relative position and length determine agonist and synergist muscle force. J. Appl. Physiol. 2003, 94, 1092–1107. [Google Scholar] [CrossRef] [Green Version]
- Murtaugh, B.; Ihm, J.M. Eccentric training for the treatment of tendinopathies. Curr. Sports Med. Rep. 2013, 12, 175–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckthorpe, M.; Wright, S.; Bruce-Low, S.; Nanni, G.; Sturdy, T.; Gross, A.S.; Bowen, L.; Styles, B.; Della Villa, S.; Davison, M.; et al. Recommendations for hamstring injury prevention in elite football: Translating research into practice. Br. J. Sports Med. 2019, 53, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Hoppeler, H. Moderate load eccentric exercise: A distinct novel training modality. Front. Physiol. 2016, 7, 483. [Google Scholar] [CrossRef] [Green Version]
- Harris-Love, M.O.; Seamon, B.A.; Gonzales, T.I.; Hernandez, H.J.; Pennington, D.; Hoover, B.M. Eccentric exercise program design: A periodization model for rehabilitation applications. Front. Physiol. 2017, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Hody, S.; Croisier, J.-L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric muscle contractions: Risks and benefits. Front. Physiol. 2019, 10, 536. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, K. Eccentric contraction: Unraveling mechanisms of force enhancement and energy conservation. J. Exp. Biol. 2016, 219, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindstedt, S.L.; Reich, T.E.; Keim, P.; LaStayo, P.C. Do muscles function as adaptable locomotor springs? J. Exp. Biol. 2002, 205, 2211–2216. [Google Scholar] [CrossRef]
- Reich, T.E.; Lindstedt, S.L.; LaStayo, P.C.; Pierotti, D.J. Is the spring quality of muscle plastic? Am. J. Physiol. 2000, 278, R1661–R1666. [Google Scholar] [CrossRef] [PubMed]
- Vogt, M.; Hoppeler, H.H. Eccentric exercise: Mechanisms and effects when used as training regime or training adjunct. J. Appl. Physiol. 2014, 116, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- Davies, G.; Riemann, B.L.; Manske, R. Current concepts of plyometric exercise. Int. J. Sports Phys. Ther. 2015, 10, 760–786. [Google Scholar]
- Zhang, S.N.; Bates, B.T.; Dufek, J.S. Contributions of lower extremity joints to energy dissipation during landings. Med. Sci. Sports Exerc. 2000, 32, 812–819. [Google Scholar] [CrossRef]
- Reeves, N.D.; Maganaris, C.N.; Longo, S.; Narici, M.V. Differential adaptations to eccentric versus conventional resistance training in older humans. Exp. Physiol. 2009, 94, 825–833. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing eccentric resistance training—Part 2: Practical recommendations. J. Funct. Morphol. Kinesiol. 2019, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing eccentric resistance training—Part 1: A brief review of existing methods. J. Funct. Morphol. Kinesiol. 2019, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Kowalchuk, K.; Butcher, S. Eccentric overload flywheel training in older adults. J. Funct. Morphol. Kinesiol. 2019, 4, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppeler, H.; Herzog, W. Eccentric exercise: Many questions unanswered. J. Appl. Physiol. 2014, 116, 1405–1406. [Google Scholar] [CrossRef]
- Walker, S.; Blazevich, A.J.; Haff, G.G.; Tufano, J.J.; Newton, R.U.; Häkkinen, K. Greater strength gains after training with accentuated eccentric than traditional isoinertial loads in already strength-trained men. Front. Physiol. 2016, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- Roig, M.; Shadgan, B.; Reid, W.D. Eccentric exercise in patients with chronic health conditions: A systematic review. Physiother. Can. 2008, 60, 146–160. [Google Scholar] [CrossRef] [Green Version]
- Harris-Love, M.O. Safety and efficacy of submaximal eccentric strength training for a subject with polymyositis. Arthritis Care Res. Off. J. Am. Coll. Rheumatol. 2005, 53, 471–474. [Google Scholar] [CrossRef]
- Hernandez, H.J.; McIntosh, V.; Leland, A.; Harris-Love, M.O. Progressive resistance exercise with eccentric loading for the management of knee osteoarthritis. Front. Med. 2015, 2, 45. [Google Scholar] [CrossRef] [Green Version]
- Gollie, J.M.; Patel, S.S.; Scholten, J.D.; Harris-Love, M.O. Preliminary study of the effects of eccentric-overload resistance exercise on physical function and torque capacity in chronic kidney disease. J. Funct. Morphol. Kinesiol. 2020, 5, 97. [Google Scholar] [CrossRef]
- Lovering, R.M.; Brooks, S.V. Eccentric exercise in aging and diseased skeletal muscle: Good or bad? J. Appl. Physiol. 2014, 116, 1439–1445. [Google Scholar] [CrossRef] [PubMed]
- Parr, J.J.; Yarrow, J.F.; Garbo, C.M.; Borsa, P.A. Symptomatic and functional responses to concentric-eccentric isokinetic versus eccentric-only isotonic exercise. J. Athl. Train. 2009, 44, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Lavender, A.P.; Nosaka, K. Comparison between old and young men for changes in makers of muscle damage following voluntary eccentric exercise of the elbow flexors. Appl. Physiol. Nutr. Metab. 2006, 31, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Lima, L.C.R.; Denadai, B.S. Attenuation of eccentric exercise-induced muscle damage conferred by maximal isometric contractions: A mini review. Front. Physiol. 2015, 6. [Google Scholar] [CrossRef]
- Meyer, K.; Steiner, R.; Lastayo, P.; Lippuner, K.; Allemann, Y.; Eberli, F.; Schmid, J.; Saner, H.; Hoppeler, H. Eccentric exercise in coronary patients: Central hemodynamic and metabolic responses. Med. Sci. Sports Exerc. 2003, 35, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- LaStayo, P.C.; Ewy, G.A.; Pierotti, D.D.; Johns, R.K.; Lindstedt, S. The positive effects of negative work: Increased muscle strength and decreased fall risk in a frail elderly population. J. Gerontol. A Biol. Sci. Med. Sci. 2003, 58, M419–M424. [Google Scholar] [CrossRef] [Green Version]
- Gur, H.; Cakin, N.; Akova, B.; Okay, E.; Kucukoglu, S. Concentric versus combined concentric-eccentric isokinetic training: Effects on functional capacity and symptoms in patients with osteoarthrosis of the knee. Arch. Phys. Med. Rehabil. 2002, 83, 308–316. [Google Scholar] [CrossRef]
- Vincent, K.R.; Vincent, H.K. Concentric and eccentric resistance training comparison on physical function and functional pain outcomes in knee osteoarthritis: A randomized controlled trial. Am. J. Phys. Med. Rehabil. 2020, 99, 932–940. [Google Scholar] [CrossRef]
- Jayaseelan, D.J.; Mischke, J.J.; Strazzulla, R.L. Eccentric exercise for achilles tendinopathy: A narrative review and clinical decision-making considerations. J. Funct. Morphol. Kinesiol. 2019, 4, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinlan, J.I.; Narici, M.V.; Reeves, N.D.; Franchi, M.V. Tendon adaptations to eccentric exercise and the implications for older adults. J. Funct. Morphol. Kinesiol. 2019, 4, 60. [Google Scholar] [CrossRef] [Green Version]
- Grosset, J.-F.; Breen, L.; Stewart, C.E.; Burgess, K.E.; Onambélé, G.L. Influence of exercise intensity on training-induced tendon mechanical properties changes in older individuals. AGE 2014, 36, 9657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, J.L.; Purdam, C.R. Is Tendon pathology a continuum? A pathology model to explain the clinical presentation of load-induced tendinopathy. Br. J. Sports Med. 2009, 43, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Faigenbaum, A.D.; Kraemer, W.J.; Blimkie, C.J.R.; Jeffreys, I.; Micheli, L.J.; Nitka, M.; Rowland, T.W. Youth resistance training: Updated position statement paper from the National Strength and Conditioning Association. J. Strength Cond. Res. 2009, 23, S60–S79. [Google Scholar] [CrossRef]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance training for older adults: Position statement from the National Strength and Conditioning Association. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P.; American College of Sports Medicine Position Stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Drury, B.; Clarke, H.; Moran, J.; Fernandes, J.F.T.; Henry, G.; Behm, D.G. Eccentric resistance training in youth: A survey of perceptions and current practices by strength and conditioning coaches. J. Funct. Morphol. Kinesiol. 2021, 6, 21. [Google Scholar] [CrossRef]
- Chen, T.C.; Chen, H.-L.; Liu, Y.-C.; Nosaka, K. Eccentric exercise-induced muscle damage of pre-adolescent and adolescent boys in comparison to young men. Eur. J. Appl. Physiol. 2014, 114, 1183–1195. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-J.; Nosaka, K.; Ho, C.-C.; Chen, H.-L.; Tseng, K.-W.; Ratel, S.; Chen, T.C.-C. Influence of maturation status on eccentric exercise-induced muscle damage and the repeated bout effect in females. Front. Physiol. 2017, 8, 1118. [Google Scholar] [CrossRef] [Green Version]
- Drury, B.; Ratel, S.; Clark, C.C.T.; Fernandes, J.F.T.; Moran, J.; Behm, D.G. Eccentric resistance training in youth: Perspectives for long-term athletic development. J. Funct. Morphol. Kinesiol. 2019, 4, 70. [Google Scholar] [CrossRef] [Green Version]
- Hunter, S.K.; Pereira, H.M.; Keenan, K.G. The aging neuromuscular system and motor performance. J. Appl. Physiol 2016, 121, 982–995. [Google Scholar] [CrossRef]
- Delmonico, M.J.; Harris, T.B.; Visser, M.; Park, S.W.; Conroy, M.B.; Velasquez-Mieyer, P.; Boudreau, R.; Manini, T.M.; Nevitt, M.; Newman, A.B.; et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am. J. Clin. Nutr. 2009, 90, 1579–1585. [Google Scholar] [CrossRef]
- Venturelli, M.; Reggiani, C.; Richardson, R.S.; Schena, F. Skeletal muscle function in the oldest-old: The role of intrinsic and extrinsic factors. Exerc. Sport Sci. Rev. 2018, 46, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, W.K.; Williams, J.; Atherton, P.; Larvin, M.; Lund, J.; Narici, M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; A quantitative review. Front. Physiol. 2012, 3, 260. [Google Scholar] [CrossRef] [Green Version]
- Roig, M.; Macintyre, D.L.; Eng, J.J.; Narici, M.V.; Maganaris, C.N.; Reid, W.D. Preservation of eccentric strength in older adults: Evidence, mechanisms and implications for training and rehabilitation. Exp. Gerontol. 2010, 45, 400–409. [Google Scholar] [CrossRef] [Green Version]
- Gluchowski, A.; Harris, N.; Dulson, D.; Cronin, J. Chronic eccentric exercise and the older adult. Sports Med. 2015, 45, 1413–1430. [Google Scholar] [CrossRef]
- Lavender, A.P.; Nosaka, K. Responses of old men to repeated bouts of eccentric exercise of the elbow flexors in comparison with young men. Eur. J. Appl. Physiol. 2006, 97, 619–626. [Google Scholar] [CrossRef]
- Gault, M.L.; Clements, R.E.; Willems, M.E.T. Functional mobility of older adults after concentric and eccentric endurance exercise. Eur. J. Appl. Physiol. 2012, 112, 3699–3707. [Google Scholar] [CrossRef] [PubMed]
- Kay, A.D.; Blazevich, A.J.; Fraser, M.; Ashmore, L.; Hill, M.W. Isokinetic eccentric exercise substantially improves mobility, muscle strength and size, but not postural sway metrics in older adults, with limited regression observed following a detraining period. Eur. J. Appl. Physiol. 2020, 120, 2383–2395. [Google Scholar] [CrossRef]
- Reidy, P.T.; Lindsay, C.C.; McKenzie, A.I.; Fry, C.S.; Supiano, M.A.; Marcus, R.L.; LaStayo, P.C.; Drummond, M.J. Aging-related effects of bed rest followed by eccentric exercise rehabilitation on skeletal muscle macrophages and insulin sensitivity. Exp. Gerontol. 2018, 107, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Onambélé, G.L.; Maganaris, C.N.; Mian, O.S.; Tam, E.; Rejc, E.; McEwan, I.M.; Narici, M.V. Neuromuscular and balance responses to flywheel inertial versus weight training in older persons. J. Biomech. 2008, 41, 3133–3138. [Google Scholar] [CrossRef] [PubMed]
- Sañudo, B.; González-Navarrete, Á.; Álvarez-Barbosa, F.; de Hoyo, M.; Del Pozo, J.; Rogers, M.E. Effect of flywheel resistance training on balance performance in older adults. A randomized controlled trial. J. Sports Sci. Med. 2019, 18, 344–350. [Google Scholar]
- LaStayo, P.; Marcus, R.; Dibble, L.; Frajacomo, F.; Lindstedt, S. Eccentric exercise in rehabilitation: Safety, feasibility, and application. J. Appl Physiol 2014, 116, 1426–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeill, C.; Beaven, C.M.; McMaster, D.T.; Gill, N. Eccentric training interventions and team sport athletes. J. Funct. Morphol. Kinesiol. 2019, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Tous-Fajardo, J.; Maldonado, R.A.; Quintana, J.M.; Pozzo, M.; Tesch, P.A. The flywheel leg-curl machine: Offering eccentric overload for hamstring development. Int. J. Sports Physiol. Perform. 2006, 1, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Granacher, U.; Lesinski, M.; Büsch, D.; Muehlbauer, T.; Prieske, O.; Puta, C.; Gollhofer, A.; Behm, D.G. Effects of resistance training in youth athletes on muscular fitness and athletic performance: A conceptual model for long-Term athlete development. Front. Physiol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Behm, D.G.; Young, J.D.; Whitten, J.H.D.; Reid, J.C.; Quigley, P.J.; Low, J.; Li, Y.; Lima, C.D.; Hodgson, D.D.; Chaouachi, A.; et al. Effectiveness of traditional strength vs. power training on muscle strength, power and speed with youth: A systematic review and meta-analysis. Front. Physiol. 2017, 8, 423. [Google Scholar] [CrossRef] [PubMed]
- Bourne, M.N.; Duhig, S.J.; Timmins, R.G.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: Implications for injury prevention. Br. J. Sports Med. 2017, 51, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Bourne, M.N.; Timmins, R.G.; Opar, D.A.; Pizzari, T.; Ruddy, J.D.; Sims, C.; Williams, M.D.; Shield, A.J. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2018, 48, 251–267. [Google Scholar] [CrossRef] [PubMed]
- Herzog, W. The Mysteries of eccentric muscle action. J. Sport Health Sci. 2018, 7, 253–254. [Google Scholar] [CrossRef] [PubMed]
Hypertrophy | Strength | Power Output |
---|---|---|
↑Anabolic signaling ↑Satellite cell activation ↑Motor unit recruitment ↑Activation of motor cortex ↑Force production capacity Possible ↑ fast twitch motor unit preferential recruitment | ↑Activation of motor cortex ↑Force production ↑Motor unit discharge rate ↑Muscle-tendon unit stiffness ↓Regulation of inhibitory reflexes Possible ↑fast twitch motor unit preferential recruitment Possible ↑type IIx fiber composition (phenotype shift) | ↑Motor unit recruitment ↑Activation of motor cortex ↑Force production capacity ↑Motor unit discharge rate ↑Muscle-tendon unit stiffness ↓Regulation of inhibitory reflexes ↑Muscle fascicle length Possible ↑ fast twitch motor unit preferential recruitment Possible ↑ type IIx fiber composition (phenotype shift) Possible ↑ excitation-contraction couple rates ↑Muscle fiber shortening velocity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris-Love, M.O.; Gollie, J.M.; Keogh, J.W.L. Eccentric Exercise: Adaptations and Applications for Health and Performance. J. Funct. Morphol. Kinesiol. 2021, 6, 96. https://doi.org/10.3390/jfmk6040096
Harris-Love MO, Gollie JM, Keogh JWL. Eccentric Exercise: Adaptations and Applications for Health and Performance. Journal of Functional Morphology and Kinesiology. 2021; 6(4):96. https://doi.org/10.3390/jfmk6040096
Chicago/Turabian StyleHarris-Love, Michael O., Jared M. Gollie, and Justin W. L. Keogh. 2021. "Eccentric Exercise: Adaptations and Applications for Health and Performance" Journal of Functional Morphology and Kinesiology 6, no. 4: 96. https://doi.org/10.3390/jfmk6040096
APA StyleHarris-Love, M. O., Gollie, J. M., & Keogh, J. W. L. (2021). Eccentric Exercise: Adaptations and Applications for Health and Performance. Journal of Functional Morphology and Kinesiology, 6(4), 96. https://doi.org/10.3390/jfmk6040096