Heavy Metal Concentrations in Wild Mussels Mytilus galloprovincialis (Lamarck, 1819) during 2001–2023 and Potential Risks for Consumers: A Study on the Romanian Black Sea Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Procedure
2.3. Heavy Metals Analysis
2.4. Human Health Risk Assessment
2.4.1. Estimated Daily Intake (EDI) and Estimated Weekly Intake (EWI)
2.4.2. Non-Carcinogenic Hazard: Target Hazard Quotient (THQ) and Hazardous Risk (Total Hazard Quotient) (TTHQ)
2.4.3. Carcinogenic Risk Index (CRI)
3. Results
3.1. Heavy Metal Variability in Black Sea Mussels
3.2. Compliance with European Regulations
3.3. Human Health Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adriano, D.C. Bioavailability of Trace Metals. In Trace Elements in Terrestrial Environments; Springer: Berlin/Heidelberg, Germany, 2001; pp. 61–89. [Google Scholar] [CrossRef]
- Rana, V.; Milke, J.; Gałczyńska, M. Inorganic and Organic Pollutants in Baltic Sea Region and Feasible Circular Economy Perspectives for Waste Management: A Review. In Handbook of Solid Waste Management: Sustainability through Circular Economy; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1743–1777. [Google Scholar] [CrossRef]
- Han, J.L.; Pan, X.D.; Chen, Q.; Huang, B.F. Health Risk Assessment of Heavy Metals in Marine Fish to the Population in Zhejiang, China. Sci. Rep. 2021, 11, 11079. [Google Scholar] [CrossRef] [PubMed]
- Marinaro, C.; Lettieri, G.; Chianese, T.; Bianchi, A.R.; Zarrelli, A.; Palatucci, D.; Scudiero, R.; Rosati, L.; De Maio, A.; Piscopo, M. Exploring the Molecular and Toxicological Mechanism Associated with Interactions between Heavy Metals and the Reproductive System of Mytilus galloprovincialis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2024, 275, 109778. [Google Scholar] [CrossRef] [PubMed]
- Lettieri, G.; Marinaro, C.; Brogna, C.; Montano, L.; Lombardi, M.; Trotta, A.; Troisi, J.; Piscopo, M. A Metabolomic Analysis to Assess the Responses of the Male Gonads of Mytilus galloprovincialis after Heavy Metal Exposure. Metabolites 2023, 13, 1168. [Google Scholar] [CrossRef] [PubMed]
- Eid, M.H.; Eissa, M.; Mohamed, E.A.; Ramadan, H.S.; Tamás, M.; Kovács, A.; Szűcs, P. New Approach into Human Health Risk Assessment Associated with Heavy Metals in Surface Water and Groundwater Using Monte Carlo Method. Sci. Rep. 2024, 14, 1008. [Google Scholar] [CrossRef] [PubMed]
- Spada, L.; Annicchiarico, C.; Cardellicchio, N.; Giandomenico, S.; Di Leo, A. Heavy Metals Monitoring in Mussels Mytilus galloprovincialis from the Apulian Coasts (Southern Italy). Mediterr. Mar. Sci. 2013, 14, 99–108. [Google Scholar] [CrossRef]
- Mok, J.S.; Yoo, H.D.; Kim, P.H.; Yoon, H.D.; Park, Y.C.; Kim, J.H.; Kwon, J.Y.; Son, K.T.; Lee, H.J.; Ha, K.S.; et al. Bioaccumulation of Heavy Metals in the Mussel Mytilus galloprovincialis in the Changseon Area, Korea, And Assessment of Potential Risk to Human Health. Fish. Aquat. Sci. 2014, 17, 313–318. [Google Scholar] [CrossRef]
- Saleh, I.; Syamsir, S.; Pramaningsih, V.; Hansen, H. The Use of Green Mussel as Bioindicator of Heavy Metal Pollution in Indonesia: A Review. Environ. Anal. Health Toxicol. 2021, 36, e2021026. [Google Scholar] [CrossRef] [PubMed]
- Kong Yap, C.; Sharifinia, M.; Cheng, W.H.; Al-Shami, S.A.; Wong, K.W.; Al-Mutairi, K.A.; Sharifinia, M.K.; Cheng, W.H.; Al-Shami, S.A.; Wong, K.W.; et al. A Commentary on the Use of Bivalve Mollusks in Monitoring Metal Pollution Levels. Int. J. Environ. Res. Public Health 2021, 18, 3386. [Google Scholar] [CrossRef] [PubMed]
- Bat, L. One Health: The Interface Between Fish and Human Health. Curr. World Environ. 2019, 14, 355–357. [Google Scholar] [CrossRef]
- Arici, E.; Öztekin, A.; Bat, L. Human Health Risk Assessment of Heavy Metals in the Black Sea: Evaluating Mussels. Curr. World Environ. 2018, 13, 15–31. [Google Scholar] [CrossRef]
- Bat, L.; Öztekin, A.; Şahin, F.; Arıcı, E.; Özsandıkçı, U. An Overview of the Black Sea Pollution in Turkey. Mediterr. Fish. Aquac. Res. 2018, 1, 66–86. [Google Scholar]
- Alkan, N.; Alkan, A.; Akbaş, U.; Fisher, A. Metal Pollution Assessment in Sediments of the Southeastern Black Sea Coast of Turkey. Soil Sediment Contam. Int. J. 2015, 24, 290–305. [Google Scholar] [CrossRef]
- Cadar, E.; Sirbu, R.; Stefan, B.; Pirjol, N.; Ionescu, A.M.; Negreanu Pirjol, T. Heavy Metals Bioaccumulation Capacity on Marine Algae Biomass from Romanian Black Sea Coast. Rev. Chim 2019, 70, 3065–3072. [Google Scholar] [CrossRef]
- Bucse, A.; Parvulescu, O.; Vasiliu, D.; Lupașcu, N.; Voica, C. Levels of Heavy Metal Concentrations in M. Galloprovincialis Mollusks Species from NW Black Sea (Romania). Bull. Ser. B 2021, 83, 51–60. [Google Scholar]
- Boran, M.; Altinok, I. A Review of Heavy Metals in Water, Sediment and Living Organisms in the Black Sea. Turk. J. Fish. Aquat. Sci. 2010, 10, 565–572. [Google Scholar] [CrossRef]
- Zhelyazkov, G.; Yankovska-Stefanova, T.; Mineva, E.; Stratev, D.; Vashin, I.; Dospatliev, L.; Valkova, E.; Popova, T. Risk Assessment of Some Heavy Metals in Mussels (Mytilus galloprovincialis) and Veined Rapa Whelks (Rapana Venosa) for Human Health. Mar. Pollut. Bull. 2018, 128, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Bat, L. Trace Element Concentrations in the Mediterranean Mussel Mytilus galloprovincialis Lamarck, 1819 Caught from Sinop Coast of the Black Sea, Turkey. Open Mar. Biol. J. 2012, 6, 1–8. [Google Scholar] [CrossRef]
- Mitha, C.M.; Raj, V.M.; George, V.S.; Sangeetha, R. Determination of Heavy Metal Concentrations in Aquatic Animals from Ennore Estuary. Int. J. Zool. Investig. 2022, 08, 351–356. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Chen, H.; Wang, Z.; Jia, X. Oyster arsenic, cadmium, copper, mercury, lead and zinc levels in the northern South China Sea: Long-term spatiotemporal distributions, combined effects, and risk assessment to human health. Environ. Sci. Pollut. Res. Int. 2022, 29, 12706–12719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Liu, D.; Wu, H.; Chen, L.; Han, Q. Heavy Metal Contamination in the Marine Organisms in Yantai Coast, Northern Yellow Sea of China. Ecotoxicology 2012, 21, 1726–1733. [Google Scholar] [CrossRef]
- Stankovic, S.; Jovic, M. Health Risks of Heavy Metals in the Mediterranean Mussels as Seafood. Env. Chem. Lett. 2012, 10, 119–130. [Google Scholar] [CrossRef]
- Saha, N.; Zaman, M.R. Evaluation of Possible Health Risks of Heavy Metals by Consumption of Foodstuffs Available in the Central Market of Rajshahi City, Bangladesh. Environ. Monit. Assess. 2013, 185, 3867–3878. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Yin, R.; Zhang, H.; Yao, L. Bioaccumulation and Health Risk Assessment of Heavy Metals in the Soil–Rice System in a Typical Seleniferous Area in Central China. Environ. Toxicol. Chem. 2019, 38, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Sultana, R.; Chamon, A.; Mondol, M. Heavy Metal Concentration in Commonly Sold Stem Vegetables in Dhaka City Market and Probable Health Risk. Dhaka Univ. J. Biol. Sci. 2021, 30, 221–232. [Google Scholar] [CrossRef]
- Gedik, K. Bioaccessibility of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in Mediterranean Mussel (Mytilus galloprovincialis Lamarck, 1819) along the Southeastern Black Sea Coast. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 754–766. [Google Scholar] [CrossRef]
- Bat, L.; Arici, E.; Sezgin, M.; Sahin, F. Heavy Metals in Edible Tissues of Benthic Organisms from Samsun Coasts, South Black Sea, Turkey and Their Potential Risk to Human Health. J. Food Health Sci. 2016, 2, 57–66. [Google Scholar] [CrossRef]
- Bat, L.; Yardım, Ö.; Arıcı, E.; Hasançavuşoğlu, Z.; Öztekin, A. Heavy Metals Risk Assessment for Consumption of Wild Mediterranean Mussels Mytilus galloprovincialis Lamark, 1819 along Samsun Coasts of the Black Sea. Pak. J. Mar. Sci. 2023, 32, 129–144. [Google Scholar]
- Oros, A.; Coatu, V.; Tolun, L.-G.; Atabay, H.; Denga, Y.; Damir, N.; Danilov, D.; Aslan, E.; Litvinova, M.; Oleinik, Y.; et al. Hazardous Substances Assessment in Black Sea Biota. Cercet. Mar.-Rech. Mar. 2021, 51, 27–48. [Google Scholar] [CrossRef]
- Damir, N.; Danilov, D.; Oros, A.; Lazăr, L.; Coatu, V. Chemical Status Evaluation of the Romanian Black Sea Marine Environment Based on Benthic Organisms’ Contamination. Cercet. Mar.-Rech. Mar. 2022, 52, 52. [Google Scholar] [CrossRef]
- Oros, A. Monitoring and Assessment of Heavy Metals in the Romanian Black Sea Ecosystem during 2006–2018, in the Context of Marine Strategy Framework Directive (MSFD) 2008/56/EC Implementation. Cercet. Mar.-Rech. Mar. 2019, 49, 8–33. [Google Scholar] [CrossRef]
- Coatu, V.; Oros, A.; Ţigănuş, D.; Shtereva†, G.; Bat, L. Assessment of the Contaminants in Biota from the Western Black Sea Basin in Respect with MSFD Requirements in the Frame of the MISIS Project. Cercet. Mar.-Rech. Mar. 2016, 46, 82–97. [Google Scholar] [CrossRef]
- Bisinicu, E.; Abaza, V.; Boicenco, L.; Adrian, F.; Harcota, G.-E.; Marin, O.; Oros, A.; Pantea, E.; Spinu, A.; Timofte, F.; et al. Spatial Cumulative Assessment of Impact Risk-Implementing Ecosystem-Based Management for Enhanced Sustainability and Biodiversity in the Black Sea. Sustainability 2024, 16, 4449. [Google Scholar] [CrossRef]
- Nenciu, M.-I.; Niță, V.; Hamza, H. Short Communication: Recent Outcomes of the Shellfish Aquaculture Demonstrative Center (S-ADC). Cercet. Mar.-Rech. Mar. 2020, 50, 192–197. [Google Scholar] [CrossRef]
- UNEP/FAO/IOC/IAEA Guidelines for Monitoring Chemical Contaminants in the Sea Using Marine Organims. Reference Methods for Marine Pollution Studies No 6, UNEP. 1993. Available online: https://www.unep.org/resources/report/guidelines-monitoring-chemical-contaminants-sea-using-marine-organisms (accessed on 4 June 2024).
- IAEA-MEL. Training Manual on the Measurement of Heavy Metals in Environmental Samples; IAEA-MEL: Monaco-Ville, Monaco, 1999. [Google Scholar]
- Bat, L.; Yardım, Ö.; Öztekin, A.; Arıcı, E. Assessment of Heavy Metal Concentrations in Scophthalmus Maximus (Linnaeus, 1758) from the Black Sea Coast: Implications for Food Safety and Human Health. J. Hazard. Mater. Adv. 2023, 12, 100384. [Google Scholar] [CrossRef]
- Pipoyan, D.; Stepanyan, S.; Beglaryan, M.; Stepanyan, S.; Mendelsohn, R.; Deziel, N.C. Health Risks of Heavy Metals in Food and Their Economic Burden in Armenia. Environ. Int. 2023, 172, 107794. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 4 June 2024).
- Bat, L.; Öztekin, A.; Arici, E.; Sahin, F. Mytilus galloprovincialis and Metal Contaminants: Health Risk Assessment from Sinop Coasts. Korean J. Food Health Converg. 2021, 7, 13–21. [Google Scholar] [CrossRef]
- Regional Screening Levels (RSLs)—Generic Tables|US EPA. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 4 June 2024).
- The Risk Assessment Information System. Available online: https://rais.ornl.gov/cgi-bin/tools/TOX_search (accessed on 4 June 2024).
- TIBCO Software Inc. TIBCO Statistica; Version 14.0.1.25; TIBCO Software Inc.: Palo Alto, CA, USA, 2023. [Google Scholar]
- Schlitzer, R. Ocean Data View. Available online: https://odv.awi.de (accessed on 11 July 2024).
- European Commission (EC) Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. OJ L 119. 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02023R0915-20240425 (accessed on 4 June 2024).
- Alexander, J.; Benford, D.; Boobis, A.; Ceccatelli, S.; Cravedi, J.-P.; Di Domenico, A.; Doerge, D.; Dogliotti, E.; Edler, L.; Farmer, P.; et al. Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Update of the Risk Assessment of Nickel in Food and Drinking Water. EFSA J. 2020, 18, 6268. [Google Scholar] [CrossRef]
- Alexander, J.; Benford, D.; Raymond Boobis, A.; Ceccatelli, S.; Cravedi, J.-P.; Di Domenico, A.; Doerge, D.; Dogliotti, E.; Edler, L.; Farmer, P.; et al. Statement on Tolerable Weekly Intake for Cadmium. EFSA J. 2011, 9, 1975. [Google Scholar] [CrossRef]
- Storelli, M.M.; Storelli, A.; Marcotrigiano, G.O. Heavy Metals in Mussels (Mytilus galloprovincialis) from the Ionian Sea, Italy. J. Food Prot. 2000, 63, 273–276. [Google Scholar] [CrossRef]
- Azizi, G.; Layachi, M.; Akodad, M.; Martín-García, A.I.; Yáñez-Ruiz, D.R.; Baghour, M.; Ait Hmeid, H.; Gueddari, H.; Moumen, A. Bioaccumulation and Health Risk Assessment of Trace Elements in Mytilus galloprovincialis as Sea Food in the Al Hoceima Coasts (Morocco). E3S Web Conf. 2021, 240, 01002. [Google Scholar] [CrossRef]
- Nardi, A.; Mincarelli, L.F.; Benedetti, M.; Fattorini, D.; d’Errico, G.; Regoli, F. Indirect Effects of Climate Changes on Cadmium Bioavailability and Biological Effects in the Mediterranean Mussel Mytilus galloprovincialis. Chemosphere 2017, 169, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Coatu, V.; Oros, A.; Tiganus, D.; Lazar, L. Assessment of Chemical Contamination in Biota from Romanian Marine Waters in Respect with Maximum Admissible Levels Regulated by Legislation for Human Consumption. J. Environ. Prot. Ecol. 2015, 16, 117–125. [Google Scholar]
- Peycheva, K.; Panayotova, V.; Stancheva, R.; Makedonski, L.; Merdzhanova, A.; Cicero, N.; Parrino, V.; Fazio, F. Trace Elements and Omega-3 Fatty Acids of Wild and Farmed Mussels (Mytilus galloprovincialis) Consumed in Bulgaria: Human Health Risks. Int. J. Environ. Res. Public Health 2021, 18, 10023. [Google Scholar] [CrossRef]
- Yona, D.; Sartimbul, A.; Rahman, M.A.; Sari, S.H.J.; Mondal, P.; Hamid, A.; Humairoh, T. Bioaccumulation and Health Risk Assessments of Heavy Metals in Mussels Collected from Madura Strait, Indonesia. J. Ilm. Perikan. Kelaut. 2021, 13, 20–28. [Google Scholar] [CrossRef]
Element | N | Mean | Coef.Var. | Median | Min | Max | 75th Percentile | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|
Cu (µg/g ww) | 149 | 2.617 | 73.818 | 2.259 | 0.100 | 10.770 | 3.344 | 1.745 | 4.111 |
Cd (µg/g ww) | 149 | 0.479 | 130.625 | 0.303 | 0.006 | 4.690 | 0.4720 | 3.638 | 17.260 |
Pb (µg/g ww) | 149 | 0.790 | 213.443 | 0.160 | 0.001 | 11.020 | 0.741 | 4.006 | 18.389 |
Ni (µg/g ww) | 125 * | 1.223 | 97.491 | 0.950 | 0.118 | 8.120 | 1.496 | 3.154 | 13.071 |
Cr (µg/g ww) | 106 * | 0.859 | 125.395 | 0.467 | 0.002 | 6.076 | 1.074 | 2.578 | 7.619 |
Metal | Period | EDIs | EWIs | THQs | CRIs | ||||
---|---|---|---|---|---|---|---|---|---|
Children | Adults | Children | Adults | Children | Adults | Children | Adults | ||
Copper (Cu) | 2001–2010 | 2.16 × 10−5 ± 9.70 × 10−6 | 9.27 × 10−6 ± 4.15 × 10−6 | 1.51 × 10−4 ± 6.79 × 10−5 | 6.49 × 10−5 ± 2.91 × 10−5 | 5.41 × 10−4 ± 2.42 × 10−4 | 2.32 × 10−4 ± 1.04 × 10−4 | ||
2011–2020 | 8.43 × 10−5 ± 3.19 × 10−5 | 3.61 × 10−5 ± 1.36 × 10−5 | 5.90 × 10−4 ± 2.23 × 10−4 | 2.53 × 10−4 ± 9.57 × 10−5 | 2.11 × 10−3 ± 7.98 × 10−4 | 9.03 × 10−4 ± 3.42 × 10−4 | |||
2021–2023 | 4.06 × 10−5 ± 2.17 × 10−6 | 1.74 × 10−5 ± 9.31 × 10−7 | 2.84 × 10−4 ± 1.52 × 10−5 | 1.22 × 10−4 ± 6.51 × 10−6 | 1.02 × 10−3 ± 5.40 × 10−5 | 4.35 × 10−4 ± 2.32 × 10−5 | |||
Cadmium (Cd) | 2001–2010 | 4.07 × 10−6 ± 5.39 × 10−6 | 1.75 × 10−6 ± 2.31 × 10−6 | 2.85 × 10−5 ± 3.78 × 10−5 | 1.22 × 10−5 ± 1.61 × 10−5 | 4.07 × 10−2 ± 5.39 × 10−2 | 1.75 × 10−2 ± 2.31 × 10−2 | ||
2011–2020 | 1.56 × 10−5 ± 9.98 × 10−6 | 6.71 × 10−6 ± 4.27 × 10−6 | 1.10× 10−4 ± 6.98 × 10−5 | 4.69 × 10−5 ± 2.99 × 10−5 | 1.56 × 10−1 ± 9.98 × 10−2 | 6.71 × 10−2 ± 4.27 × 10−2 | |||
2021–2023 | 1.48 × 10−5 ± 1.98 × 10−6 | 6.36 × 10−6 ± 8.51 × 10−7 | 1.04 × 10−4 ± 1.39 × 10−5 | 4.45 × 10−5 ± 5.96 × 10−6 | 1.48 × 10−1 ± 1.98 × 10−2 | 6.36 × 10−2 ± 8.51 × 10−3 | |||
Chromium (Cr) | 2004–2010 | 9.50 × 10−6 ± 1.05 × 10−5 | 4.07 × 10−6 ± 4.52 × 10−6 | 6.65 × 10−5 ± 7.39 × 10−5 | 2.85 × 10−5 ± 3.16 × 10−5 | 3.17 × 10−3 ± 3.52 × 10−3 | 1.36 × 10−3 ± 1.51 × 10−3 | ||
2011–2020 | 2.12 × 10−5 ± 2.61 × 10−5 | 9.07 × 10−6 ± 1.11 × 10−5 | 1.48 × 10−4 ± 1.82 × 10−4 | 6.35 × 10−5 ± 7.83 × 10−5 | 7.05 × 10−3 ± 8.70 × 10−3 | 3.02 × 10−3 ± 3.72 × 10−3 | |||
2021–2023 | 3.97 × 10−5 ± 4.03 × 10−5 | 1.70 × 10−5 ± 1.73 × 10−5 | 2.78 × 10−4 ± 2.82 × 10−4 | 1.19 × 10−4 ± 1.21 × 10−4 | 1.32 × 10−2 ± 1.34 × 10−2 | 5.67 × 10−3 ± 5.77 × 10−3 | |||
Nickel (Ni) | 2003–2010 | 1.09 × 10−5 ± 8.37 × 10−6 | 4.67 × 10−6 ± 3.58 × 10−6 | 7.64 × 10−5 ± 5.86 × 10−5 | 3.27 × 10−5 ± 2.51 × 10−5 | 5.45 × 10−4 ± 4.18 × 10−4 | 2.34 × 10−4 ± 1.79 × 10−4 | ||
2011–2020 | 3.49 × 10−5 ± 1.89 × 10−5 | 1.50 × 10−5 ± 8.12 × 10−6 | 2.45 × 10−4 ± 1.32 × 10−4 | 1.05 × 10−4 ± 5.68 × 10−5 | 1.75 × 10−3 ± 9.47 × 10−4 | 7.49 × 10−4 ± 4.06 × 10−4 | |||
2021–2023 | 2.56 × 10−5 ± 1.48 × 10−5 | 1.10× 10−5 ± 6.36 × 10−6 | 1.80 × 10−4 ± 1.04 × 10−4 | 7.69 × 10−5 ± 4.45 × 10−5 | 1.28 × 10−3 ± 7.42 × 10−4 | 5.50 × 10−4 ± 3.18 × 10−4 | |||
Lead (Pb) | 2001–2010 | 9.05 × 10−6 ± 1.14 × 10−5 | 3.88 × 10−6 ± 4.89 × 10−6 | 6.33 × 10−5 ± 8.02 × 10−5 | 2.71 × 10−5 ± 3.42 × 10−5 | 7.69 × 10−8 ± 9.71 × 10−8 | 3.30 × 10−8 ± 4.16 × 10−8 | ||
2011–2020 | 3.30 × 10−6 ± 4.02 × 10−6 | 1.41 × 10−6 ± 1.72 × 10−6 | 2.31 × 10−5 ± 2.82 × 10−5 | 9.90 × 10−6 ± 1.20 × 10−5 | 2.81 × 10−8 ± 3.42 × 10−8 | 1.20 × 10−8 ± 1.46 × 10−8 | |||
2021–2023 | 2.49 × 10−5 ± 1.43 × 10−5 | 1.07 × 10−5 ± 6.13 × 10−6 | 1.75 × 10−4 ± 1.01 × 10−4 | 7.48 × 10−5 ± 4.29 × 10−5 | 2.12 × 10−7 ± 1.21 × 10−7 | 9.10× 10−8 ± 5.21 × 10−8 | |||
TTHQ | 2001–2010 | 4.28 × 10−2± 5.40 × 10−2 | 1.87 × 10−2 ± 2.28 × 10−2 | ||||||
2011–2020 | 1.66 × 10−1 ± 1.05 × 10−1 | 7.14 × 10−2 ± 4.52 × 10−2 | |||||||
2021–2023 | 1.68 × 10−1 ± 7.17 × 10−3 | 7.18 × 10−2 ± 3.07 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oros, A.; Pantea, E.-D.; Ristea, E. Heavy Metal Concentrations in Wild Mussels Mytilus galloprovincialis (Lamarck, 1819) during 2001–2023 and Potential Risks for Consumers: A Study on the Romanian Black Sea Coast. Sci 2024, 6, 45. https://doi.org/10.3390/sci6030045
Oros A, Pantea E-D, Ristea E. Heavy Metal Concentrations in Wild Mussels Mytilus galloprovincialis (Lamarck, 1819) during 2001–2023 and Potential Risks for Consumers: A Study on the Romanian Black Sea Coast. Sci. 2024; 6(3):45. https://doi.org/10.3390/sci6030045
Chicago/Turabian StyleOros, Andra, Elena-Daniela Pantea, and Elena Ristea. 2024. "Heavy Metal Concentrations in Wild Mussels Mytilus galloprovincialis (Lamarck, 1819) during 2001–2023 and Potential Risks for Consumers: A Study on the Romanian Black Sea Coast" Sci 6, no. 3: 45. https://doi.org/10.3390/sci6030045
APA StyleOros, A., Pantea, E. -D., & Ristea, E. (2024). Heavy Metal Concentrations in Wild Mussels Mytilus galloprovincialis (Lamarck, 1819) during 2001–2023 and Potential Risks for Consumers: A Study on the Romanian Black Sea Coast. Sci, 6(3), 45. https://doi.org/10.3390/sci6030045