An Urban Density-Based Runoff Simulation Framework to Envisage Flood Resilience of Cities
Abstract
:1. Introduction
1.1. Identifying the Urban Form-Based Proxies of Urban Density
1.2. Framework to Assess the Influence of Urban Density Changes on the Level of SR
Concepts
1.3. The Proposed Conceptual Framework
2. Materials and Methods
2.1. Overall Methodology
2.2. Quantifying the Urban Form Density
2.3. Selection of a Software Tools for Modelling Surface Runoff
2.4. Selection of Cases Study Areas
3. Analysis and Results
3.1. Correlation Analysis
3.2. Decision Tree Analysis
3.3. Field Verification of the Simulated Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zevenbergen, C.; Cashman, A.; Evelpidou, N.; Pasche, E.; Garvin, S.; Ashley, R. Urban Flood Management, 1st ed.; CRC Press: London, UK, 2010. [Google Scholar]
- World Bank. Land Use Planning for Urban Flood Risk Management; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- United Nations Office for Disaster Risk Reduction. Human Cost of Disasters an Overview of the Last 20 Years 2000–2019; United Nations: New York, NY, USA, 2020. [Google Scholar]
- United Nations; Department of Economic and Social Affairs; Population Division. World Urbanization Prospects: The 2018 Revision; 2019. Available online: https://www.un.org/development/desa/publications/2018-revision-of-world-urbanization-prospects.html (accessed on 1 December 2022).
- Feng, B.; Zhang, Y.; Bourke, R. Urbanization impacts on flood risks based on urban growth data and coupled flood models. Nat. Hazards 2021, 106, 613–627. [Google Scholar] [CrossRef]
- Kang, S.; Yeom, J.; Jung, J. Urban Form and Natural Hazards: Exploring the Dual Aspect Concept of Urban Forms on Flood Damage. Sustainability 2021, 13, 9007. [Google Scholar] [CrossRef]
- Ferrari, A.; Viero, D.P. Floodwater pathways in urban areas: A method to compute porosity fields for anisotropic subgrid models in differential form. J. Hydrol. 2020, 589, 125193. [Google Scholar] [CrossRef]
- Alexander, E.R. Density measures: A review and analysis. J. Archit. Plan. Res. 1993, 10, 181–202. [Google Scholar]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Wang, X.C.; Ren, N.; Li, G.; Ding, J.; Liang, H. Implementation of a specific urban water management—Sponge City. Sci. Total Environ. 2019, 652, 147–162. [Google Scholar] [CrossRef]
- Wang, M.; Shao, Y.; Jiang, Q.; Xiao, L.; Yan, H.; Gao, X.; Wang, L.; Liu, P. Impacts of Climate Change and Human Activity on the Runoff Changes in the Guishui River Basin. Land 2020, 9, 291. [Google Scholar] [CrossRef]
- Hoyer, J. (Ed.) Water Sensitive Urban Design: Principles and Inspiration for Sustainable Stormwater Management in the City of the Future. Berlin: Jovis-Verl. 2011. Available online: https://www.hcu-hamburg.de/fileadmin/documents/Research/Forschungsgruppen/REAP/WD_Publikationen/Hoyer_Dickhaut_Kronawitter_Weber_Manual_WSUD_2011.pdf (accessed on 1 December 2022).
- Park, K.; Lee, M.-H. The Development and Application of the Urban Flood Risk Assessment Model for Reflecting upon Urban Planning Elements. Water 2019, 11, 920. [Google Scholar] [CrossRef] [Green Version]
- Madusanka, S.; Abenayake, C.; Jayasinghe, A.; Perera, C. A Decision-Making Tool for Urban Planners: A Framework to Model the Interdependency among Land Use, Accessibility, Density, and Surface Runoff in Urban Areas. Sustainability 2022, 14, 522. [Google Scholar] [CrossRef]
- Sharifi, A. Urban form resilience: A meso-scale analysis. Cities 2019, 93, 238–252. [Google Scholar] [CrossRef]
- Owusu-Ansah, J.K. The influences of land use and sanitation infrastructure on flooding in Kumasi, Ghana. GeoJournal 2016, 81, 555–570. [Google Scholar] [CrossRef]
- Kumar, M.; Sharif, M.; Ahmed, S. Impact of urbanization on the river Yamuna basin. Int. J. River Basin Manag. 2020, 18, 461–475. [Google Scholar] [CrossRef]
- Abenayake, C.C.; Wijayawardana, P.N.P.; Jayasinghe, A.B.; Kalpana, L.D.C.H.N.; Dias, N.; Amaratunga, D.; Haigh, R. A GIS-Based Simulation Application to Model Surface Runoff Level in Urban Blocks. FARU J. 2020, 7, 56. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Rosier, J.F.; Verburg, P.H.; van Vliet, J. Global maps of 3D built-up patterns for urban morphological analysis. Int. J. Appl. Earth Obs. Geoinform. 2022, 114, 103048. [Google Scholar] [CrossRef]
- Schubert, J.E.; Sanders, B.F. Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency. Adv. Water Resour. 2012, 41, 49–64. [Google Scholar] [CrossRef]
- Eini, M.; Kaboli, H.S.; Rashidian, M.; Hedayat, H. Hazard and vulnerability in urban flood risk mapping: Machine learning techniques and considering the role of urban districts. Int. J. Disaster Risk Reduct. 2020, 50, 101687. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, J.; Wu, Z.; Li, C.; Qin, J.; Liu, T. Effects of Impervious Surface on the Spatial Distribution of Urban Waterlogging Risk Spots at Multiple Scales in Guangzhou, South China. Sustainability 2018, 10, 1589. [Google Scholar] [CrossRef] [Green Version]
- Berghauser Pont, M.; Haupt, P. “Space, Density and Urban Form,” urn:NBN:nl:ui:24-uuid:0e8cdd4d-80d0-4c4c-97dc-dbb9e5eee7c2, Netherlands. 2009. Available online: http://resolver.tudelft.nl/uuid:0e8cdd4d-80d0-4c4c-97dc-dbb9e5eee7c2 (accessed on 1 December 2022).
- Zhao, C.; Weng, Q.; Hersperger, A.M. Characterizing the 3-D urban morphology transformation to understand urban-form dynamics: A case study of Austin, Texas, USA. Landsc. Urban Plan. 2020, 203, 103881. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Fox, D.; Dang, D.K.; Pham, L.T.; Viet Du, Q.V.; Nguyen, T.H.T.; Dang, T.N.; Tran, V.T.; Vu, P.L.; Nguyen, Q.-H.; et al. Predicting Future Urban Flood Risk Using Land Change and Hydraulic Modeling in a River Watershed in the Central Province of Vietnam. Remote Sens. 2021, 13, 262. [Google Scholar] [CrossRef]
- Berling-Wolff, S.; Wu, J. Modeling urban landscape dynamics: A case study in Phoenix, USA. Urban Ecosyst. 2004, 7, 215–240. [Google Scholar] [CrossRef]
- Piyumi, M.M.M.; Abenayake, C.; Jayasinghe, A.; Wijegunarathna, E. Urban Flood Modeling Application: Assess the Effectiveness of Building Regulation in Coping with Urban Flooding Under Precipitation Uncertainty. Sustain. Cities Soc. 2021, 75, 103294. [Google Scholar] [CrossRef]
- Chen, C.; Gong, H.; Paaswell, R. Role of the built environment on mode choice decisions: Additional evidence on the impact of density. Transportation 2008, 35, 285–299. [Google Scholar] [CrossRef]
- Khalaj, M.R.; Noor, H.; Dastranj, A. Investigation and simulation of flood inundation hazard in urban areas in Iran. Geoenvironmental Disasters 2021, 8, 18. [Google Scholar] [CrossRef]
- Waqas, H.; Lu, L.; Tariq, A.; Li, Q.; Baqa, M.F.; Xing, J.; Sajjad, A. Flash Flood Susceptibility Assessment and Zonation Using an Integrating Analytic Hierarchy Process and Frequency Ratio Model for the Chitral District, Khyber Pakhtunkhwa, Pakistan. Water 2021, 13, 1650. [Google Scholar] [CrossRef]
- Lin, J.; He, X.; Lu, S.; Liu, D.; He, P. Investigating the influence of three-dimensional building configuration on urban pluvial flooding using random forest algorithm. Environ. Res. 2021, 196, 110438. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bates, P.D.; Neal, J.C.; Yamazaki, D. Bare-Earth DEM Generation in Urban Areas for Flood Inundation Simulation Using Global Digital Elevation Models. Water Resour. Res. 2021, 57. [Google Scholar] [CrossRef]
- Abdrabo, K.I.; Kantoush, S.A.; Saber, M.; Sumi, T.; Habiba, O.M.; Elleithy, D.; Elboshy, B. Integrated Methodology for Urban Flood Risk Mapping at the Microscale in Ungauged Regions: A Case Study of Hurghada, Egypt. Remote Sens. 2020, 12, 3548. [Google Scholar] [CrossRef]
- Thoban, M.I.; Hizbaron, D.R. Urban resilience to floods in parts of Makassar, Indonesia. E3S Web Conf. 2020, 200, 01007. [Google Scholar] [CrossRef]
- Ress, L.D.; Hung, C.J.; James, L.A. Impacts of urban drainage systems on stormwater hydrology: Rocky Branch Watershed, Columbia, South Carolina. J. Flood Risk Manag. 2020, 13, e12643. [Google Scholar] [CrossRef]
- Mwangi, P.W.; Karanja, F.N.; Kamau, P.K.; Letema, S.C. Impact of urban forms on 3d built-up intensity expansion rate from aerial stereo-imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 4, 203–208. [Google Scholar] [CrossRef]
- Papilloud, T.; Röthlisberger, V.; Loreti, S.; Keiler, M. Flood exposure analysis of road infrastructure—Comparison of different methods at national level. Int. J. Disaster Risk Reduct. 2020, 47, 101548. [Google Scholar] [CrossRef]
- Khadiyanto, P.; Soetomo, S.; Hadi, S.P. Violation factors of the building coverage ratio: A study in Trimulyo Genuk, Semarang, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 490, 012012. [Google Scholar] [CrossRef]
- Ogato, G.S.; Bantider, A.; Abebe, K.; Geneletti, D. Geographic information system (GIS)-Based multicriteria analysis of flooding hazard and risk in Ambo Town and its watershed, West shoa zone, oromia regional State, Ethiopia. J. Hydrol. Reg. Stud. 2020, 27, 100659. [Google Scholar] [CrossRef]
- Chen, J.; Li, Q.; Wang, H.; Deng, M. A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta, China. Int. J. Environ. Res. Public. Health 2019, 17, 49. [Google Scholar] [CrossRef] [Green Version]
- Albano, R. Investigation on Roof Segmentation for 3D Building Reconstruction from Aerial LIDAR Point Clouds. Appl. Sci. 2019, 9, 4674. [Google Scholar] [CrossRef] [Green Version]
- Fahy, B.; Brenneman, E.; Chang, H.; Shandas, V. Spatial analysis of urban flooding and extreme heat hazard potential in Portland, OR. Int. J. Disaster Risk Reduct. 2019, 39, 101117. [Google Scholar] [CrossRef]
- Ahmed, S.; Meenar, M.; Alam, A. Designing a Blue-Green Infrastructure (BGI) Network: Toward Water-Sensitive Urban Growth Planning in Dhaka, Bangladesh. Land 2019, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Caparros-Midwood, D.; Dawson, R.; Barr, S. Low Carbon, Low Risk, Low Density: Resolving choices about sustainable development in cities. Cities 2019, 89, 252–267. [Google Scholar] [CrossRef]
- Afifi, Z.; Chu, H.-J.; Kuo, Y.-L.; Hsu, Y.-C.; Wong, H.-K.; Zeeshan Ali, M. Residential Flood Loss Assessment and Risk Mapping from High-Resolution Simulation. Water 2019, 11, 751. [Google Scholar] [CrossRef] [Green Version]
- Cai, T.; Li, X.; Ding, X.; Wang, J.; Zhan, J. Flood risk assessment based on hydrodynamic model and fuzzy comprehensive evaluation with GIS technique. Int. J. Disaster Risk Reduct. 2019, 35, 101077. [Google Scholar] [CrossRef]
- Peng, Z.; Jinyan, K.; Wenbin, P.; Xin, Z.; Yuanbin, C. Effects of Low-Impact Development on UrbanRainfall Runoff under Different RainfallCharacteristics. Pol. J. Environ. Stud. 2018, 28, 771–783. [Google Scholar] [CrossRef]
- Stetsenko, S.E.; Yastrebova, N.A. The Influence of Urban Planning and Building Factors on the Dustiness of the Urban Environment. IOP Conf. Ser. Mater. Sci. Eng. 2018, 463, 032031. [Google Scholar] [CrossRef]
- Abo-El-Wafa, H.; Yeshitela, K.; Pauleit, S. The use of urban spatial scenario design model as a strategic planning tool for Addis Ababa. Landsc. Urban Plan. 2018, 180, 308–318. [Google Scholar] [CrossRef]
- Kumar, B.; Bhaduri, S. Disaster risk in the urban villages of Delhi. Int. J. Disaster Risk Reduct. 2018, 31, 1309–1325. [Google Scholar] [CrossRef]
- Sitzenfrei, R.; Zischg, J.; Sitzmann, M.; Bach, P. Impact of Hybrid Water Supply on the Centralised Water System. Water 2017, 9, 855. [Google Scholar] [CrossRef] [Green Version]
- Majid, M.R.; Jamaludin, J.A.; Wan Ibrahim, W.Y. Estimation of residential impervious surface using gis technique. Plan. Malays. J. 2013, 11. [Google Scholar] [CrossRef] [Green Version]
- I-soon, R.; Chaweewan, D.; Iamtrakul, P. Evaluation of Storm Surge Map for Safety Improvement in Bangkok Metropolitan Region, Thailand. Lowl. Technol. Int. 2011, 13, 19–26. [Google Scholar]
- Chrysochoou, M.; Brown, K.; Dahal, G.; Granda-Carvajal, C.; Segerson, K.; Garrick, N.; Bagtzoglou, A. A GIS and indexing scheme to screen brownfields for area-wide redevelopment planning. Landsc. Urban Plan. 2012, 105, 187–198. [Google Scholar] [CrossRef]
- Buitelaar, E.; Segeren, A. Urban Structures and Land. The Morphological Effects of Dealing with Property Rights. Hous. Stud. 2011, 26, 661–679. [Google Scholar] [CrossRef]
- Bobkova, E. Towards a Theory of Natural Occupation: Developing Theoretical, Methodolgical and Empirical Support for the Relation between Plot Systems and Urban Processes; Chalmers University of Technology: Gothenburg, Sweden, 2019; ISBN 978-91-7905-196-9. [Google Scholar]
- Marcus, L.; Colding, J. Toward an integrated theory of spatial morphology and resilient urban systems. Ecol. Soc. 2014, 19, 55. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Van Nes, A. Measuring urban maturation processes in Dutch and Chinese new towns: Combining street network configuration with building density and degree of land use diversification through GIS. J. Space Syntax 2013, 4, 18–37. [Google Scholar]
- Grimaldi, S.; Petroselli, A. Do we still need the Rational Formula? An alternative empirical procedure for peak discharge estimation in small and ungauged basins. Hydrol. Sci. J. 2015, 60, 67–77. [Google Scholar] [CrossRef]
- Dempsey, N.; Brown, C.; Raman, S.; Porta, S.; Jenks, M.; Jones, C.; Bramley, G. Elements of Urban Form. In Sustainable City Form; Jenks, M., Jones, C., Eds.; Future City; Springer: Dordrecht, The Netherlands, 2008; Volume 2, pp. 21–51. ISBN 978-1-4020-8646-5. [Google Scholar]
- Churchman, A. Women and the Environment: Questioned and Unquestioned Assumptions. In Theoretical Perspectives in Environment-Behavior Research; Wapner, S., Demick, J., Yamamoto, T., Minami, H., Eds.; Springer: Boston, MA, USA, 2000; pp. 89–106. ISBN 978-1-4613-7129-8. [Google Scholar]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part Transp. Environ. 1997, Volume 2(no. 3), 199–219. [Google Scholar] [CrossRef]
- Kim, Y.-A.; Hipp, J.R. Density, diversity, and design: Three measures of the built environment and the spatial patterns of crime in street segments. J. Crim. Justice 2021, 77, 101864. [Google Scholar] [CrossRef]
- Ye, Y.; Yeh, A.; Zhuang, Y.; van Nes, A.; Liu, J. “Form Syntax” as a contribution to geodesign: A morphological tool for urbanity-making in urban design. URBAN Des. Int. 2017, 22, 73–90. [Google Scholar] [CrossRef]
- Carpio-Pinedo, J.; Ramírez, G.; Montes, S.; Lamiquiz, P.J. New Urban Forms, Diversity, and Computational Design: Exploring the Open Block. J. Urban Plan. Dev. 2020, 146, 04020002. [Google Scholar] [CrossRef]
- Moravej, M.; Renouf, M.A.; Lam, K.L.; Kenway, S.J.; Urich, C. Site-scale Urban Water Mass Balance Assessment (SUWMBA) to quantify water performance of urban design-technology-environment configurations. Water Res. 2021, 188, 116477. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Cho, M.; Yoon, J.; Yoon, Y.; Kim, S.; Kim, G.; Kim, L.; Aksoy, H. Using SWMM as a tool for hydrologic impact assessment. Desalination 2007, 212, 344–356. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model User’s Manual, Version 5.0; Environmental Protection Agency: Washington, DC, USA, 2010. [Google Scholar]
- Bruwier, M.; Mustafa, A.; Aliaga, D.G.; Archambeau, P.; Erpicum, S.; Nishida, G.; Zhang, X.; Pirotton, M.; Teller, J.; Dewals, B. Influence of urban pattern on inundation flow in floodplains of lowland rivers. Sci. Total Environ. 2018, 622–623, 446–458. [Google Scholar] [CrossRef] [Green Version]
- Abana, E.C. A Decision Tree Approach for Predicting Student Grades in Research Project using Weka. Int. J. Adv. Comput. Sci. Appl. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.; Antunes, C. Best Management Practices for the Transition to a Water-Sensitive City in the South of Portugal. Sustainability 2021, 13, 2983. [Google Scholar] [CrossRef]
Identified Density-Based Proxies | [28] | [29] | [30] | [31] | [24] | [26] | [32] | [33] | [34] | [35] | [36] | [37] | [38] | [39] | [40] | [41] | [42] | [43] | [12] | [44] | [45] | [46] | [47] | [48] | [49] | [50] | [51] | [52] | [53] | [19] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Drainage Density | * | * | * | * | * | * | * | * | * | |||||||||||||||||||||
Population Density | * | * | * | * | * | * | * | * | * | * | ||||||||||||||||||||
Building Density | * | * | * | * | * | * | * | * | * | * | * | |||||||||||||||||||
Building Height | * | * | * | * | * | * | * | |||||||||||||||||||||||
Green/Open Space Ratio | * | * | * | * | * | * | ||||||||||||||||||||||||
Road/Street Density | * | * | * | * | ||||||||||||||||||||||||||
Accessibility/Access Road Width | * | * | * | |||||||||||||||||||||||||||
FAR | * | * | * | * | * | |||||||||||||||||||||||||
Built Up/Ground Coverage Ratio (GCR) | * | |||||||||||||||||||||||||||||
Impervious Surface Coverage/% | * | * | * | * | * | |||||||||||||||||||||||||
Area of Building Footprints | * | * | ||||||||||||||||||||||||||||
GSI | * | |||||||||||||||||||||||||||||
Plot Size | * | * | * | |||||||||||||||||||||||||||
Land Use | * | * | * | * | * |
Dimension | Description with Candidate Variable |
---|---|
Density | This variable represents a ratio between the total amount of gross area and the area of a parcel upon which a building is located. Ex: Population density of the area, building density of the area, road density of the area, FAR (Floor Area Ratio). |
Diversity | This variable represents variation or diversity in horizontal or vertical space in a particular area. Ex: Building height, level of accessibility, land use mix, plot size, built up coverage |
Design | The variables or elements introduced that minimize or maximize impact. Ex: Green/open space ratio, access road width, impervious surface coverage, drainage density |
Density-Based Key Variable | Measuring Variable | Equation/Method of Measure | Source |
---|---|---|---|
Proxies of density | Population density (PD) | Census and statistics/Calculated by author | |
Building density | Building density in a particular land plot/area | JICA database | |
Road density | JICA database/Calculated by author | ||
FSI (FAR) | JICA database | ||
Proxies of diversity | Building height | Sum of floors in selected land plot/area | JICA data/Calculated by author |
Level of accessibility | CCi = (N − 1)/Σdij (Closeness centrality of road segment) | JICA database/Calculated by author | |
Land use mix (Mixed Use Index) | JICA database | ||
Plot size | Extracted as mean plot size from survey department data | JICA database/survey department data | |
Built-up coverage (BC) | Satellite data/Calculated by author | ||
Proxies of urban design | Open space ratio (OSR) | Calculated by author | |
Access road width | Extracted with google earth | OSM data/Google Earth measure | |
Impervious surface coverage | The % of impervious area of the catchment | Satellite data/Calculated by author | |
Drainage density | Drainage data of the area—WSDB and GN level/Calculated by author |
Selection Criteria | HEC-RAS | SWMM | PC- SWMM | Urban BEATS | MIKE Flood | City Drain | 3Di | 2D RRI | DS | DEM Based | RS | Lidar/GIS | ML |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level of accuracy in local or watershed scale | √ | √ | √ | x | √ | x | √ | x | x | √ | x | √ | √ |
Data availability in Sri Lankan context | √ | √ | √ | √ | √ | √ | x | x | √ | √ | √ | x | √ |
Free and open-source application | √ | √ | x | x | x | x | √ | √ | √ | √ | √ | x | √ |
Less calibration time | √ | √ | x | √ | √ | x | √ | x | √ | x | √ | √ | x |
Used in urban planning subject area | √ | √ | √ | x | √ | √ | x | √ | √ | √ | √ | √ | √ |
Used for Urban flood modelling | x | √ | √ | x | √ | √ | √ | √ | √ | x | √ | √ | √ |
Parameter | High Density | Moderate Density | Low Density |
---|---|---|---|
Average street length | 35–400 m | 50–500 m | 60–700 m |
Major road width | 12–20 m | 12–15 m | 12–15 m |
Minor road width | 6–10 m | 6–10 m | 6–8 m |
Road curvature | 0°–90° | 0°–120° | 0°–170° |
Park coverage (green space) | 0–20% | 5–40% | 5–98% |
Buildings per lot | 6–30 | 6–34 | 1–36 |
Lot size (in sq m) | 250–2500 | 350–1400 | 600–11,000 |
Building front setback | 0–5 m | 0–35 m | 0–30 m |
Building rear setback | 0–5 m | 0–35 m | 0–30 m |
Building side setback | 0–5 m | 0–35 m | 0–30 m |
High Dense | Moderate Dense | Low Dense | |
---|---|---|---|
Location | Bambalapitiya—CD | Nagoda hospital junction—KD | Colombo 7—CD |
Land area | |||
Number of sub-catchments | 53 | 51 | 51 |
Population density (persons per km) | 257 | 15 | 5 |
Building density | 59.52% | 25.65% | 16.52% |
Open space | 9.52% | 62.47% | 78.21% |
Avg. number of floors | 7 | 2 | 2 |
Avg. plot size (m) | 758 Sqm | 900 Sqm | 2100 sqm |
Land use mix | 85.74% | 14.31% | 35.57% |
Stage | Type of Analysis | Purpose |
---|---|---|
1 | Correlation analysis | To identity the relationship between individual variables |
2 | Decision tree analysis | To measure the prediction probability and the level of accuracy of the pre-developed framework. |
3 | Regression analysis | Validation of the developed framework with real ground flood data (i.e., flood depth, inundation duration). |
Parameters | Model 1 Accuracy | Model 2 Accuracy | Model 3 Accuracy |
---|---|---|---|
Correctly classified instances | 98.7097% | 94.8387% | 93.5484% |
Incorrectly classified instances | 1.2903% | 5.1613% | 6.4516% |
Kappa statistic | 0.983 | 0.932 | 0.915 |
Mean absolute error | 0.0097 | 0.034 | 0.0457 |
Relative absolute error | 3.183% | 11.1693% | 14.9979% |
Root relative squared error | 3.183% | 33.4472% | 38.758% |
Total number of instances | 155 | 155 | 155 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijayawardana, N.; Abenayake, C.; Jayasinghe, A.; Dias, N. An Urban Density-Based Runoff Simulation Framework to Envisage Flood Resilience of Cities. Urban Sci. 2023, 7, 17. https://doi.org/10.3390/urbansci7010017
Wijayawardana N, Abenayake C, Jayasinghe A, Dias N. An Urban Density-Based Runoff Simulation Framework to Envisage Flood Resilience of Cities. Urban Science. 2023; 7(1):17. https://doi.org/10.3390/urbansci7010017
Chicago/Turabian StyleWijayawardana, Naduni, Chethika Abenayake, Amila Jayasinghe, and Nuwan Dias. 2023. "An Urban Density-Based Runoff Simulation Framework to Envisage Flood Resilience of Cities" Urban Science 7, no. 1: 17. https://doi.org/10.3390/urbansci7010017
APA StyleWijayawardana, N., Abenayake, C., Jayasinghe, A., & Dias, N. (2023). An Urban Density-Based Runoff Simulation Framework to Envisage Flood Resilience of Cities. Urban Science, 7(1), 17. https://doi.org/10.3390/urbansci7010017