Self-Sustainable Modular Design in Rural Housing and Experiential Tourism in El Callejón de Conchucos, Ancash
Abstract
:1. Introduction
- How does self-sustainable modular design in rural housing improve housing tourism in El Callejón de Conchucos, Ancash?
- How can self-sustainable modular design in rural housing improve experiential tourism in the Callejón de Conchucos, Ancash, through the appropriate use of natural resources?
Literature Review
- Experiential Tourism
- SENAMHI
2. Materials and Methods
2.1. Methodological Approach
- Identify key players and establish the objectives.
- Perform a diagnosis of the intervention area
- Develop general strategies for creating the proposal.
- Implementing sustainability measures.
2.1.1. Stakeholder Identification and Target Setting
2.1.2. Diagnosis of the Intervention Area
2.1.3. General Strategies for Proposal Development
- Public green spaces: Identify and act on green spaces and public areas within the city environment. Using planning documents with maps and data on preservation and conservation areas, urban green spaces, parks and public areas at different scales. (zonal, urban).
- Incorporation and valorization of natural resources: Identify connecting elements, both natural and artificial, present in the urban environment. Using maps of road infrastructure, pedestrian paths, watercourses and information on autochthonous flora and fauna.
2.1.4. Implementation of Sustainability Strategies
2.2. Study Area
2.3. Climate Analysis
2.4. Environmental Analysis, Flora and Agricultural and Livestock Activities
3. Results
3.1. Location of the Architectural and Landscape Design Proposal
3.2. Architectural Design and Landscape Desing
3.3. Conceptualization
3.4. Materiality and Construction System
3.4.1. Solar Capture
- Direct collection through openings.
- Semi-direct collection through greenhouses.
- # number of solar panels = E × 1.3 Hsp × Wp
- where E = everyday use
- Hsp = hours of maximum sun exposure
- Wp = solar panel power
- # number of solar panels = 7052 × 1.3 = 2.64 = 3 solar panels 12 × 340
3.4.2. Internal Earnings
3.4.3. Refrigeration Evaporative
b = green area (landscaping), calculated in hectares;
c = 1.7 kg (b) for 1 year.
b = green area under study (landscaped green area), calculated in hectares.
3.5. Clean Energy
3.5.1. Biofilter
3.5.2. Biogarden and Composting Area
3.5.3. Solar Panels on Homes
- Sustainability: They utilize renewable and clean solar energy, reducing dependence on non-renewable energy sources and contributing to climate change mitigation [55].
- Energy Efficiency: Solar panels efficiently convert solar energy into electricity, enabling luminaires to operate with lower energy consumption [50].
- Low Maintenance: Once installed, solar panels require minimal maintenance, reducing long-term operational costs.
- Autonomy: Operating on solar power allows luminaires to function independently from the electrical grid, making them ideal for remote areas or locations without access to conventional electricity.
- Versatility: They can be adapted to various urban and rural environments, from parks and gardens to streets and squares, providing environmentally friendly lighting in diverse settings.
- Landscape Integration: Solar panels and luminaires can be designed to harmoniously integrate into natural or built environments, enhancing the aesthetic appeal of green infrastructure.
- The circuit has a length of 5 km in which 200 lights with photovoltaic panels are implemented.
- Lamp power: 120 w
- Luminous Intensity: 14400 Lm
- Luminous Flux: 120 L/W
- Color Temperature: 6500 K
- Energy Accumulator: Deep cycle
- Operation: 12 continuous hours
- Recommended Height: 11 to 12 m
- Distance between Posts: From 25 to 28 m
- Available in: Cool White and Warm White
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chui Betancur, H.N.; Huaquisto Ramos, E.; Belizario Quispe, G.; Canales Gutiérrez, Á.; Calatayud Mendoza, A.P. Characteristics of vernacular architecture in high Andean areas of Peru. A contribution to the study of the rural world. Urban Hous. Sq. 2022, 15, 21. [Google Scholar] [CrossRef]
- Yamaguchi Saito, E. Andean Vernacular Architecture and Its Value as an Expression of Cultural Identity in the Sondondo Valley. Pontifical Catholic University of Peru. 2021. Available online: http://hdl.handle.net/20.500.12404/20286 (accessed on 25 January 2024).
- Modular Architecture: Concept, Examples and Advantages. Calaminon. 2022. Available online: https://www.calaminon.com/blog/arquitectura-modular/ (accessed on 26 January 2024).
- González Orozco, C.; Flórez Yepes, G.Y. Vulnerabilidad física en viviendas de la periferia en Manizales, Colombia. Estud. Demogr. Urbanos. 2022, 37, 935–976. [Google Scholar] [CrossRef]
- Gran Castro, J.A. El impacto de la urbanización en la distribución socioespacial de la vulnerabilidad al cambio climático. Let. Verdes Rev. Latinoam. Estud. Socioambientales 2020, 27, 134–147. Available online: http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S1390-66312020000100134&lng=es&nrm=iso (accessed on 5 February 2024).
- Sacriste, E. Modules and proportions. In Frank Lloyd Wright: Usonia; Technical Bookstore CP67 Argentina: Autónoma de Buenos Aires, Argentina, 2006; Volume 6, p. 85. Available online: https://estudanteuma.files.wordpress.com/2013/04/usonia-frank-lloyd-wright.pdf (accessed on 6 February 2024).
- Modular, L.C. Design, Energy Efficiency and Durability. Proarquitectura.es. Available online: https://proarquitectura.es/pdf/PM-60-07.pdf (accessed on 6 February 2024).
- Zanelli, C. Evaluación de Vulnerabilidad Sísmica de Pircas Mediante Modelación Numérica en Elementos Discretos: Aplicación al Caso de las Pircas en Carabayllo, Lima. 2019. Available online: https://tesis.pucp.edu.pe/repositorio/bitstream/handle/20.500.12404/13933/ZANELLI_FLORES_CRISS_TALITA.pdf?sequence=1 (accessed on 10 February 2024).
- Herrera, J.P.; Bedoya-Ruiz, D.; Hurtado, J.E. Recycled Plastic Lumber walls for one and two-story housing: An assessment of their seismic performance. J. Build. Eng. 2023, 65, 105822. [Google Scholar] [CrossRef]
- Franco Medina, R. Adaptable structures. Archit. Mag. 2009, 11, 108–119. Available online: https://revistadearquitectura.ucatolica.edu.co/article/view/749 (accessed on 12 February 2024).
- Ibrahim, H.; SalahEldin Elsayed, M.; Seddik Moustafa, W.; Mohamed Abdou, H. Functional analysis as a method on sustainable building design: A case study in educational buildings implementing the triple bottom line. Alex. Eng. J. 2023, 62, 63–73. [Google Scholar] [CrossRef]
- Boonstra, S.; van der Blom, K.; Hofmeyer, H.; Emmerich, M.T.M. Hybridization of an evolutionary algorithm and simulations of co-evolutionary design processes for early-stage building spatial design optimization. Auto Const. 2021, 124, 103522. [Google Scholar] [CrossRef]
- Vega Gonzáles, F.E. Use of Ichu and Gypsum to Improve the Thermal Comfort of Rammed Earth Homes in High Andean Areas of the Province of Pomabamba—Ancash—2021. AS. Available online: https://revistas.unasam.edu.pe/index.php/Aporte_Santiaguino/article/view/957 (accessed on 4 November 2022).
- Regional Citizen Security Action Plan Ancash 2020. Available online: https://www.regionancash.gob.pe/doc/coresec/2020/PARSC_2020_ANCASH.pdf (accessed on 14 February 2024).
- Characteristics of the Infrastructure of Private Homes. Gob.pe. Available online: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1539/cap04.pdf (accessed on 15 February 2024).
- Lopez Hita, L. Modular Architecture: Versatility in World Expositions. 2019. Available online: https://oa.upm.es/54004/1/TFG_Lopez_Hita_Lucia.pdf (accessed on 16 February 2024).
- Alvear, A. Blog of the Housing and Urban Development Division (HUD) of the Inter-American Development Bank. Available online: https://blogs.iadb.org/ciudades-sostenibles/es/transicion-verde-vivienda-social-sostenible-resiliente/ (accessed on 31 August 2023).
- Tisné Niemann, J. Buyer defense alternatives regarding inadequate acoustic insulation of homes. Law Mag. 2022, 29, 3. [Google Scholar] [CrossRef]
- Environmental Evaluation and Supervision Agency—Oefa O. Noise Pollution in LIMA and CALLAO. 2016. Available online: https://repositorio.oefa.gob.pe/handle/20.500.12788/64 (accessed on 20 February 2024).
- INEI. Available online: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib0018/ca322003.htm (accessed on 25 February 2024).
- CENEPRED. Risk Scenarios for Frost and Cold. 2021. Available online: https://sigrid.cenepred.gob.pe/sigridv3/storage/biblioteca/11045_escenarios-de-riesgo-por-heladas-y-friajes-2021.pdf (accessed on 10 March 2024).
- OEFA. Noise Pollution in Lima and Callao. Available online: https://www.oefa.gob.pe/?wpfb_dl=19087 (accessed on 11 March 2024).
- UNESCO. Available online: https://whc.unesco.org/es/list/1459 (accessed on 12 March 2024).
- QHAPAQ ÑAN. Available online: https://qhapaqnan.cultura.pe/noticias/ministerio-de-cultura-y-comunidades-de-ancash-establecen-%C3%A1reas-de-protecci%C3%B3n-para-el-camino (accessed on 23 April 2014).
- National Office for the Evaluation of Natural Resources (ONERN); Regional Agency for the Development of the Affected Area (ORDEZA). Soil Study of the Conchucos Alley. 1975. Available online: https://hdl.handle.net/ (accessed on 15 March 2024).
- Antamina. Conchucos, Magic and Reality. Compañia Minera Antamina S.A. Available online: https://www.coleccionantamina.com/templates/book_1/page_1.html (accessed on 20 March 2024).
- Yocum, D. Design Manual: Constructed Wetland for the Treatment of Gray Water by Biofiltration. Bren School of Environmental Science and Management, University of California, Santa Barbara. Available online: https://ecotec.unam.mx/wp-content/uploads/Manual-de-Dise--o-para-Biofiltro.pdf (accessed on 8 April 2024).
- Let, M.; Pal, S. Socio-ecological well-being perspectives of the wetland loss scenario: A review. J. Environ. Manag. 2023, 326, 116692. [Google Scholar] [CrossRef] [PubMed]
- Esenarro, D.; Chicche, P.; Chichipe, V.; Vilchez, A.; Cobeñas, P.; Raymundo, V. Bioclimatic Criteria for a Guest House in the District of Canta—Lima. In Proceedings of the 2022 11th International Conference on Power Science and Engineering (ICPSE), Eskisehir, Turkey, 23–25 September 2022; pp. 1–9. [Google Scholar] [CrossRef]
- Esenarro, D.; Malpartida, K.; Silvana, L.; Raymundo, V.; Morales, W. Use of Renewable Energies Applied in Design Strategies for User Comfort in a House in Iquitos-Belen. In Proceedings of the 2022 11th International Conference on Power Science and Engineering (ICPSE), Eskisehir, Turkey, 23–25 September 2022; pp. 135–141. [Google Scholar] [CrossRef]
- United Nations. Available online: https://www.pactomundial.org/principios/principio-9/ (accessed on 10 April 2024).
- Rodriguez Aguilar, M. Case analysis of Modular Architecture: The Kubuswoningen or cube houses in Rotterdam, The Netherlands. Archit. Des. Mag. Northeast. 2020, 8, 118–130. [Google Scholar] [CrossRef]
- Pariente, E.; Chavez, J. Evaluación del potencial turístico del distrito de Huarango. Ecol. Apl. 2016, 15, 37–46. Available online: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-22162016000100005&lng=es&nrm=iso (accessed on 12 April 2024). [CrossRef]
- Giovene di Girasole, E.; Cannatella, D. Social Vulnerability to Natural Hazards in Urban Systems. An Application in Santo Domingo (Dominican Republic). Sustainability 2017, 9, 2043. [Google Scholar] [CrossRef]
- Huertas López, T.E.; Pilco Segovia, E.A.; Suárez García, E.; Salgado Cruz, M.; Jiménez Valero, B. Acercamiento conceptual acerca de las modalidades del turismo y sus nuevos enfoques. Rev. Univ. Soc. 2020, 12, 70–81. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2218-36202020000200070&lng=es&nrm=iso (accessed on 22 April 2024).
- Sulca, S.; Calle, V.; Acuña, D. Patrón oceánico-atmosférico de macroescala asociado a las sequías meteorológicas extremas en la sierra sur del Perú. Ecol. Apl. 2022, 21, 57–66. [Google Scholar] [CrossRef]
- Quiñonez Choquecota, J.; Huanca Callata, E.; Holguino Huarza, A. Caracterización del recurso eólico en la ciudad de Juliaca. Rev. Investig. Altoandin. 2019, 21, 57–68. [Google Scholar] [CrossRef]
- Rodrigo dos Santos, J. Natural System for Wastewater Treatment. Available online: https://ecoinventos.com/sistema-natural-para-tratamiento-aguas-residuales/ (accessed on 16 February 2022).
- Deeksha; Shukla, A.K. Ecosystem Services: A Systematic Literature Review and Future Dimension in Freshwater Ecosystems. Appl. Sci. 2022, 12, 8518. [Google Scholar] [CrossRef]
- Li, X.; Gong, S.; Shi, Q.; Fang, Y. A Review of Ecosystem Services Based on Bibliometric Analysis: Progress, Challenges, and Future Directions. Sustainability 2023, 15, 16277. [Google Scholar] [CrossRef]
- Tang, J.; Fang, Y.; Tian, Z.; Gong, Y.; Yuan, L. Ecosystem Services Research in Green Sustainable Science and Technology Field: Trends, Issues, and Future Directions. Sustainability 2023, 15, 658. [Google Scholar] [CrossRef]
- Tavares-Martínez, R.A.; Fitch-Osuna, J.M. Planificación comunitaria en barrios social mente vulnerables. Identificación de los actores sociales en una comunidad. Rev. Arquit. 2019, 21, 22–32. [Google Scholar] [CrossRef]
- Rodríguez Armenta, M. Actores urbanos y políticas públicas. Política Cult. 2008, 458, 257–261. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-77422008000200013&lng=es&nrm=iso (accessed on 23 April 2024).
- Ferreiro, R.M. Perfil biofísico: Una prueba de bienestar fetal. Rev. Cuba. Obstet. Ginecol. 1999, 25, 77–82. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-600X1999000200001&lng=es&nrm=iso (accessed on 25 April 2024).
- Jiménez Caldera, J.E.; Durango Severiche, G.Y. Diagnóstico y planificación del espacio público urbano. La participación de los ciudadanos usuarios. Bitácora Urbano Territ. 2021, 31, 257–281. [Google Scholar] [CrossRef]
- Morin Lopez, D. Importancia de la dimensión sociocultural en procesos de desarrollo territorial. Estud. Desarro. Soc. 2019, 7, 9. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2308-01322019000300012&lng=es&nrm=iso (accessed on 21 October 2019).
- Borkowski, A.S. Una revisión de la literatura sobre las definiciones de BIM: Perspectivas estrechas y amplias. Technologies 2023, 11, 176. [Google Scholar] [CrossRef]
- Kochański, Ł.; Borkowski, A.S. Automatización del diseño conceptual de áreas residenciales mediante programación visual y generativa. J. Eng. Des. 2024, 35, 195–216. [Google Scholar] [CrossRef]
- Romero Quidel, G.; Soto Acuña, M.J.; Rojas Herrera, C.J.; Rodríguez Neira, K.; Cárdenas-Ramírez, J.P. Evaluation of a modular construction system made with low environmental impact construction materials to achieve sustainable housing projects. Sustainability 2023, 15, 8386. [Google Scholar] [CrossRef]
- Díaz, F.-D.; González-Durán, M.; Flores, D.-L.; López-Lambraño, A.; Mena-Hernández, U.; Villada-Canela, M. Development of fragility and vulnerability functions for reinforced masonry structures in Mexico: A case study. Appl. Sci. 2023, 13, 10634. [Google Scholar] [CrossRef]
- Gómez, A.; Esenarro, D.; Martinez, P.; Vilchez, S.; Raymundo, V. Thermal Calculation for the Implementation of Green Walls as Thermal Insulators on the East and West Facades in the Adjacent Areas of the School of Biological Sciences, Ricardo Palma University (URP) at Lima, Peru 2023. Buildings 2023, 13, 2301. [Google Scholar] [CrossRef]
- Enia, M.; Martella, F. How Buildings Relate—Classifying Architectural Interactions. Architecture 2023, 3, 490–504. [Google Scholar] [CrossRef]
- Cabezas, M.; Franco, J.; Fasoli, H. Diseño y evaluación de un panel solar fotovoltaico y térmico para poblaciones dis-persas en regiones de gran amplitud térmica. Ing. Investig. Tecnol. 2018, 19, 209–221. [Google Scholar] [CrossRef]
- Herman, F.; Martinez, A.; Guzman, V.; Gimenez, M. Obtención de la máxima potencia en paneles fotovoltaicos me-diante control directo: Corriente a modulación por ancho de pulsos. Univ. Cienc. Tecnol. 2006, 10, 134–138. Available online: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-48212006000300009&lng=es&nrm=iso (accessed on 26 April 2024).
- Novoa, J.; Alfaro, M.; Alfaro, I.; y Guerra, R. Determinación de la eficiencia de un mini panel solar fotovoltaico: Una experiencia de laboratorio en energías renovables. Educ. Química 2020, 31, 22–37. [Google Scholar] [CrossRef]
- Espinal-Giron, A.; Benegas Negri, L.; Brenes, C.; Birkel, C.; Prins, C. Assessing Potential Effects of Nature-Based Solutions (NBS) on Water Ecosystem Service in the Interurban Micro-Watershed Río Torres, Costa Rica. Forests 2023, 14, 937. [Google Scholar] [CrossRef]
- Caparrós-Martínez, J.L.; Milán-García, J.; Rueda-López, N.; de Pablo-Valenciano, J. Infraestructura verde y agua: Un análisis de la investigación global. Agua 2020, 12, 1760. [Google Scholar] [CrossRef]
- Alarcon Zambrano, J.A. Modelo teórico para la ciudad sostenible. Rev. San Gregor. 2023, 1, 138–157. [Google Scholar] [CrossRef]
- Luengo, M. Ciudades costeras e indicadores de sostenibilidad: Una aproximación desde el metabolismo urbano de la calle. El caso de la avenida Juan Ponce de León, en San Juan, Puerto Rico. Tecnol. Medio Ambiente Sosteniblidad 2020, 22, 94–105. [Google Scholar] [CrossRef]
- Paz Pérez, C.A.; Rivera Herrera, N.L.; Ledezma Elizondo, M.T. El impacto de la sustentabilidad en la vivienda en serie de nuevo león. Contexto Rev. Fac. Arquit. Univ. Autónoma Nuevo León 2015, 9, 43–57. [Google Scholar]
- Bellot, R.; Fiscarelli, D. Vivienda sustentable: Una discusión sobre el manejo eficiente del uso agua en instalaciones domiciliarias. Caso de estudio: Santa f-argentina. Rev. Hábitat Sustentable 2020, 10, 68–81. [Google Scholar] [CrossRef]
- Valencia, D.E. La vivienda sostenible, desde un enfoque teórico y de política pública en Colombia. Rev. Ing. Univ. Medellín 2018, 17, 39–56. [Google Scholar] [CrossRef]
- Araujo-Aguirre, W.E. Factores de la política de vivienda y desarrollo urbano sostenible del Perú al 2030. Quipukamayoc 2022, 30, 53–61. [Google Scholar] [CrossRef]
- Escalante, J. Propuesta de diseño de una vivienda rural sostenible bio inspirada para el municipio de Paipa, Boyacá-Colombia. Arquitecno 2020, 16, 27–36. [Google Scholar] [CrossRef]
- Flores-Xolocotzi, R. Incorporando desarrollo sustentable y gobernanza a la gestión y planificación de áreas verdes urbanas. Front. Norte 2012, 24, 165–190. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-73722012000200007&lng=es&nrm=iso (accessed on 28 April 2024).
- Soto-Velásquez, M.E.; Mascaró Collantes, G.J.; González-Acuña, V.H. Plan urbano en la gestión pública de los gobiernos locales del Perú. Quipukamayoc 2023, 31, 31–39. [Google Scholar] [CrossRef]
- Derbal, K.; Tachrift, A. La participación ciudadana en la planificación local y urbana en Argelia. Estud. Demográficos Urbanos 2022, 37, 121–156. [Google Scholar] [CrossRef]
- Gurdon, C. Avanzando hacia una planificación integrada y sostenible de la movilidad. Rev. EURE Rev. Estud. Urbano Reg. 2023, 49, 1–4. [Google Scholar] [CrossRef]
Description | Pot. (Watts) | Quantity | Time of Use (Hour/Day) | Energy Consumption (W-h/Day) | |
---|---|---|---|---|---|
1 | Spotlight | 52 | 6 | 6 | 1872 |
2 | Radio | 70 | 1 | 4 | 280 |
3 | Television | 40 | 1 | 4 | 160 |
4 | Cell Phone Charger | 330 | 4 | 1 | 120 |
5 | Refrigerator | 80 | 1 | 24 | 1920 |
6 | Blender | 300 | 1 | 1 | 300 |
7 | Iron | 1200 | 1 | 1 | 1200 |
8 | PC | 200 | 1 | 6 | 1200 |
9 | 7052 |
Landscaped Green Area in (ha2) | CO₂ Captured (kg) | Clean Air Produced (kg) | |
---|---|---|---|
1 | 1.5 | 3.45 | 2.55 |
Total | 1.5 | 3.45 | 2.55 |
Conventional Solar Luminaire | Luminaire with Solar Panel | Conventional Solar Luminaire Month (30 Days) | Luminaire with Solar Panel Month (30 Days) | Amount | Conventional Solar Luminaire 20 Luminaires | Luminaire with Solar Panel 20 Luminaires | |
---|---|---|---|---|---|---|---|
C1 | 120 watts/12 h | 250 watts/12 h | 1440 | 3000 | 200 | 288,000 | 600,000 |
total | 288,000 | 600,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raymundo, V.; Mansilla, S.; Esenarro, D.; Vargas, C.; Huerta, E.; Fernandez, D.; Martinez, P. Self-Sustainable Modular Design in Rural Housing and Experiential Tourism in El Callejón de Conchucos, Ancash. Urban Sci. 2024, 8, 138. https://doi.org/10.3390/urbansci8030138
Raymundo V, Mansilla S, Esenarro D, Vargas C, Huerta E, Fernandez D, Martinez P. Self-Sustainable Modular Design in Rural Housing and Experiential Tourism in El Callejón de Conchucos, Ancash. Urban Science. 2024; 8(3):138. https://doi.org/10.3390/urbansci8030138
Chicago/Turabian StyleRaymundo, Vanessa, Sol Mansilla, Doris Esenarro, Carlos Vargas, Elias Huerta, Diego Fernandez, and Pedro Martinez. 2024. "Self-Sustainable Modular Design in Rural Housing and Experiential Tourism in El Callejón de Conchucos, Ancash" Urban Science 8, no. 3: 138. https://doi.org/10.3390/urbansci8030138
APA StyleRaymundo, V., Mansilla, S., Esenarro, D., Vargas, C., Huerta, E., Fernandez, D., & Martinez, P. (2024). Self-Sustainable Modular Design in Rural Housing and Experiential Tourism in El Callejón de Conchucos, Ancash. Urban Science, 8(3), 138. https://doi.org/10.3390/urbansci8030138