Assessment of Green Space Dynamics Under Urban Expansion of Senegalese Cities: The Case of Dakar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methods
3. Results
3.1. Land Use/Cover of the Dakar City from 1990 to 2022
3.2. Land Cover Changes in the Dakar Region from 1990 to 2022
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saini, V. Mapping Environmental Impacts of Rapid Urbanisation and Deriving Relationship between NDVI, NDBI and Surface Temperature: A Case Study. Sci. Environ. 2022, 940, 012005. [Google Scholar] [CrossRef]
- Weith, T.; Barkmann, T.; Gaasch, N.; Rogga, S.; Strauß, C.; Zscheischler, J. Sustainable Land Management in a European Context; Human-Environment Interactions; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Zhong, Q.; Ma, J.; Zhao, B.; Wang, X.; Zong, J.; Xiao, X. Remote Sensing of Environment Assessing spatial-temporal dynamics of urban expansion, vegetation greenness and photosynthesis in megacity Shanghai, China during 2000–2016. Remote Sens. Environ. 2019, 233, 111374. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Feng, Y.; Xie, H.; Jiang, L.; Lei, Z. Spatiotemporal dynamics of urban green space influenced by rapid urbanisation and land use policies in Shanghai. Forests 2021, 12, 476. [Google Scholar] [CrossRef]
- Fratini, R.; Marone, E. Repository istituzionale dell ’ Università degli Studi di Firenze Green-space in Urban Areas: Evaluation of Ficiency of Public Spending for Management of Green Urban Areas. Int. J. E-Bus. Dev. 2011, 1, 9–14. [Google Scholar]
- Sangwan, A.; Saraswat, A.; Kumar, N.; Pipralia, S.; Kumar, A. Urban Green Spaces Prospects and Retrospect’s. In Urban Green Spaces; IntechOpen: London, UK, 2022. [Google Scholar]
- Yu, Z.; Guo, X.; Zeng, Y.; Koga, M.; Vejre, H. Variations in land surface temperature and cooling efficiency of green space in rapid urbanisation: The case of Fuzhou city, China ☆. Urban For. Urban Green. 2018, 29, 113–121. [Google Scholar] [CrossRef]
- Swanwick, C.; Dunnett, N.; Woolley, H. Nature, role and value of green space in towns and cities: An overview. Built Environ. 2003, 29, 94–106. [Google Scholar] [CrossRef]
- Mensah, C.A. Urban Green Spaces in Africa: Nature and Challenges. Int. J. Ecosyst. 2014, 2014, 1–11. [Google Scholar]
- Bush, J.; Ashley, G.; Foster, B.; Hall, G. Integrating green infrastructure into urban planning: Developing melbourne’s green factor tool. Urban Plan. 2021, 6, 20–31. [Google Scholar] [CrossRef]
- Tallis, H.; Kareiva, P. Essay ecosystem services. Curr. Biol. 2007, 15, 746. Available online: https://www.forest-trends.org/wp-content/uploads/imported/tallis_and_kareiva_ecosystem_services1.pdf (accessed on 17 November 2023).
- Hamada, S.; Ohta, T. Urban Forestry & Urban Greening Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban For. Urban Green. 2010, 9, 15–24. [Google Scholar] [CrossRef]
- Haq, S.A. Urban Green Spaces and an Integrative Approach to Sustainable Environment. J. Environ. Prot. 2011, 2011, 601–608. [Google Scholar] [CrossRef]
- Kadaverugu, R.; Gurav, C.; Rai, A.; Sharma, A.; Matli, C. Quantification of heat mitigation by urban green spaces using InVEST model—A scenario analysis of Nagpur City, India. Arab. J. Geosci. 2021, 14, 82. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Oviantari, M.V.; Gunamantha, I.M.; Ristiati, N.P.; Santiasa, I.M.P.A.; Astariani, P.P.Y. Carbon sequestration by above-ground biomass in urban green spaces in Singaraja city. IOP Conf. Ser. Earth Environ. Sci. 2018, 200, 012030. [Google Scholar] [CrossRef]
- Shishegar, N. The Impact of Green Areas on Mitigating Urban Heat Island Effect: A Review. Int. J. Environ. Sustain. 2014, 9, 119. [Google Scholar] [CrossRef]
- Tang, H.; Liu, W.; Yun, W. Spatiotemporal Dynamics of Green Spaces in the Beijing–Tianjin–Hebei Region in the Past 20 Years. Sustainability 2018, 10, 2949. [Google Scholar] [CrossRef]
- Wu, L.; Kim, S.K. Health outcomes of urban green space in China: Evidence from Beijing. Sustain. Cities Soc. 2021, 65, 102604. [Google Scholar] [CrossRef]
- Nero, B.F.; Callo-Concha, D.; Anning, A.; Denich, M. Urban Green Spaces Enhance Climate Change Mitigation in Cities of the Global South: The Case of Kumasi, Ghana. Procedia Eng. 2017, 198, 69–83. [Google Scholar] [CrossRef]
- Shah, A.; Garg, A.; Mishra, V. Landscape and Urban Planning Quantifying the local cooling effects of urban green spaces: Evidence from. Landsc. Urban Plan. 2021, 209, 104043. [Google Scholar] [CrossRef]
- Tzoulas, K.; James, P. Finding links between urban biodiversity and human health and well-being. In Proceedings of the International Built and Human Environment Research Week, Salford, UK, 29 March–2 April 2004; pp. 208–217. Available online: http://usir.salford.ac.uk/11380/ (accessed on 10 September 2023).
- World Health Organization. Urban Green Spaces: A Brief for Action. 2017. Available online: https://who-sandbox.squiz.cloud/__data/assets/pdf_file/0010/342289/Urban-Green-Spaces_EN_WHO_web3.pdf (accessed on 17 November 2023).
- Kothencz, G.; Kolcsár, R.; Cabrera-Barona, P.; Szilassi, P. Urban green space perception and its contribution to well-being. Int. J. Environ. Res. Public Health 2017, 14, 766. [Google Scholar] [CrossRef]
- Mensah, C.A. Destruction of urban green spaces: A problem beyond urbanization in Kumasi city (Ghana). Am. J. Environ. Prot. 2014, 3, 1–9. [Google Scholar] [CrossRef]
- Puplampu, D.A.; Boafo, Y.A. Exploring the impacts of urban expansion on green spaces availability and delivery of ecosystem services in the Accra metropolis. Environ. Chall. 2021, 5, 100283. [Google Scholar] [CrossRef]
- Richards, D.R.; Law, A.; Tan, C.S.Y.; Shaikh, S.F.E.A.; Carrasco, L.R.; Jaung, W.; Oh, Y. Rapid urbanisation in Singapore causes a shift from local provisioning and regulating to cultural ecosystem services use. Ecosyst. Serv. 2020, 46, 101193. [Google Scholar] [CrossRef]
- Li, X.; Stringer, L.C. The Impacts of Urbanisation and Climate Change on the Urban Thermal Environment in Africa. Climate 2022, 10, 164. [Google Scholar] [CrossRef]
- Xiao, S.; Fügener, T.; Wende, W.; Yan, W.; Chen, H.; Syrbe, R.; Xue, B. The dynamics of vegetation and implications for ecosystem services in the context of urbanisation: An example from Huangyan-Taizhou, China The dynamics of vegetation and implications for ecosystem services in the context of urbanisation: An example from Huangyan-Taizhou, China. Ecol. Eng. 2022, 179, 106614. [Google Scholar] [CrossRef]
- Ramaiah, M.; Avtar, R. Urban Green Spaces and Their Need in Cities of Rapidly Urbanizing India: A Review. Urban Sci. 2019, 3, 94. [Google Scholar] [CrossRef]
- Sambou, B. Evaluation de L’état, de la Dynamique et des Tendances Évolutives de la Flore et de la Végétation Ligneuses Dans les Domaines Soudanien et Sub-Guinéen au Sénégal. Ph.D. Thesis, Université Cheikh Anta Diop, Dakar, Sénégal, 2004. [Google Scholar]
- Dieng, S.D. Identification et Évaluation des Services Écosystémiques Fournis par Cordyla Pinnata (Lepr. Ex A.Rich.) Milne-Redh., Detarium Microcarpum Guill. et Perr. et Detarium Senegalense J.F. Gmel.: Cas de la Forêt Classée de Patako et de ses Environs (Centre-Ouest du Sénégal). Ph.D. Thesis, Université Cheikh Anta Diop, Dakar, Sénégal, 2017. [Google Scholar]
- Badiane, S.D.; Deme, M.; Sy, T.B.; Ba, H. Etude exploratoire de la réhabilitation et des pratiques des espaces verts publics à Dakar (Sénégal). Environ. Water Sci. Public Health Territ. Intell. J. 2023, 7, 947–955. [Google Scholar]
- Diaouma, S.; Mbaye, B.E. Zones humides urbaines à double visage à Dakar: Opportunité ou menace? Sci. Eaux Territ. 2018, 51, 1–5. [Google Scholar]
- Sane, T.; Ndiaye, A. La variabilité climatique et ses conséquences environnementales à Dakar. In Proceedings of the XIXe Colloque International de Climatologie, Epernay, France, 6–9 September 2006; p. 508. [Google Scholar]
- Regional Service of Statistics and Demography of Dakar. Situation Economique et Sociale Regionale 2019; Regional Service of Statistics and Demography of Dakar: Dakar, Senegal, 2021; Available online: http://www.ansd.sn/index.php?option=com_regions&view=region&layout=ses&id=1 (accessed on 19 September 2022).
- Diagne, M. Entre Géographie Culturelle et Phytogéographie: Croyances Traditionnelles en Milieu Lébou Dakarois: Le Dynamisme et les Permanences. Ph.D. Thesis, Université Cheikh Anta Diop, Dakar, Sénégal, 2008. [Google Scholar]
- Centre, P.C.; Wetterdienst, D. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Faye, C. Changements climatiques observés sur le littoral sénégalais (Région de Dakar) depuis 1960: Etude de la variabilité des tendances sur les températures et la pluviométrie. Nat. Technol. 2019, 11, 65–78. Available online: https://rivieresdusud.uasz.sn/bitstream/handle/123456789/323/11%20Faye%20Article.pdf?sequence=1&isAllowed=y (accessed on 23 August 2022).
- Tine, D.; Faye, G.; Marico, O.; Mbaye, M.; Biaye, L.; Faye, M.; Faye, G. Contribution of Sentinel-2/Landsat-8 OLI Images to Extracting Vegetation Cover and Wetlands Area in Urban Zones: Case of the Dakar Region (Senegal). J. Geogr. Inf. Syst. 2021, 13, 523–537. [Google Scholar] [CrossRef]
- Congedo, L. Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. J. Open Source Softw. 2021, 6, 3172. [Google Scholar] [CrossRef]
- Seremane, B.; Kannan, B.; Ravikumar, V.; Arunadevi, K.; Jagadeeswaran, R. Assessing Land Use Dynamics of Lower Bhavani Basin Using Multiple GIS Platforms. Int. J. Environ. Clim. Change 2023, 13, 1090–1096. [Google Scholar] [CrossRef]
- Saraf, P.; Regulwar, D.G. Land Use Land Cover Analysis for Godavari Basin in Maharashtra Using Geographical Information System and Remote Sensing. J. Geogr. Inf. Syst. 2024, 16, 21–31. [Google Scholar] [CrossRef]
- Tempa, K.; Raj, K. Semi—Automatic classification for rapid delineation of the geohazard—Prone areas using Sentinel—2 satellite imagery. SN Appl. Sci. 2022, 4, 141. [Google Scholar] [CrossRef]
- Sambou, S. Dynamique de la Végétation et des Stocks de Carbone de la Forêt Classée de Patako et sa Périphérie (Centre-Ouest du Sénégal). Ph.D. Thesis, Université Cheikh Anta Diop, Dakar, Sénégal, 2017. [Google Scholar]
- Kamusoko, C. Dakar Metropolitan Area. In Urban Development in Asia and Africa; Springer Nature: Singapore, 2017; pp. 257–273. [Google Scholar] [CrossRef]
- Assaye, R.; Suryabhagavan, K.V.; Balakrishnan, M.; Hameed, S. Geo-Spatial Approach for Urban Green Space and Environmental Quality Assessment: A Case Study in Addis Ababa City. J. Geogr. Inf. Syst. 2017, 9, 191–206. [Google Scholar] [CrossRef]
- Munyati, C.; Drummond, J.H. Loss of urban green spaces in Mafikeng, South Africa. World Dev. Perspect. 2020, 19, 100226. [Google Scholar] [CrossRef]
- Festus Nero, B. Urban green space dynamics and socio-environmental inequity: Multi-resolution and spatiotemporal data analysis of Kumasi, Ghana Urban green space dynamics and socio-environmental inequity: Multi-resolution and spatiotemporal data analysis of Kumasi, Ghana. Int. J. Remote Sens. 2017, 38, 6993–7020. [Google Scholar] [CrossRef]
- Biazen Molla, M.; Ikporukpo, C.O.; Olatubara, C.O. The Spatio-Temporal Pattern of Urban Green Spaces in Southern Ethiopia. Am. J. Geogr. Inf. Syst. 2018, 2018, 1–14. [Google Scholar]
- Matsa, M.; Musasa, T.; Mupepi, O. Loss of urban green spaces due to increased land use/cover changes between 2000-2019: The case of Gweru City, Zimbabwe. Afr. Geogr. Rev. 2021, 41, 433–451. [Google Scholar] [CrossRef]
Satellite | Path/Row | Sensor | Spectral Bands | Acquisition Date |
---|---|---|---|---|
Landsat 9 | 205/50 | OLI_TIRS | 11 | 9 April 2022 |
Landsat 7 | 205/50 | ETM | 8 | 31 May 2012 |
Landsat 7 | 205/50 | ETM | 8 | 18 April 2002 |
Landsat 5 | 205/50 | TM | 7 | 5 December 1990 |
Land Use and Land Cover Types | Description |
---|---|
Green space | All areas of vegetation, including public and private green spaces. |
Water | Areas of water like lakes, rivers and ponds. |
Agriculture land | Cultivated areas such as fields and market gardens area. |
Bare land | Areas devoid of vegetation or bare soil, rocks and tannins. |
Built-up | Impervious areas including buildings and roads. |
2002 | Land Cover Types | 1990 | |||||
Green Space | Water | Agriculture Land | Bare Land | Built-Up | Total | ||
Green space | 11.14 | 0.19 | 3.07 | 1.77 | 0.17 | 16.34 | |
Water | 0.09 | 1.11 | 0 | 0.03 | 0.03 | 1.26 | |
Agriculture land | 0.09 | 0.01 | 6.45 | 1.64 | 0.06 | 8.25 | |
Bare land | 1.43 | 0.08 | 9.25 | 39.08 | 5.14 | 54.98 | |
Built-up | 0.62 | 0.33 | 0.57 | 3.82 | 13.84 | 19.18 | |
Total | 13.37 | 1.72 | 19.34 | 46.34 | 19.24 | 100 |
2012 | Land Cover Types | 2002 | |||||
Green Space | Water | Agriculture Land | Bare Land | Built-Up | Total | ||
Green space | 5 | 0.12 | 1.18 | 4.75 | 1.22 | 12.27 | |
Water | 0.3 | 0.74 | 0.02 | 0.25 | 0.26 | 1.57 | |
Agriculture land | 0.48 | 0.02 | 1.33 | 3 | 0.39 | 5.22 | |
Bare land | 7.93 | 0.16 | 4.94 | 33.86 | 4.9 | 51.79 | |
Built-up | 2.63 | 0.22 | 0.78 | 13.11 | 12.41 | 29.15 | |
Total | 16.34 | 1.26 | 8.25 | 54.97 | 19.18 | 100 |
2022 | Land Cover Types | 2012 | |||||
Green Space | Water | Agriculture Land | Bare Land | Built-Up | Total | ||
Green space | 8.41 | 0.02 | 0.07 | 0.85 | 0.18 | 9.53 | |
Water | 0 | 1.55 | 0.01 | 0.02 | 1.58 | ||
Agriculture land | 0.09 | 0 | 4 | 0.2 | 0 | 4.29 | |
Bare land | 3.05 | 0 | 0.98 | 40.54 | 0.71 | 45.28 | |
Built-up | 0.72 | 0 | 0.16 | 10.19 | 28.24 | 39.31 | |
Total | 12.27 | 1.57 | 5.21 | 51.79 | 29.15 | 99.99 |
2022 | Land Cover Types | 1990 | |||||
---|---|---|---|---|---|---|---|
Green Space | Water | Agriculture Land | Bare Land | Built-Up | Total | ||
Green space | 3.66 | 0.14 | 1.76 | 3 | 0.97 | 9.53 | |
Water | 0.31 | 0.77 | 0.04 | 0.19 | 0.27 | 1.58 | |
Agriculture land | 0.28 | 0.03 | 2.01 | 1.78 | 0.19 | 4.29 | |
Bare land | 5.49 | 0.18 | 11.85 | 24.31 | 3.45 | 45.28 | |
Built-up | 3.62 | 0.61 | 3.69 | 17.05 | 14.36 | 39.33 | |
Total | 13.36 | 1.73 | 19.35 | 46.33 | 19.24 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cissé, M.; Morenikeji, O.; Mertens, E.; Fall, A.N.; Okhimamhe, A.A. Assessment of Green Space Dynamics Under Urban Expansion of Senegalese Cities: The Case of Dakar. Urban Sci. 2024, 8, 258. https://doi.org/10.3390/urbansci8040258
Cissé M, Morenikeji O, Mertens E, Fall AN, Okhimamhe AA. Assessment of Green Space Dynamics Under Urban Expansion of Senegalese Cities: The Case of Dakar. Urban Science. 2024; 8(4):258. https://doi.org/10.3390/urbansci8040258
Chicago/Turabian StyleCissé, Mariama, Oluwole Morenikeji, Elke Mertens, Awa Niang Fall, and Appollonia Aimiosino Okhimamhe. 2024. "Assessment of Green Space Dynamics Under Urban Expansion of Senegalese Cities: The Case of Dakar" Urban Science 8, no. 4: 258. https://doi.org/10.3390/urbansci8040258
APA StyleCissé, M., Morenikeji, O., Mertens, E., Fall, A. N., & Okhimamhe, A. A. (2024). Assessment of Green Space Dynamics Under Urban Expansion of Senegalese Cities: The Case of Dakar. Urban Science, 8(4), 258. https://doi.org/10.3390/urbansci8040258