The Spatial Impact of PM2.5 Pollution on Economic Growth from 2012 to 2022: Evidence from Satellite and Provincial-Level Data in Thailand
Abstract
:1. Introduction
2. Study Background
2.1. The Economic Characteristics of Thai Provinces
2.2. Relevance of Satellite Data and the Industrial Census Survey in Thailand
3. Theoretical Framework
3.1. Environmental Kuznets Curve
3.2. Stochastic Impacts by Regression on Population, Affluence, and Technology Model (STIRPAT Model)
3.3. Socio-Economic Impact of PM2.5
4. The Analytical Methods
Econometric Models
5. Empirical Results and Discussion
5.1. Bivariate Local Moran’s I Results
5.2. Regression Results
6. Discussion
- Regional and International Cooperation: Integrated collaboration among various organizations is essential to mitigate the widespread impacts of PM2.5 pollution, especially in intense manufacturing regions that experience severe PM2.5 pollution (the BKK&VIC and CE regions).
- Bottom-Up Policy Formulation: This approach would allow local communities to actively participate in designing PM2.5 pollution management policies alongside government agencies and central authorities, ensuring more effective and precisely targeted solutions [56].
- Transition to Clean Energy: Switching to clean energy sources and maximizing energy efficiency with minimal emissions can significantly reduce PM2.5 pollution. Strategies include adopting renewable energy sources [57]; transitioning from diesel engines (which emit high levels of pollutants) to electric or hydrogen-powered engines in the future; and implementing stricter vehicle emission regulations, such as upgrading from Euro 4 to Euro 5–6 exhaust standards, which could substantially reduce vehicle emissions.
7. Conclusions and Policy Implication
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Pesaran’s CD Test | Breusch and Pagan LM Test |
---|---|---|
LnPM2.5 | 91.015 *** | 57.82 *** |
LnGPPpc | 59.917 *** | |
LnGPPpc2 | 59.903 *** | |
LnIndus_dens | 45.223 *** | |
LnEnergy_cons_pc | 46.218 *** | |
LnPop_dens | 2.151 ** |
Appendix B
Dependent Variable: LnPM2.5 | Random Effects | SLM | SEM |
---|---|---|---|
Variables | |||
LnPop_dens | 0.055 * (1.84) | 0.083 *** (3.09) | 0.033 * (1.95) |
LnGPPpc | −2.031 *** (−2.92) | −2.052 *** (−3.27) | −0.776 * (−1.83) |
LnGPPpc2 | 0.076 *** (2.67) | 0.079 *** (3.11) | 0.029 * (1.68) |
LnIndus_dens | −0.037 ** (−2.17) | −0.052 *** (−3.25) | −0.012 (−1.30) |
LnEnergy_cons_pc | 0.070 (1.08) | 0.071 (1.22) | 0.017 (0.47) |
High_manufac_regions | 0.328 *** (5.21) | 0.254 *** (4.43) | 0.197 *** (4.63) |
Constant | 15.893 *** (3.87) | 15.523 *** (4.19) | 7.687 *** (3.04) |
Rho ( | 0.095 *** (5.17) | ||
Lambda (λ) | 0.966 *** (58.92) | ||
Observations | 231 | 231 | 231 |
Within R-squared | 0.369 | ||
Between R-squared | 0.252 | ||
Overall R-squared | 0.251 | ||
Log-likelihood | 131.450 | 242.755 | |
AIC | −242.899 | −465.510 | |
BIC | −208.475 | −431.086 |
References
- Attavanich, W. Costs to Thai Society from Air Pollution and Countermeasures, aBRIDGE No. 7/2019. 2019. Available online: https://www.pier.or.th/abridged/2019/07/ (accessed on 20 December 2024).
- World Health Organization. Ambient (Outdoor) Air Pollution. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 20 December 2024).
- World Bank. GDP (Current US$)-Thailand (2007 and 2017). 2023. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=TH (accessed on 12 January 2025).
- Pochanart, P. The present state of urban air pollution problems in Thailand’s large cities: Cases of Bangkok, Chiang Mai, and Rayong. J. Environ. Manag. 2016, 12, 114–133. [Google Scholar] [CrossRef]
- Pollution Control Department. Thailand State of Pollution Report 2021. 2021. Available online: https://www.pcd.go.th/wp-content/uploads/2022/08/pcdnew-2022-08-08_08-30-05_795080.pdf (accessed on 20 December 2024).
- Arouri, M.; Shahbaz, M.; Onchang, R.; Islam, F.; Teulon, F. Environmental Kuznets curve in Thailand: Cointegration and causality analysis. J. Energy Dev. 2013, 39, 149–170. [Google Scholar]
- Bunnag, T. Analyzing short-run and long-run causality relationship among CO2 emission, energy consumption, GDP, square of GDP, and foreign direct investment in Environmental Kuznets Curve for Thailand. Int. J. Energy Econ. Policy 2023, 13, 341–348. [Google Scholar] [CrossRef]
- Maneejuk, N.; Ratchakom, S.; Maneejuk, P.; Yamaka, W. Does the environmental Kuznets curve exist? An international study. Sustainability 2020, 12, 9117. [Google Scholar] [CrossRef]
- Maneejuk, P.; Yamaka, W.; Sriboonchitta, S. Does the Kuznets curve exist in Thailand? A two decades’ perspective (1993–2015). Ann. Oper. Res. 2021, 300, 545–576. [Google Scholar] [CrossRef]
- Fiscal Policy Office. Regional Fiscal Economic Report for November 2022. Fiscal Policy Office, 2022. Available online: https://www.fpo.go.th/main/Economic-report/Monthly-regional-economic-situation/17261.aspx (accessed on 3 January 2025).
- World Bank. PPP Conversion Factor, GDP (LCU per International $). World Bank Group, 2023. Available online: https://data.worldbank.org/indicator/PA.NUS.PPP (accessed on 3 January 2025).
- NESDC. Gross Regional and Provincial Product (GPP). Office of the National Economic and Social Development Council, 2022. Available online: https://www.nesdc.go.th/nesdb_en/more_news.php?cid=156&filename=index (accessed on 3 January 2025).
- Puttanapong, N.; Luenam, A.; Jongwattanakul, P. Spatial analysis of inequality in Thailand: Applications of satellite data and spatial statistics/econometrics. Sustainability 2022, 14, 3946. [Google Scholar] [CrossRef]
- Sangkasem, K.; Puttanapong, N. Analysis of spatial inequality using DMSP-OLS nighttime-light satellite imageries: A case study of Thailand. Reg. Sci. Policy Pract. 2022, 14, 828–850. [Google Scholar] [CrossRef]
- Prasertsoong, N.; Puttanapong, N. Predicting Urban Land Expansion and Local Economic Growth by Integrating CLUE-S and Economic Model: An Application to Ban Chang District, Thailand. J. Geovis. Spat. Anal. 2025, 9, 7. [Google Scholar] [CrossRef]
- Aruga, K. Investigating the energy-environmental Kuznets Curve hypothesis for the Asia-Pacific region. Sustainability 2019, 11, 2395. [Google Scholar] [CrossRef]
- Aruga, K.; Islam, M.M.; Jannat, A. Effects of COVID-19 on Indian energy consumption. Sustainability 2020, 12, 5616. [Google Scholar] [CrossRef]
- Shahzad, Q.; Aruga, K. Spatial effect of economic performance on the ecological footprint: Evidence from Asian countries. Environ. Dev. Sustain. 2024; forthcoming. [Google Scholar] [CrossRef]
- Gibson, J.; Olivia, S.; Boe-Gibson, G.; Li, C. Which night lights data should we use in economics, and where? J. Dev. Econ. 2021, 149, 102602. [Google Scholar] [CrossRef]
- Zhang, X.; Gibson, J.; Deng, X. Remotely too equal: Popular DMSP night-time lights data understate spatial inequality. Reg. Sci. Policy Pract. 2023, 15, 2106–2126. [Google Scholar] [CrossRef]
- Bali, K.; Dey, S.; Ganguly, D. Diurnal patterns in ambient PM2.5 exposure over India using MERRA-2 reanalysis data. Atmos. Environ. 2021, 248, 118180. [Google Scholar] [CrossRef]
- He, L.; Lin, A.; Chen, X.; Zhou, H.; Zhou, Z.; He, P. Assessment of MERRA-2 surface PM2.5 over the Yangtze River Basin: Ground-based verification, spatiotemporal distribution and meteorological dependence. Remote Sens. 2019, 11, 460. [Google Scholar] [CrossRef]
- Ma, J.; Xu, J.; Qu, Y. Evaluation on the surface PM2.5 concentration over China mainland from NASA’s MERRA-2. Atmos. Environ. 2020, 237, 117666. [Google Scholar] [CrossRef]
- Ali, M.A.; Bilal, M.; Wang, Y.; Nichol, J.E.; Mhawish, A.; Qiu, Z.; de Leeuw, G.; Zhang, Y.; Zhan, Y.; Liao, K. Accuracy assessment of CAMS and MERRA-2 reanalysis PM2. 5 and PM10 concentrations over China. Atmos. Environ. 2022, 288, 119297. [Google Scholar] [CrossRef]
- Carmona, J.M.; Gupta, P.; Lozano-García, D.F.; Vanoye, A.Y.; Yépez, F.D.; Mendoza, A. Spatial and temporal distribution of PM2.5 pollution over northeastern Mexico: Application of MERRA-2 reanalysis datasets. Remote Sens. 2020, 12, 2286. [Google Scholar] [CrossRef]
- Lorente, D.; Alvarez-Herranz, A. An approach to the effect of energy innovation on environmental Kuznets curve: An introduction to inflection point. Bull. Energy Econ. 2016, 4, 224–233. [Google Scholar]
- York, R.; Rosa, E.A.; Dietz, T. Footprints on the earth: The environmental consequences of modernity. Am. Sociol. Rev. 2003, 68, 279–300. [Google Scholar] [CrossRef]
- Holtz-Eakin, D.; Selden, T.M. Stoking the fires? CO2 emissions and economic growth. J. Public Econ. 1995, 57, 85–101. [Google Scholar] [CrossRef]
- Dasgupta, S.; Laplante, B.; Wang, H.; Wheeler, D. Confronting the environmental Kuznets curve. J. Econ. Perspect. 2002, 16, 147–168. [Google Scholar] [CrossRef]
- Ang, J.B. CO2 emissions, energy consumption, and output in France. Energy Policy 2007, 35, 4772–4778. [Google Scholar] [CrossRef]
- Halicioglu, F. An econometric study of CO2 emissions, energy consumption, income and foreign trade in Turkey. Energy Policy 2009, 37, 1156–1164. [Google Scholar] [CrossRef]
- Chandran, V.; Tang, C.F. The impacts of transport energy consumption, foreign direct investment and income on CO2 emissions in ASEAN-5 economies. Renew. Sustain. Energy Rev. 2013, 24, 445–453. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Saboori, B.; Ozturk, I. Investigating the environmental Kuznets curve hypothesis in Vietnam. Energy Policy 2015, 76, 123–131. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A. Environmental Impacts of a North American Free Trade Agreement; National Bureau of Economic Research: Cambridge, MA, USA, 1991; p. w3914. [Google Scholar]
- Panayotou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development; International Labour Organization: Geneva, Switzerland, 1993; pp. 1–27. [Google Scholar]
- Moomaw, W.R.; Unruh, G.C. Are environmental Kuznets curves misleading us? The case of CO2 emissions. Environ. Dev. Econ. 1997, 2, 451–463. [Google Scholar] [CrossRef]
- Kaufmann, R.K.; Davidsdottir, B.; Garnham, S.; Pauly, P. The determinants of atmospheric SO2 concentrations: Reconsidering the environmental Kuznets curve. Ecol. Econ. 1998, 25, 209–220. [Google Scholar] [CrossRef]
- Dinda, S.; Coondoo, D.; Pal, M. Air quality and economic growth: An empirical study. Ecol. Econ. 2000, 34, 409–423. [Google Scholar] [CrossRef]
- Ozcan, B. The nexus between carbon emissions, energy consumption and economic growth in Middle East countries: A panel data analysis. Energy Policy 2013, 62, 1138–1147. [Google Scholar] [CrossRef]
- Wang, S.S.; Zhou, D.Q.; Zhou, P.; Wang, Q. CO2 emissions, energy consumption and economic growth in China: A panel data analysis. Energy Policy 2011, 39, 4870–4875. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, M.; Zhang, B. The effects of urbanization on PM2.5 concentrations in China’s Yangtze River Economic Belt: New evidence from spatial econometric analysis. J. Clean. Prod. 2019, 239, 118065. [Google Scholar] [CrossRef]
- Chen, X.; Shuai, C.; Gao, J.; Wu, Y. Analyzing the socioeconomic determinants of PM2.5 air pollution at the global level. Environ. Sci. Pollut. Res. 2023, 30, 27257–27269. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Wang, Q.; Qin, Q.; Ren, H.; Cao, J. Impacts of natural and socioeconomic factors on PM2.5 from 2014 to 2017. J. Environ. Manag. 2021, 284, 112071. [Google Scholar] [CrossRef]
- Yang, D.; Wang, X.; Xu, J.; Xu, C.; Lu, D.; Ye, C.; Wang, Z.; Bai, L. Quantifying the influence of natural and socioeconomic factors and their interactive impact on PM2.5 pollution in China. Environ. Pollut. 2018, 241, 475–483. [Google Scholar] [CrossRef]
- Zhang, Z.; Shao, C.; Guan, Y.; Xue, C. Socioeconomic factors and regional differences of PM2.5 health risks in China. J. Environ. Manag. 2019, 251, 109564. [Google Scholar] [CrossRef]
- Guo, Q.; He, Z.; Wang, Z. Change in air quality during 2014–2021 in Jinan City in China and its influencing factors. Toxics 2023, 11, 210. [Google Scholar] [CrossRef]
- Guo, Q.; He, Z.; Wang, Z. The characteristics of air quality changes in Hohhot City in China and their relationship with meteorological and socio-economic factors. Aerosol Air Qual. Res. 2024, 24, 230274. [Google Scholar] [CrossRef]
- Anselin, L. Global Spatial Autocorrelation (2) Bivariate, Differential and EB Rate Moran Scatter Plot. 2019. Available online: https://geodacenter.github.io/workbook/5b_global_adv/lab5b.html (accessed on 9 January 2025).
- Bank of Thailand. Economic and Financial Conditions in the Northern Region in 2022. Bank of Thailand, 2022. Available online: https://www.bot.or.th/th/thai-economy/regional-economy/northern-economy/the-state-of-northern-economy/Northern_2565_Press_all.html (accessed on 10 January 2025).
- NESDC (Office of the National Economic and Social Development Council). Thai Economic Performance in Q4 and 2022 and Outlook for 2023 (English edition). Office of the National Economic and Social Development Council, 2022. Available online: https://www.nesdc.go.th/nesdb_en/article_attach/65Q4%20Press%20Eng%20Q4-2022%20(2102%2015.46).pdf (accessed on 10 January 2025).
- Bank of Thailand. Thai Economic Condition Report for 2022. Bank of Thailand, 2022a. Available online: https://www.bot.or.th/content/dam/bot/documents/th/thai-economy/state-of-thai-economy/annual-report/annual-econ-report-th-2565.pdf (accessed on 10 January 2025).
- NESDC (Office of the National Economic and Social Development Council). Eastern Economic Corridor (EEC) Development Plan, 2017–2021. Office of the National Economic and Social Development Council, 2021. Available online: https://www.nesdc.go.th/ewt_dl_link.php?nid=6381 (accessed on 11 January 2025).
- Bank of Thailand. Economic and Financial Conditions in the Northeastern Region in 2022. Bank of Thailand, 2022. Available online: https://www.bot.or.th/th/thai-economy/regional-economy/northeastern-economy/the-state-of-northeastern-economy/2565-Y01-NE-Press-and-Table.html (accessed on 10 January 2025).
- UNEP (United Nations Environment Programme). Pollution Action Note. 2023. Available online: https://www.unep.org/interactives/air-pollution-note/ (accessed on 21 December 2024).
- Aruga, K.; Islam, M.M.; Jannat, A. Does staying at home during the COVID-19 pandemic help reduce CO2 emissions? Sustainability 2021, 13, 8534. [Google Scholar] [CrossRef]
- Poapongsakorn, N.; Pantakua, K.; Ratchakom, S. Limitations in Addressing the PM2.5 Pollution Issue. TDRI, 2023. Available online: https://tdri.or.th/2023/03/pm2-5-thailands-solutions/ (accessed on 10 January 2025).
- Yang, E.; Bae, H.; Ryu, D. What makes the level of particulate matter emissions worse in Korea? Rom. J. Econ. Forecast. 2022, 25, 128–143. [Google Scholar]
Regions | Provinces |
---|---|
NORTHEASTERN (NE) | KHON KAEN, UDON THANI, LOEI, NONG KHAI, MUKDAHAN, NAKHON PHANOM, SAKON NAKHON, KALASIN, NAKHON RATCHASIMA, CHAIYAPHUM, YASOTHON, UBON RATCHATHANI, ROI ET, BURI RAM, SURIN, MAHA SARAKHAM, SI SA KET, NONGBUA LAMPHU, AMNAT CHAREON, BUENG KAN |
NORTHERN (NO) | CHIANG MAI, LAMPANG, UTTARADIT, MAE HONG SON, CHIANG RAI, PHRAE, LAMPHUN, NAN, PHAYAO, NAKHON SAWAN, PHITSANULOK, KAM PHAENG PHET, UTHAI THANI, SUKHOTHAI, TAK, PHICHIT, PHETCHABUN |
SOUTHERN (SO) | PHUKET, SURAT THANI, RANONG, PHANGNGA, KRABI, CHUMPHON, NAKHON SI THAMMARAT, SONGKHLA, SATUN, YALA, TRANG, NARATHIWAT, PHATTHALUNG, PATTANI |
EASTERN (EA) | CHON BURI, CHACHOENGSAO, RAYONG, TRAT, CHANTHABURI, NAKHON NAYOK, PRACHIN BURI, SA KAEW |
WESTERN (WE) | RATCHABURI, KANCHANABURI, PHACHUAP KHIRI KHAN, PHETCHABURI, SUPHAN BURI, SAMUT SONGKHRAM |
CENTRAL (CE) | SARABURI, SINGBURI, CHAI NAT, ANG THONG, LOP BURI, PHRA NAKHON SRI AYUTHAYA |
BANGKOK AND VICINITIES (BKK&VIC) | BANGKOK METROPOLIS, SAMUT PRAKAN, PATHUM THANI, SAMUT SAKHON, NAKHON PATHOM, NONTHABURI |
Regions | 2022 GRP | 2022 GRP per Capita | 2022 GRP per Capita (PPP) | GDP Contribution in 2022 |
---|---|---|---|---|
NORTHEASTERN (NE) | USD 498 billion | USD 2724 | USD 9009 | 10.2% |
NORTHERN (NO) | USD 373 billion | USD 3329 | USD 11,012 | 7.9% |
SOUTHERN (SO) | USD 394 billion | USD 4053 | USD 13,407 | 8.2% |
EASTERN (EA) | USD 931 billion | USD 14,639 | USD 48,421 | 17.2% |
WESTERN (WE) | USD 180 billion | USD 4934 | USD 16,321 | 3.6% |
CENTRAL (CE) | USD 255 billion | USD 8074 | USD 26,705 | 5.4% |
BANGKOK AND VICINITIES (BKK&VIC) | USD 2.2 trillion | USD 13,210 | USD 43,693 | 47.6% |
EKC Patterns | Authors | Dependent Variables | Independent Variables |
---|---|---|---|
Monotonic rising curve | [28,29,30,31,32,33] | Annual emissions of CO2 | Gross Regional Product (GRP) per capita and square, Energy Consumption, Output, Foreign Direct Investment (FDI), Transport energy consumption, Labor Force, Exports and Imports |
Inverted U shape | [34,35] | Annual emissions of NO2, SO2, suspended particulate matter | GRP per capita and square, Population density, Industry shares in GRP, Trade intensity |
U shape | [32,36,37,38,39,40] | Annual emissions of CO2, SO2, suspended particulate matter | GRP per capita, Population growth, Spatial intensity of economic activity, Energy consumption, FDI, Transport energy consumption |
Type | Variables | Description | Years | Sources | Expected Sign |
---|---|---|---|---|---|
Dependent Variable | PM2.5 | The PM2.5 concentration in each province () | 2012 2017 2022 | Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) bands DUSMASS25 + OCSMASS+ BCSMASS + SSSMASS25 + SO4SMASS × (132.14/96.06) | |
Independent Variables | Population density (Pop_dens) | A variable that represents the province’s population density relative to its size. (Unit/km2) | 2012 2017 2022 | Office of the National Economic and Social Development Council (NESDC) | + |
Gross Provincial Product per capita (GPPpc) | A variable that represents the economic growth per capita in each province, which is how much economic growth per capita is in that province (Baht/person) | 2012 2017 2022 | Office of the National Economic and Social Development Council (NESDC) | +/− | |
Industrial density (Indus_dens) | A variable that shows the density of industry in each province, which shows that if that province has a high industrial density, more air pollution is released, especially PM2.5 (Baht/km2) | 2012 2017 2022 | Thailand Industrial Census Survey | +/− | |
Energy consumption per capita (Energy_cons_pc) | A variable that shows the province’s economic activities, using energy consumption per capita as an indicator (kWh/person) | 2012 2017 2022 | Metropolitan Electricity Authority (MEA) and Provincial Electricity Authority (PEA) | + |
Variables | Year | Moran’s I | E(I) | SE(I) | Z(I) | p-Value |
---|---|---|---|---|---|---|
PM2.5 | 2012 | 0.945 | −0.013 | 0.092 | 10.435 | 0.000 |
2017 | 0.928 | −0.013 | 0.090 | 10.460 | 0.000 | |
2022 | 0.935 | −0.013 | 0.090 | 10.499 | 0.000 |
Obs | 2012 | 2017 | 2022 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Min/Max | Mean | Min/Max | Mean | Min/Max | |||||
PM2.5 | 231 | 19.357 (3.771) | Min Max | 11.948 27.001 | 15.615 (2.083) | Min Max | 11.435 19.352 | 15.704 (2.085) | Min Max | 11.323 19.187 |
Population density | 231 | 279.789 (686.090) | Min Max | 16.174 5382.581 | 300.575 (741.628) | Min Max | 18.320 5629.551 | 312.403 (775.694) | Min Max | 19.027 5776.465 |
GPP per capita | 231 | 139,936.948 (135,805.876) | Min Max | 41,474.000 970,023.000 | 162,737.849 (152,620.342) | Min Max | 55,861.466 1,017,235.244 | 175,189.788 (152,306.472) | Min Max | 60,876.433 1,003,496.913 |
Industrial density | 231 | 50,637,499.189 (159,485,243.578) | Min Max | 13,988.457 1,065,949,279.061 | 72,587,788.251 (228,435,012.632) | Min Max | 14,381.052 1,565,100,976.437 | 82,125,296.321 (230,089,098.661) | Min Max | 10,525.159 1,426,639,278.506 |
Energy consumption per capita | 231 | 1971.658 (1969.084) | Min Max | 475.806 10,377.009 | 2142.582 (1986.598) | Min Max | 534.198 11,335.862 | 2250.422 (1869.915) | Min Max | 617.313 10,141.995 |
Dependent Variable: LnPM2.5 | Random Effects | SLM | SEM | ||||||
---|---|---|---|---|---|---|---|---|---|
Variables | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 |
LnPop_dens | 0.130 *** (4.12) | 0.133 *** (4.17) | 0.102 *** (3.25) | 0.150 *** (4.96) | 0.151 *** (4.97) | 0.122 *** (4.30) | 0.055 *** (2.88) | 0.055 *** (2.88) | 0.050 *** (2.71) |
LnGPPpc | −0.256 *** (−3.90) | −3.088 *** (−4.26) | −0.165 *** (−2.67) | −2.860 *** (−4.42) | −0.082 ** (−2.11) | −1.260 *** (−2.95) | |||
LnGPPpc2 | −0.100 *** (−3.53) | 0.116 *** (3.93) | −0.006 ** (−2.29) | 0.111 *** (4.19) | −0.003 * (−1.86) | 0.048 *** (2.77) | |||
LnIndus_dens | −0.037 * (−1.93) | −0.380 ** (−2.02) | −0.030 (−1.51) | −0.054 *** (−3.13) | −0.054 *** (−3.13) | −0.460 *** (−2.73) | −0.010 (−0.89) | −0.010 (−0.94) | −0.007 (−0.73) |
LnEnergy_cons_pc | 0.162 ** (2.49) | 0.141 ** (2.19) | 0.208 *** (3.25) | 0.128 ** (2.16) | 0.110 * (1.87) | 0.174 *** (3.03) | 0.053 (1.40) | 0.045 (1.29) | 0.063 * (1.69) |
Constant | 4.541 *** (10.45) | 4.541 *** (10.45) | 21.370 *** (4.96) | 3.630 *** (8.29) | 2.643 *** (12.71) | 19.628 *** (5.09) | 3.171 *** (11.79) | 2.685 *** (18.27) | 10.224 *** (4.00) |
Rho ( | 0.123 *** (5.21) | 0.124 *** (5.25) | 0.117 *** (5.64) | ||||||
Lambda (λ) | 0.970 *** (62.21) | 0.970 *** (62.50) | 0.966 *** (61.78) | ||||||
Observations | 231 | 231 | 231 | 231 | 231 | 231 | 231 | 231 | 231 |
Within R-squared | 0.301 | 0.303 | 0.290 | ||||||
Between R-squared | 0.045 | 0.038 | 0.084 | ||||||
Overall R-squared | 0.068 | 0.060 | 0.118 | ||||||
Log-likelihood | 113.675 | 112.734 | 122.106 | 228.474 | 227.982 | 232.194 | |||
AIC | −211.350 | −209.470 | −226.211 | −440.950 | −439.963 | −446.390 | |||
BIC | −193.810 | −181.930 | −195.230 | −413.409 | −412.424 | −415.405 |
Dependent Variable: LnPM2.5 | Coef. | Std.err |
---|---|---|
LnPop_dens | 0.022 (1.30) | 0.017 |
LnGPPpc | −0.957 *** (−2.83) | 0.338 |
LnGPPpc2 | 0.037 *** (2.65) | 0.014 |
LnIndus_dens | 0.006 (0.67) | 0.009 |
LnEnergy_cons_pc | 0.017 (0.53) | 0.032 |
Constant | 8.604 *** (4.25) | 2.025 |
W1PM2.5 | 0.937 *** (34.87) | 0.026 |
W2LnPop_dens | 0.004 (0.11) | 0.038 |
W3LnGPPpc | −0.492 *** (−12.89) | 0.038 |
W4LnGPPpc2 | 0.016 *** (4.87) | 0.003 |
W5LnIndus_dens | −0.021 (−0.88) | 0.024 |
W6LnEnergy_cons_pc | 0.166 ** (2.26) | 0.073 |
Observations | 231 | |
Log-likelihood | 262.295 | |
AIC | −496.590 | |
BIC | −448.396 |
GDP per Capita, Purchasing Power Parity (PPP*)(USD) | |||||||||
---|---|---|---|---|---|---|---|---|---|
USD 470 | USD 940 | USD 1880 | USD 5635 | USD 8450 | USD 11,270 | USD 18,780 | USD 46,950 | USD 56,715 | |
PM2.5 | −1.112 | −0.951 | −0.790 | −0.536 | −0.441 | −0.375 | −0.256 | −0.044 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srisaringkarn, T.; Aruga, K. The Spatial Impact of PM2.5 Pollution on Economic Growth from 2012 to 2022: Evidence from Satellite and Provincial-Level Data in Thailand. Urban Sci. 2025, 9, 110. https://doi.org/10.3390/urbansci9040110
Srisaringkarn T, Aruga K. The Spatial Impact of PM2.5 Pollution on Economic Growth from 2012 to 2022: Evidence from Satellite and Provincial-Level Data in Thailand. Urban Science. 2025; 9(4):110. https://doi.org/10.3390/urbansci9040110
Chicago/Turabian StyleSrisaringkarn, Thanakhom, and Kentaka Aruga. 2025. "The Spatial Impact of PM2.5 Pollution on Economic Growth from 2012 to 2022: Evidence from Satellite and Provincial-Level Data in Thailand" Urban Science 9, no. 4: 110. https://doi.org/10.3390/urbansci9040110
APA StyleSrisaringkarn, T., & Aruga, K. (2025). The Spatial Impact of PM2.5 Pollution on Economic Growth from 2012 to 2022: Evidence from Satellite and Provincial-Level Data in Thailand. Urban Science, 9(4), 110. https://doi.org/10.3390/urbansci9040110