Social Network Analysis Reveals Spatiotemporal Patterns of Green Space Recreational Walking Between Workdays and Rest Days
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Data
2.2.1. Green Space Data
2.2.2. Trajectory Data
2.3. Research Methods
2.3.1. Node Importance in RWN
2.3.2. Regional Differences in RWN
2.3.3. Overall Characteristics of RWN
3. Results
3.1. Node Importance Characteristics
3.2. Regional Differentiation Characteristics
3.3. Overall Network Characteristics
4. Discussion
4.1. Persistent Structural Characteristics in Combined Temporal Networks
4.1.1. Node Connectivity Analysis
4.1.2. Community Structure Characteristics
4.1.3. Overall Characteristics
4.2. New Perspectives on Green Space Network Analysis Based on Real Connections
4.2.1. From Ecological Networks to “Human-Centric Networks”
4.2.2. From “Static Green Space Equity” to “Dynamic Green Space Justice”
4.3. Network Characteristics and Optimization Strategies
4.3.1. Differentiated Functional Positioning: Planning Strategies Based on Node Centrality
4.3.2. Reducing Spatial Isolation: Planning Strategies Based on Community Detection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, Y.; Chen, H.; Li, Z.; Wang, R.; Liu, Y.; Qin, X. Exploring Neighborhood Environmental Effects on Mental Health: A Case Study in Guangzhou, China. Prog. Geogr. 2019, 38, 283–295. [Google Scholar] [CrossRef]
- Juraszek, P.; Karolina, S.; Grajek, M. Mental Health in a Post-Pandemic Perspective: Economic and Social Costs. J. Educ. Health Sport 2024, 69, 55195. [Google Scholar] [CrossRef]
- Chen, F.; She, W.; Zeng, F.; Gao, M.; Wen, C.; Liu, G.; Wu, L.; Wu, Y.; Zhang, C. Optimization Strategy of Community Planning for Environmental Health and Public Health in Smart City under Multi-Objectives. Front. Public Health 2024, 12, 1347122. [Google Scholar] [CrossRef]
- Moniuszko, H.; Popek, R.; Nawrocki, A.; Stankiewicz-Kosyl, M.; Grylewicz, S.; Podoba, S.; Przybysz, A. Urban Meadow—A Recipe for Long-Lasting Anti-Smog Land Cover. Int. J. Phytoremediation 2024, 26, 1932–1941. [Google Scholar] [CrossRef]
- Wolf, I.D.; Wohlfart, T. Walking, Hiking and Running in Parks: A Multidisciplinary Assessment of Health and Well-Being Benefits. Landsc. Urban Plan. 2014, 130, 89–103. [Google Scholar] [CrossRef]
- Yan, J.; Fan, S.; Tian, G.; Mu, T.; Liu, H.; Zhang, Y.; Mu, B. Assessing and Optimizing the Connectivity of the Outdoor Green Recreation Network in Zhengzhou from the Perspective of Green Travel. Land 2024, 13, 2085. [Google Scholar] [CrossRef]
- Ma, J.; Lin, P.; Williams, J. Effectiveness of Nature-Based Walking Interventions in Improving Mental Health in Adults: A Systematic Review. Curr. Psychol. 2024, 43, 9521–9539. [Google Scholar] [CrossRef]
- Bustamante, G.; Guzman, V.; Kobayashi, L.C.; Finlay, J. Mental Health and Well-Being in Times of COVID-19: A Mixed-Methods Study of the Role of Neighborhood Parks, Outdoor Spaces, and Nature among US Older Adults. Health Place 2022, 76, 102813. [Google Scholar] [CrossRef]
- Luka, N. Walking beyond the City? On the Importance of Recreational Mobilities for Landscape Planning, Urban Design, and Public Policy. Mobilities 2023, 18, 789–804. [Google Scholar] [CrossRef]
- Zhang, Z.; Zeng, B. Low Residents’ Satisfaction with Wetland Leisure Demand in Typical Urban Areas of the Semi-Arid Region in Western China: Spatial Variations and Their Causes. Land 2024, 13, 777. [Google Scholar] [CrossRef]
- Richards, D.R.; Passy, P.; Oh, R.R.Y. Impacts of Population Density and Wealth on the Quantity and Structure of Urban Green Space in Tropical Southeast Asia. Landsc. Urban Plan. 2017, 157, 553–560. [Google Scholar] [CrossRef]
- Xu, C.; Haase, D.; Pribadi, D.O.; Pauleit, S. Spatial Variation of Green Space Equity and Its Relation with Urban Dynamics: A Case Study in the Region of Munich. Ecol. Indic. 2018, 93, 512–523. [Google Scholar] [CrossRef]
- Matasov, V.; Vasenev, V.; Matasov, D.; Dvornikov, Y.; Filyushkina, A.; Bubalo, M.; Nakhaev, M.; Konstantinova, A. COVID-19 Pandemic Changes the Recreational Use of Moscow Parks in Space and Time: Outcomes from Crowd-Sourcing and Machine Learning. Urban For. Urban Green. 2023, 83, 127911. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Du, Q.; Ren, F.; Ma, X. Assessing Spatial Accessibility to Hierarchical Urban Parks by Multi-Types of Travel Distance in Shenzhen, China. Int. J. Environ. Res. Public Health 2019, 16, 1038. [Google Scholar] [CrossRef]
- Žlender, V.; Ward Thompson, C. Accessibility and Use of Peri-Urban Green Space for Inner-City Dwellers: A Comparative Study. Landsc. Urban Plan. 2017, 165, 193–205. [Google Scholar] [CrossRef]
- Rigolon, A.; Fernandez, M.; Harris, B.; Stewart, W. An Ecological Model of Environmental Justice for Recreation. Leis. Sci. 2022, 44, 655–676. [Google Scholar] [CrossRef]
- Fonseca, F.; Ribeiro, P.J.G.; Conticelli, E.; Jabbari, M.; Papageorgiou, G.; Tondelli, S.; Ramos, R.A.R. Built Environment Attributes and Their Influence on Walkability. Int. J. Sustain. Transp. 2022, 16, 660–679. [Google Scholar] [CrossRef]
- Ewing, R.; Handy, S. Measuring the Unmeasurable: Urban Design Qualities Related to Walkability. J. Urban Des. 2009, 14, 65–84. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.; Ye, Y.; Xiao, Y.; Yang, L. Examining the Association between the Built Environment and Pedestrian Volume Using Street View Images. Cities 2022, 127, 103734. [Google Scholar] [CrossRef]
- Kim, Y.; Yeo, H.; Lim, L. Sustainable, Walkable Cities for the Elderly: Identification of the Built Environment for Walkability by Activity Purpose. Sustain. Cities Soc. 2024, 100, 105004. [Google Scholar] [CrossRef]
- Schipperijn, J.; Bentsen, P.; Troelsen, J.; Toftager, M.; Stigsdotter, U.K. Associations between Physical Activity and Characteristics of Urban Green Space. Urban For. Urban Green. 2013, 12, 109–116. [Google Scholar] [CrossRef]
- Vallecillo, S.; La Notte, A.; Zulian, G.; Ferrini, S.; Maes, J. Ecosystem Services Accounts: Valuing the Actual Flow of Nature-Based Recreation from Ecosystems to People. Ecol. Model. 2019, 392, 196–211. [Google Scholar] [CrossRef] [PubMed]
- Power, D.D.; Lambe, B.M.; Murphy, N.M. Using Systems Science Methods to Enhance the Work of National and Local Walking Partnerships: Practical Insights from Ireland. Eur. J. Public Health 2022, 32, i8–i13. [Google Scholar] [CrossRef]
- El-adaway, I.H.; Abotaleb, I.S.; Vechan, E. Social Network Analysis Approach for Improved Transportation Planning. J. Infrastruct. Syst. 2017, 23, 5016004. [Google Scholar] [CrossRef]
- Wang, X.-C.; Wang, C.-Y.; Kim, H.-H. Research on the Characteristics of Chinese Tourists Flow to Thailand: Application of the Social Network Analysis (SNA) Method. J. Asian Finance Econ. Bus. 2021, 8, 243–251. [Google Scholar] [CrossRef]
- Song, Z.; Liu, W. Changes in the Attraction Area and Network Structure of Recreation Flows in Urban Green, Blue and Grey Spaces under the Impact of the COVID-19 Pandemic. Cities 2024, 146, 104744. [Google Scholar] [CrossRef]
- Shi, H.; Yao, L.; Liu, Q.; Wang, Y.; Wei, Z.; Zhao, M.; Ma, D. From Trajectories to Network: Delineating the Spatial Pattern of Recreational Walking in Guangzhou. Appl. Geogr. 2024, 170, 103344. [Google Scholar] [CrossRef]
- Liu, S.; Shen, P.; Huang, Y.; Jiang, L.; Feng, Y. Spatial Distribution Changes in Nature-Based Recreation Service Supply from 2008 to 2018 in Shanghai, China. Land 2022, 11, 1862. [Google Scholar] [CrossRef]
- Chen, J.; Tao, Z.; Wu, W.; Wang, L.; Chen, D. Influence of Urban Park Pathway Features on the Density and Intensity of Walking and Running Activities: A Case Study of Shanghai City. Land 2024, 13, 156. [Google Scholar] [CrossRef]
- Fan, P.; Wan, G.; Xu, L.; Park, H.; Xie, Y.; Liu, Y.; Yue, W.; Chen, J. Walkability in Urban Landscapes: A Comparative Study of Four Large Cities in China. Landsc. Ecol. 2018, 33, 323–340. [Google Scholar] [CrossRef]
- Giuliani, G.; Petri, E.; Interwies, E.; Vysna, V.; Guigoz, Y.; Ray, N.; Dickie, I. Modelling Accessibility to Urban Green Areas Using Open Earth Observations Data: A Novel Approach to Support the Urban SDG in Four European Cities. Remote Sens. 2021, 13, 422. [Google Scholar] [CrossRef]
- Fei, W.J.; Gao, X.F. A Review on Disaster Prevention and Reduction Function of Urban Green Space in China. J. Nanjing For. Univ. 2020, 44, 222. [Google Scholar] [CrossRef]
- Cai, Z.; Gao, D.; Xiao, X.; Zhou, L.; Fang, C. The Flow of Green Exercise, Its Characteristics, Mechanism, and Pattern in Urban Green Space Networks: A Case Study of Nangchang, China. Land 2023, 12, 673. [Google Scholar] [CrossRef]
- Zhou, L.; Lai, Y. Urban Spatial Heat Resilience Indicator Based on Running Activity Z-Score. Urban Sci. 2025, 9, 34. [Google Scholar] [CrossRef]
- Shi, H.; Huang, H.; Ma, D.; Chen, L.; Zhao, M. Capturing Urban Recreational Hotspots from GPS Data: A New Framework in the Lens of Spatial Heterogeneity. Comput. Environ. Urban Syst. 2023, 103, 101972. [Google Scholar] [CrossRef]
- Liu, W.; Wang, B.; Yang, Y.; Mou, N.; Zheng, Y.; Zhang, L.; Yang, T. Cluster Analysis of Microscopic Spatio-Temporal Patterns of Tourists’ Movement Behaviors in Mountainous Scenic Areas Using Open GPS-Trajectory Data. Tour. Manag. 2022, 93, 104614. [Google Scholar] [CrossRef]
- Yun, H.J.; Kang, D.J.; Lee, M.J. Spatiotemporal Distribution of Urban Walking Tourists by Season Using GPS-Based Smartphone Application. Asia Pac. J. Tour. Res. 2018, 23, 1047–1061. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, S.; Park, D.-S.; Hao, F.; Lee, H. A Novel Community Detection Method of Social Networks for the Well-Being of Urban Public Spaces. Land 2022, 11, 716. [Google Scholar] [CrossRef]
- Xu, Y.; Belyi, A.; Santi, P.; Ratti, C. Quantifying Segregation in an Integrated Urban Physical-Social Space. J. R. Soc. Interface 2019, 16, 20190536. [Google Scholar] [CrossRef]
- Chen, J.; Chang, Z. Rethinking Urban Green Space Accessibility: Evaluating and Optimizing Public Transportation System through Social Network Analysis in Megacities. Landsc. Urban Plan. 2015, 143, 150–159. [Google Scholar] [CrossRef]
- Hagberg, A.; Swart, P.J.; Schult, D.A. Exploring Network Structure, Dynamics, and Function Using NetworkX; Los Alamos National Laboratory (LANL): Los Alamos, NM, USA, 2008. [Google Scholar]
- Newman, M.E.J. Modularity and Community Structure in Networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef] [PubMed]
- Tulin, M.; Pollet, T.V.; Lehmann-Willenbrock, N. Perceived Group Cohesion versus Actual Social Structure: A Study Using Social Network Analysis of Egocentric Facebook Networks. Soc. Sci. Res. 2018, 74, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Duan, J.; Luo, M.; Zhan, H.; Liu, M.; Peng, W. How Did Built Environment Affect Urban Vitality in Urban Waterfronts? A Case Study in Nanjing Reach of Yangtze River. ISPRS Int. J. Geo-Inf. 2021, 10, 611. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, H.; Gou, Z.; Yi, M. Spatiotemporal Patterns of the Use of Green Space by White-Collar Workers in Chinese Cities: A Study in Shenzhen. Land 2021, 10, 1006. [Google Scholar] [CrossRef]
- Xu, S.; Yuan, S.; Li, J.; Gao, X.; Hu, J. Urban Park Green Space Use Analysis Based on Trajectory Big Data: Experience from a Medium–Sized City in China. Heliyon 2024, 10, e26445. [Google Scholar] [CrossRef]
- Jiao, H.; Li, C.; Yu, Y.; Peng, Z. Urban Public Green Space Equity against the Context of High-Speed Urbanization in Wuhan, Central China. Sustainability 2020, 12, 9394. [Google Scholar] [CrossRef]
- Chen, N.-N.; Kang, S.-Z.; Zhao, Y.-H.; Zhou, Y.-J.; Yan, J.; Lu, Y.-R. Construction of Ecological Network in Qinling Mountains of Shaanxi, China Based on MSPA and MCR Model. Chin. J. Appl. Ecol. 2021, 32, 1545–1553. [Google Scholar] [CrossRef]
- Tang, F.; Zhou, X.; Wang, L.; Zhang, Y.; Fu, M.; Zhang, P. Linking Ecosystem Service and MSPA to Construct Landscape Ecological Network of the Huaiyang Section of the Grand Canal. Land 2021, 10, 919. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Godron, M. Landscape Ecology; Wiley: Chichester, UK, 1986. [Google Scholar]
- Kong, F.; Yin, H.; Nakagoshi, N.; Zong, Y. Urban Green Space Network Development for Biodiversity Conservation: Identification Based on Graph Theory and Gravity Modeling. Landsc. Urban Plan. 2010, 95, 16–27. [Google Scholar] [CrossRef]
- Tian, Y.; Jim, C.Y.; Wang, H. Assessing the Landscape and Ecological Quality of Urban Green Spaces in a Compact City. Landsc. Urban Plan. 2014, 121, 97–108. [Google Scholar] [CrossRef]
- Wright Wendel, H.E.; Zarger, R.K.; Mihelcic, J.R. Accessibility and Usability: Green Space Preferences, Perceptions, and Barriers in a Rapidly Urbanizing City in Latin America. Landsc. Urban Plan. 2012, 107, 272–282. [Google Scholar] [CrossRef]
- Liu, T.; Yu, L.; Chen, X.; Chen, Y.; Li, X.; Liu, X.; Cao, Y.; Zhang, F.; Zhang, C.; Gong, P. Identifying Potential Urban Greenways by Considering Green Space Exposure Levels and Maximizing Recreational Flows: A Case Study in Beijing’s Built-up Areas. Land 2024, 13, 1793. [Google Scholar] [CrossRef]
- Gieseking, J.J.; Mangold, W.; Katz, C. The People, Place, and Space Reader; Taylor & Francis: London, UK, 2014. [Google Scholar]
- Nesbitt, L.; Meitner, M.J.; Girling, C.; Sheppard, S.R.J.; Lu, Y. Who Has Access to Urban Vegetation? A Spatial Analysis of Distributional Green Equity in 10 US Cities. Landsc. Urban Plan. 2019, 181, 51–79. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban Green Space, Public Health, and Environmental Justice: The Challenge of Making Cities ‘Just Green Enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Sister, C.; Wolch, J.; Wilson, J. Got Green? Addressing Environmental Justice in Park Provision. Geojournal 2010, 75, 229–248. [Google Scholar] [CrossRef]
- Hillsdon, M.; Panter, J.; Foster, C.; Jones, A. The Relationship between Access and Quality of Urban Green Space with Population Physical Activity. Public Health 2006, 120, 1127–1132. [Google Scholar] [CrossRef]
- Rey Gozalo, G.; Barrigón Morillas, J.M.; Montes González, D. Perceptions and Use of Urban Green Spaces on the Basis of Size. Urban For. Urban Green. 2019, 46, 126470. [Google Scholar] [CrossRef]
- Gavrilidis, A.-A.; Zakerhaghighi, K.; Popa, A.-M.; Akbarian, S.Z.; Onose, D.-A.; Grădinaru, S.R.; Slave, R.-A. Perceptions of Cultural Ecosystem Services Provision by Small Public Urban Green Spaces: Perspectives from Different Cultural Backgrounds. Urban Ecosyst. 2024, 27, 699–716. [Google Scholar] [CrossRef]
- Gehl, J. Cities for People; Island Press: Washington, USA, 2013. [Google Scholar]
- Yu, P.; Yung, E.H.K.; Chan, E.H.W.; Wang, S.; Chen, Y.; Chen, Y. Capturing Open Space Fragmentation in High–Density Cities: Towards Sustainable Open Space Planning. Appl. Geogr. 2023, 154, 102927. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Recreation–Amenity Use and Contingent Valuation of Urban Greenspaces in Guangzhou, China. Landsc. Urban Plan. 2006, 75, 81–96. [Google Scholar] [CrossRef]
- Lynch, K. Good City Form; MIT Press: Cambridge, MA, USA, 1984; ISBN 0-262-62046-4. [Google Scholar]
- van Eldijk, J.; Gil, J.; Marcus, L. Disentangling Barrier Effects of Transport Infrastructure: Synthesising Research for the Practice of Impact Assessment. Eur. Transp. Res. Rev. 2022, 14, 1. [Google Scholar] [CrossRef]
- Anciaes, P.; Nascimento, J.M. do Road Traffic Reduces Pedestrian Accessibility—Quantifying the Size and Distribution of Barrier Effects in an African City. J. Transp. Health 2022, 27, 101522. [Google Scholar] [CrossRef]
- Alalouch, C.; Al-Hajri, S.; Naser, A.; Al Hinai, A. The Impact of Space Syntax Spatial Attributes on Urban Land Use in Muscat: Implications for Urban Sustainability. Sustain. Cities Soc. 2019, 46, 101417. [Google Scholar] [CrossRef]
- Roper, J.; Ng, M.; Huck, J.; Pettit, C. A Participatory Mapping Approach to Capturing Perceived Walkability. Transp. Res. Part Policy Pract. 2024, 186, 104133. [Google Scholar] [CrossRef]
- Rigolon, A. A Complex Landscape of Inequity in Access to Urban Parks: A Literature Review. Landsc. Urban Plan. 2016, 153, 160–169. [Google Scholar] [CrossRef]
Dimension | Metric | Formula | Description |
---|---|---|---|
Node Importance | Degree Centrality | is the number of direct connections from node v to other nodes, n is the total number of nodes in the network | |
Closeness Centrality | is the shortest path distance from node v to node t. The shorter the average shortest path distance from node v to all other nodes in the network, the higher the closeness centrality | ||
Regional Differences | Modularity | is an indicator function that equals 1 when i and j belong to the same community and 0 otherwise. | |
Overall Characteristics | Network Density | m is the number of edges in the network, n is the total number of nodes. | |
Homophily Index | m is the number of edges in the network, M is the number of edges connecting nodes with the same attributes. H closer to 1 indicates nodes with similar attributes tend to connect with each other. |
Panel A: Rest Days | |||
Indicators | Large UGS | Community UGS | Pocket UGS |
Mean Degree Centrality | 0.0305 | 0.0243 | 0.0257 |
Mean Closeness Centrality | 0.1641 | 0.1634 | 0.1787 |
High Degree Centrality | 18 (37.5%) | 26 (27.1%) | 7 (36.8%) |
Medium Degree Centrality | 12 (25.0%) | 18 (18.8%) | 5 (26.3%) |
Low Degree Centrality | 18 (37.5%) | 52 (54.2%) | 7 (36.8%) |
High Closeness Centrality | 14 (29.2%) | 21 (21.9%) | 6 (31.6%) |
Medium Closeness Centrality | 22 (45.8%) | 49 (51.0%) | 10 (52.6%) |
Low Closeness Centrality | 12 (25.0%) | 26 (27.1%) | 3 (15.8%) |
Panel B: Workdays | |||
Indicators | Large UGS | Community UGS | Pocket UGS |
Mean Degree Centrality | 0.0233 | 0.0179 | 0.0170 |
Mean Closeness Centrality | 0.1551 | 0.1445 | 0.1702 |
High Degree Centrality | 23 (48.9%) | 24 (26.7%) | 6 (30.0%) |
Medium Degree Centrality | 15 (31.9%) | 34 (37.8%) | 8 (40.0%) |
Low Degree Centrality | 9 (19.2%) | 32 (35.6%) | 6 (30.0%) |
High Closeness Centrality | 10 (21.3%) | 23 (25.6%) | 8 (40.0%) |
Medium Closeness Centrality | 25 (53.2%) | 40 (44.4%) | 11 (55.0%) |
Low Closeness Centrality | 12 (25.5%) | 27 (30.0%) | 1 (5.0%) |
Panel A: Workdays | ||
Community ID | Density | Homophily Index |
1 | 0.2857 | 0.3333 |
2 | 0.1286 | 0.4074 |
3 | 0.1619 | 0.3529 |
4 | 0.2182 | 0.5000 |
5 | 0.2545 | 0.2857 |
6 | 0.1500 | 0.3333 |
7 | 0.2857 | 0.4333 |
8 | 0.4000 | 0.1667 |
9 | 0.1579 | 0.3333 |
10 | 0.4000 | 0.2500 |
11 | 0.1818 | 0.2500 |
Overall | 0.0298 | 0.3369 |
Panel B: Rest Days | ||
Community ID | Density | Homophily Index |
1 | 0.2667 | 0.5000 |
2 | 0.6667 | 0.3571 |
3 | 0.4643 | 0.3846 |
4 | 0.4000 | 0.3333 |
5 | 0.2857 | 0.2500 |
6 | 0.5000 | 0.0000 |
7 | 0.4762 | 0.3000 |
8 | 0.4000 | 0.5000 |
9 | 0.7333 | 0.2727 |
10 | 0.4000 | 0.2500 |
Overall | 0.0468 | 0.3787 |
Community ID | Density | Homophily Index |
---|---|---|
1 | 0.0539 | 0.4091 |
2 | 0.4394 | 0.3448 |
3 | 0.1630 | 0.4444 |
4 | 0.1168 | 0.4634 |
5 | 0.1058 | 0.3500 |
6 | 0.2023 | 0.3409 |
7 | 0.4000 | 0.5000 |
8 | 1.0000 | 0.4000 |
Overall | 0.0360 | 0.4068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Bai, Z. Social Network Analysis Reveals Spatiotemporal Patterns of Green Space Recreational Walking Between Workdays and Rest Days. Urban Sci. 2025, 9, 111. https://doi.org/10.3390/urbansci9040111
Zhang J, Bai Z. Social Network Analysis Reveals Spatiotemporal Patterns of Green Space Recreational Walking Between Workdays and Rest Days. Urban Science. 2025; 9(4):111. https://doi.org/10.3390/urbansci9040111
Chicago/Turabian StyleZhang, Jiali, and Zhaocheng Bai. 2025. "Social Network Analysis Reveals Spatiotemporal Patterns of Green Space Recreational Walking Between Workdays and Rest Days" Urban Science 9, no. 4: 111. https://doi.org/10.3390/urbansci9040111
APA StyleZhang, J., & Bai, Z. (2025). Social Network Analysis Reveals Spatiotemporal Patterns of Green Space Recreational Walking Between Workdays and Rest Days. Urban Science, 9(4), 111. https://doi.org/10.3390/urbansci9040111