A Mixed Element Algorithm Based on the Modified L1 Crank–Nicolson Scheme for a Nonlinear Fourth-Order Fractional Diffusion-Wave Model
Abstract
:1. Introduction
2. Numerical Approximation and Stability
3. A Priori Error Estimate
4. Numerical Tests
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of Open Access Journals |
TLA | Three-letter acronym |
LD | Linear dichroism |
References
- Nikan, O.; Tenreiro Machado, J.A.; Golbabai, A. Numerical solution of time-fractional fourth-order reaction-diffusion model arising in composite environments. Appl. Math. Model. 2021, 89, 819–836. [Google Scholar] [CrossRef]
- Hu, X.L.; Zhang, L.M. On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems. Appl. Math. Comput. 2012, 218, 5019–5034. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, Z.C.; Li, H.; He, S. A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 2014, 243, 703–717. [Google Scholar] [CrossRef]
- Agrawal, O.P. A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain. Comput. Struct. 2001, 79, 1497–1501. [Google Scholar] [CrossRef]
- Jafari, H.; Dehghan, M.; Sayevand, K. Solving a fourth-order fractional diffusion-wave equation in a bounded domain by decomposition method. Numer. Meth. Part. Differ. Equ. 2008, 24, 1115–1126. [Google Scholar] [CrossRef]
- Liu, N.; Liu, Y.; Li, H.; Wang, J.F. Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term. Comput. Math. Appl. 2018, 75, 3521–3536. [Google Scholar]
- Liu, Y.; Du, Y.W.; Li, H.; Li, J.C.; He, S. A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative. Comput. Math. Appl. 2015, 70, 2474–2492. [Google Scholar] [CrossRef]
- Liu, Y.; Du, Y.W.; Li, H.; He, S.; Gao, W. Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem. Comput. Math. Appl. 2015, 70, 573–591. [Google Scholar] [CrossRef]
- Ji, C.C.; Sun, Z.Z.; Hao, Z.P. Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions. J. Sci. Comput. 2016, 66, 1148–1174. [Google Scholar] [CrossRef]
- Ran, M.H.; Zhang, C.J. New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order. Appl. Numer. Math. 2018, 129, 58–70. [Google Scholar] [CrossRef]
- Nandal, S.; Pandey, D.N. Numerical solution of non-linear fourth order fractional sub-diffusion wave equation with time delay. Appl. Math. Comput. 2020, 369, 124900. [Google Scholar] [CrossRef]
- Sun, H.; Sun, Z.Z.; Du, R. A linearized second-order difference scheme for the nonlinear time-fractional fourth-order reaction-diffusion equation. Numer. Math. Theory Meth. Appl. 2019, 12, 1168–1190. [Google Scholar]
- Huang, J.F.; Qiao, Z.; Zhang, J.N.; Arshad, S.; Tang, Y.F. Two linearized schemes for time fractional nonlinear wave equations with fourth-order derivative. J. Appl. Math. Comput. 2021, 66, 561–579. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Dehghan, M. Direct meshless local Petrov–Galerkin (DMLPG) method for time-fractional fourth-order reaction–diffusion problem on complex domains. Comput. Math. Appl. 2020, 79, 876–888. [Google Scholar] [CrossRef]
- Yang, X.H.; Zhang, H.X.; Xu, D. Orthogonal spline collocation method for the fourth-order diffusion system. Comput. Math. Appl. 2018, 75, 3172–3185. [Google Scholar] [CrossRef]
- Zhang, H.X.; Yang, X.H.; Xu, D. A high-order numerical method for solving the 2D fourth-order reaction-diffusion equation. Numer. Algor. 2019, 80, 849–877. [Google Scholar] [CrossRef]
- Tariq, H.; Akram, G. Quintic spline technique for time fractional fourth-order partial differential equation. Numer. Meth. Part Differ. Equ. 2017, 33, 445–466. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Z.B.; Vong, S.K. Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems. Int. J. Comput. Math. 2016, 93, 1665–1682. [Google Scholar] [CrossRef]
- Du, Y.W.; Liu, Y.; Li, H.; Fang, Z.C.; He, S. Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J. Comput. Phys. 2017, 344, 108–126. [Google Scholar] [CrossRef]
- Li, X.H.; Wong, P.J.Y. An efficient numerical treatment of fourth-order fractional diffusion-wave problems. Numer. Meth. Part. Differ. Equ. 2018, 34, 1324–1347. [Google Scholar] [CrossRef]
- Grasselli, M.; Pierre, M. A splitting method for the Cahn-Hilliard equation with inertial term. Math. Model. Meth. Appl. Sci. 2010, 20, 1363–1390. [Google Scholar] [CrossRef] [Green Version]
- Zeng, F.H.; Li, C.P. A new Crank-Nicolson finite element method for the time-fractional subdiffusion equation. Appl. Numer. Math. 2017, 121, 82–95. [Google Scholar] [CrossRef]
- Sun, Z.Z.; Wu, X.N. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56, 193–209. [Google Scholar] [CrossRef]
- Lin, Y.M.; Xu, C.J. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225, 1533–1552. [Google Scholar] [CrossRef]
- Ciarlet, P.G. The Finite Element Method for Elliptic Problems; Elsevier: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Li, D.F.; Zhang, J.W.; Zhang, Z.M. Unconditionally optimal error estimates of a linearized galerkin method for nonlinear time fractional reaction-subdiffusion equations. J. Sci. Comput. 2018, 76, 848–866. [Google Scholar] [CrossRef]
- Bu, W.P.; Liu, X.T.; Tang, Y.F.; Yang, J.Y. Finite element multigrid method for multi-term time fractional advection diffusion equations. Int. J. Model. Simulat. Sci. Comput. 2015, 6, 1540001. [Google Scholar] [CrossRef]
- Yue, X.Q.; Shu, S.; Xu, X.; Bu, W.; Pan, K. Parallel-in-time multigrid for space–time finite element approximations of two-dimensional space-fractional diffusion equations. Comput. Math. Appl. 2019, 78, 3471–3484. [Google Scholar] [CrossRef]
h | Order | CPU-Time (s) | ||
---|---|---|---|---|
1.1 | 4.1181 | 1.13 | ||
1.3341 | 1.9590 | 4.04 | ||
5.5001 | 1.9855 | 19.03 | ||
1.5 | 4.1175 | 1.10 | ||
1.3339 | 1.9590 | 4.02 | ||
5.4991 | 1.9855 | 19.40 | ||
1.9 | 4.1169 | 1.14 | ||
1.3336 | 1.9591 | 4.07 | ||
5.4977 | 1.9857 | 19.33 |
h | Order | CPU-Time (s) | ||
---|---|---|---|---|
1.1 | 1.2293 | 1.13 | ||
3.9815 | 1.9594 | 4.04 | ||
1.6417 | 1.9851 | 19.03 | ||
1.5 | 1.2292 | 1.10 | ||
3.9816 | 1.9593 | 4.02 | ||
1.6417 | 1.9852 | 19.40 | ||
1.9 | 1.2293 | 1.14 | ||
3.9819 | 1.9592 | 4.07 | ||
1.6418 | 1.9852 | 19.33 |
h | Order | CPU-Time (s) | ||
---|---|---|---|---|
1.1 | 1.8858 | 1.13 | ||
5.9584 | 2.0024 | 4.04 | ||
2.4398 | 2.0007 | 19.03 | ||
1.5 | 1.8853 | 1.10 | ||
5.9568 | 2.0025 | 4.02 | ||
2.4391 | 2.0007 | 19.40 | ||
1.9 | 1.8849 | 1.14 | ||
5.9550 | 2.0026 | 4.07 | ||
2.4381 | 2.0010 | 19.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yin, B.; Liu, Y.; Li, H.; Fang, Z. A Mixed Element Algorithm Based on the Modified L1 Crank–Nicolson Scheme for a Nonlinear Fourth-Order Fractional Diffusion-Wave Model. Fractal Fract. 2021, 5, 274. https://doi.org/10.3390/fractalfract5040274
Wang J, Yin B, Liu Y, Li H, Fang Z. A Mixed Element Algorithm Based on the Modified L1 Crank–Nicolson Scheme for a Nonlinear Fourth-Order Fractional Diffusion-Wave Model. Fractal and Fractional. 2021; 5(4):274. https://doi.org/10.3390/fractalfract5040274
Chicago/Turabian StyleWang, Jinfeng, Baoli Yin, Yang Liu, Hong Li, and Zhichao Fang. 2021. "A Mixed Element Algorithm Based on the Modified L1 Crank–Nicolson Scheme for a Nonlinear Fourth-Order Fractional Diffusion-Wave Model" Fractal and Fractional 5, no. 4: 274. https://doi.org/10.3390/fractalfract5040274
APA StyleWang, J., Yin, B., Liu, Y., Li, H., & Fang, Z. (2021). A Mixed Element Algorithm Based on the Modified L1 Crank–Nicolson Scheme for a Nonlinear Fourth-Order Fractional Diffusion-Wave Model. Fractal and Fractional, 5(4), 274. https://doi.org/10.3390/fractalfract5040274