Finite-Time Stability for Caputo Nabla Fractional-Order Switched Linear Systems
Abstract
:1. Introduction
- i.
- In order to overcome the above-mentioned problems, we provide the monotonicity of the discrete Mittag-Leffler function, and obtained the expression of a solution for a Caputo nabla fractional-order switched linear system by using the discrete unit step function.
- ii.
- The sufficient conditions of finite-time stability for a Caputo nabla fractional-order switched linear system are provided based on the discrete Grönwall inequality and the monotonicity of the discrete Mittag-Leffler function.
2. Preliminaries
3. Main Results
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandav, K.M.; Mahajan, S.B.; Sanjeevikumar, P. Hybrid DC-DC High Step-Up Multilevel Boost Converter Using Switched Inductor Network for Renewable Energy Applications. In Proceedings of the International Conference on Renewable Energy and Resources, Vancouver, BC, Canada, 11 December 2017; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Jin, J.; Green, A.; Gans, N. A Stable Switched-System Approach to Obstacle Avoidance for Mobile Robots in SE(2). In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; IEEE: New York, NY, USA, 2014; pp. 1533–1539. [Google Scholar]
- Xing, W.; Zhao, Y.; Karimi, H.R. Convergence Analysis on Multi-AUV Systems with Leader-Follower Architecture. IEEE Access 2017, 5, 853–868. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Nisar, K.S.; Logeswari, K.; Vijayaraj, V.; Baskonus, H.M.; Ravichandran, C. Fractional Order Modeling the Gemini Virus in Capsicum annuum with Optimal Control. Fractal Fract. 2022, 6, 61. [Google Scholar] [CrossRef]
- Wu, G.-C.; Deng, Z.-G.; Baleanu, D.; Zeng, D.-Q. New variable-order fractional chaotic systems for fast image encryption. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 083103. [Google Scholar] [CrossRef] [PubMed]
- Nisar, K.S.; Jothimani, K.; Kaliraj, K.; Ravichandran, C. An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain. Chaos Solitons Fractals 2021, 146, 110915. [Google Scholar] [CrossRef]
- Goodrich, C.; Peterson, A.C. Discrete Fractional Calculus; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Chen, Y.; Li, X.; Liu, S. Finite-time stability of ABC type fractional delay difference equations. Chaos Solitons Fractals 2021, 152, 111430. [Google Scholar] [CrossRef]
- Wei, Y. Lyapunov Stability Theory for Nonlinear Nabla Fractional Order Systems. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3246–3250. [Google Scholar] [CrossRef]
- Djenina, N.; Ouannas, A.; Oussaeif, T.-E.; Grassi, G.; Batiha, I.M.; Momani, S.; Albadarneh, R.B. On the Stability of Incommensurate h-Nabla Fractional-Order Difference Systems. Fractal Fract. 2022, 6, 158. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Hamasalh, F.K. On Discrete Delta Caputo–Fabrizio Fractional Operators and Monotonicity Analysis. Fractal Fract. 2021, 5, 116. [Google Scholar] [CrossRef]
- Wei, Y.; Wei, Y.; Chen, Y. Mittag–Leffler stability of nabla discrete fractional-order dynamic systems. Nonlinear Dyn. 2020, 101, 407–417. [Google Scholar] [CrossRef]
- Wu, G.; Baleanu, D.; Zeng, S. Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion. Commun. Nonlinear Sci. Numer. Simul. 2018, 57, 299–308. [Google Scholar] [CrossRef]
- Li, X.; Tian, X. Fractional order thermo-viscoelastic theory of biological tissue with dual phase lag heat conduction model. Appl. Math. Model. 2021, 95, 612–622. [Google Scholar] [CrossRef]
- Kapoulea, S.; Psychalinos, C.; Elwakil, A.S. Realizations of simple fractional-order capacitor emulators with electronically tunable capacitance. Integr. VLSI J. 2019, 69, 225–233. [Google Scholar] [CrossRef]
- Trutna, C.A.; Rouze, N.C.; Palmeri, M.L.; Nightingale, K.R. Measurement of Viscoelastic Material Model Parameters Using Fractional Derivative Group Shear Wave Speeds in Simulation and Phantom Data. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 67, 286–295. [Google Scholar] [CrossRef]
- Radwan, A.G.; Emira, A.A.; AbdelAty, A.M.; Azar, A.T. Modeling and analysis of fractional order DC-DC converter. ISA Trans. 2018, 82, 184–199. [Google Scholar] [CrossRef]
- Huang, C.; Dong, L. Beam propagation management in a fractional Schrödinger equation. Sci. Rep. 2017, 7, 5442. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.A.T.; Mata, M.E.; Lopes, A.M. Fractional State Space Analysis of Economic Systems. Entropy 2015, 17, 5402–5421. [Google Scholar] [CrossRef] [Green Version]
- Ichise, M.; Nagayanagi, Y.; Kojima, T. An analog simulation of non-integer order transfer functions for analysis of electrode processes. J. Electroanal. Chem. Interfacial Electrochem. 1971, 33, 253–265. [Google Scholar] [CrossRef]
- Feng, T.; Guo, L.; Wu, B.; Chen, Y. Stability analysis of switched fractional-order continuous-time systems. Nonlinear Dyn. 2020, 102, 2467–2478. [Google Scholar] [CrossRef]
- Domek, S. Approximation and stability analysis of some kinds of switched fractional linear systems. In Polish Control Conference; Springer: Cham, Switzerland, 2017; Volume 577, pp. 442–454. [Google Scholar] [CrossRef]
- Wang, Q.X.; Long, F.; Mo, L.P.; Yang, J. Exponential Stability of Caputo Fractional Order Switched Linear System, Control Theory & Applications. 2022, pp. 1–8. Available online: https://kns.cnki.net/kcms/detail/44.1240.tp.20220429.1748.046.html (accessed on 18 October 2022).
- Wu, C.; Liu, X. Lyapunov and external stability of Caputo fractional order switching systems. Nonlinear Anal. Hybrid Syst. 2019, 34, 131–146. [Google Scholar] [CrossRef]
- Tian, Y.; Cai, Y.; Sun, Y. Stability of switched nonlinear time-delay systems with stable and unstable subsystems. Nonlinear Anal. Hybrid Syst. 2017, 24, 58–68. [Google Scholar] [CrossRef]
- Lu, J.; She, Z.; Ge, S.S.; Jiang, X. Stability analysis of discrete-time switched systems via Multi-step multiple Lyapunov-like functions. Nonlinear Anal. Hybrid Syst. 2018, 27, 44–61. [Google Scholar] [CrossRef]
- Li, L.; Liu, L.; Yin, Y. Stability Analysis for Discrete-Time Switched Nonlinear System Under MDADT Switching. IEEE Access 2017, 5, 18646–18653. [Google Scholar] [CrossRef]
- Yu, Q.; Yin, Y.; Zhao, X. Stability analysis of switched systems with extended average dwell time. Trans. Inst. Meas. Control 2017, 40, 1425–1434. [Google Scholar] [CrossRef]
- Yu, Q.; Lv, H. Stability analysis for discrete-time switched systems with stable and unstable modes based on a weighted average dwell time approach. Nonlinear Anal. Hybrid Syst. 2020, 38, 100949. [Google Scholar] [CrossRef]
- Amato, F.; Ambrosino, R.; Ariola, M. Finite-Time Stability and Control; Springer: London, UK, 2014. [Google Scholar]
- Mai, V.T.; Dinh, C.H. Robust Finite-Time Stability and Stabilization of a Class of Fractional-Order Switched Nonlinear Systems. J. Syst. Sci. Complex. 2019, 32, 1479–1497. [Google Scholar] [CrossRef]
- Chen, L.; Yin, H.; Wu, R.; Yin, L.; Chen, Y. Robust dissipativity and dissipation of a class of fractional-order uncertain linear systems. IET Control Theory Appl. 2019, 13, 1454–1465. [Google Scholar] [CrossRef]
- Hu, J. Comments on “Lyapunov and external stability of Caputo fractional order switching systems”. Nonlinear Anal. Hybrid Syst. 2021, 40, 101016. [Google Scholar] [CrossRef]
- Din, A.; Abidin, M.Z. Analysis of fractional-order vaccinated Hepatitis-B epidemic model with Mittag-Leffler kernels. Math. Model. Numer. Simul. Appl. 2022, 2, 59–72. [Google Scholar] [CrossRef]
- Lu, Q.; Zhu, Y.; Li, B. Finite-time stability in mean for nabla uncertain fractional order linear difference systems. Fractals 2021, 29, 2150097. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Atici, F. On the definitions of nabla fractional operators. Abstr. Appl. Anal. 2012, 406757, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wyrwas, M.; Mozyrska, D.; Girejko, E. Stability of discrete fractional-order nonlinear systems with the nabla Caputo difference. IFAC Proc. Vol. 2013, 46, 167–171. [Google Scholar] [CrossRef]
- Chen, C.; Mert, R.; Jia, B. Gronwall’s inequality for a nabla fractional difference system with a retarded argument and an application. J. Differ. Equ. Appl. 2019, 25, 855–868. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Jarad, F.; Baleanu, D. A semigroup-like Property for Discrete Mittag-Leffler Functions. Adv. Differ. Equ. 2012, 2012, 72. [Google Scholar] [CrossRef] [Green Version]
- Abdeljawad, T.; Baleanu, D. Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel. Chaos Solitons Fractals 2017, 102, 106–110. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Long, F.; Wang, Q.; Tian, J.; Yang, X.; Mo, L. Finite-Time Stability for Caputo Nabla Fractional-Order Switched Linear Systems. Fractal Fract. 2022, 6, 621. https://doi.org/10.3390/fractalfract6110621
Xu P, Long F, Wang Q, Tian J, Yang X, Mo L. Finite-Time Stability for Caputo Nabla Fractional-Order Switched Linear Systems. Fractal and Fractional. 2022; 6(11):621. https://doi.org/10.3390/fractalfract6110621
Chicago/Turabian StyleXu, Peng, Fei Long, Qixiang Wang, Ji Tian, Xiaowu Yang, and Lipo Mo. 2022. "Finite-Time Stability for Caputo Nabla Fractional-Order Switched Linear Systems" Fractal and Fractional 6, no. 11: 621. https://doi.org/10.3390/fractalfract6110621
APA StyleXu, P., Long, F., Wang, Q., Tian, J., Yang, X., & Mo, L. (2022). Finite-Time Stability for Caputo Nabla Fractional-Order Switched Linear Systems. Fractal and Fractional, 6(11), 621. https://doi.org/10.3390/fractalfract6110621