Fractal Clustering as Spatial Variability of Magnetic Anomalies Measurements for Impending Earthquakes and the Thermodynamic Fractal Dimension
Abstract
:1. Introduction
2. Theoretical Model
Mathematical Description
3. Expected Atmosphere and Ionosphere Measurements
3.1. Diffusion Effect for Other Pre-Earthquake Signals
3.2. Example of by Considering Geometrical Attenuation of Magnetic Clustering
4. Discussion
5. Conclusions
- Diffusive phenomena could not be a reliable precursor tool by itself.
- The common fractal origin of the complex multiparametric anomalies prior to impending earthquakes must follow similar temporal and spatial properties.
- Each effort regarding earthquake prediction must be done by considering several physical phenomena.
- The Lithosphere–Atmosphere–Ionosphere coupling (LAIC effect) could be regarded as the results of the localization of the anomalies described in the seismo-electromagnetic theory.
- No explanation of the LAIC effect could be done with no consideration of the common origin within the lithospheric dynamics.
- The identification of the factor for each diffusive and non-diffusive phenomena could allow the development of further early warning systems.
- The rise of anomalies could be related to changes in frictional and seismic coupling parameters on faults.
- It can be defined by a thermodynamic fractal dimension in terms of forces, fluxes and entropy.
- The thermodynamic fractal dimension might be reduced (increased) when large (small) scale forces are applied to the system.
- The thermodynamic fractal dimension is a physical parameter that describes the trade-off of the entropy increase between the smallest and largest scales of any self-affine system.
- In fractal surfaces, the smoothness (roughness), due to the entropy increase, is dominated by the large (small) scale.
- The decreases in the thermodynamic fractal dimension could be linked to the localization of anomalous pre-seismic signals and seismicity itself that are generated by large-scale stress increase.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ben-Zion, Y.; Zaliapin, I. Localization and coalescence of seismicity before large earthquakes. Geophys. J. Int. 2020, 223, 561–583. [Google Scholar] [CrossRef]
- Kato, A.; Ben-Zion, Y. The generation of large earthquakes. Nat. Rev. Earth Environ. 2021, 2, 26–39. [Google Scholar] [CrossRef]
- Sibson, R.H. Preparation zones for large crustal earthquakes consequent on fault-valve action. Earth Planets Space 2020, 72, 31. [Google Scholar] [CrossRef]
- McBeck, J.A.; Zhu, W.; Renard, F. The competition between fracture nucleation, propagation, and coalescence in dry and water-saturated crystalline rock. Solid Earth 2021, 12, 375–387. [Google Scholar] [CrossRef]
- De Santis, A.; De Franceschi, G.; Spogli, L.; Perrone, L.; Alfonsi, L.; Qamili, E.; Cianchini, G.; Di Giovambattista, R.; Salvi, S.; Filippi, E.; et al. Geospace perturbations induced by the Earth: The state of the art and future trends. Phys. Chem. Earth Parts A/B/C 2015, 85–86, 17–33. [Google Scholar] [CrossRef] [Green Version]
- Özsöz, İ.; Ankaya Pamukçu, O. Detection and interpretation of precursory magnetic signals preceding October 30, 2020 Samos earthquake. Turk. J. Earth Sci. 2021, 30, 748–757. [Google Scholar] [CrossRef]
- Dobrovolsky, I.R.; Zubkov, S.I.; Myachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Cordaro, E.G.; Venegas-Aravena, P.; Laroze, D. Long-term magnetic anomalies and their possible relationship to the latest greater Chilean earthquakes in the context of the seismo-electromagnetic theory. Nat. Hazards Earth Syst. Sci. 2021, 21, 1785–1806. [Google Scholar] [CrossRef]
- Venegas-Aravena, P.; Cordaro, E.G.; Laroze, D. A review and upgrade of the lithospheric dynamics in context of the seismo-electromagnetic theory. Nat. Hazards Earth Syst. Sci. 2019, 19, 1639–1651. [Google Scholar] [CrossRef] [Green Version]
- Vallianatos, F.; Tzanis, A. On the nature, scaling and spectral properties of pre-seismic ULF signals. Nat. Hazards Earth Syst. Sci. 2003, 3, 237–242. [Google Scholar] [CrossRef]
- McBeck, J.; Aiken, J.M.; Ben-Zion, Y.; Renard, F. Predicting the proximity to macroscopic failure using local strain populations from dynamic in situ X-ray tomography triaxial compression experiments on rocks. Earth Planet. Sci. Lett. 2020, 543, 116344. [Google Scholar] [CrossRef]
- McBeck, J.A.; Aiken, J.M.; Mathiesen, J.; Ben-Zion, Y.; Renard, F. Deformation Precursors to Catastrophic Failure in Rocks. Geophys. Res. Lett. 2020, 47, e2020GL090255. [Google Scholar] [CrossRef]
- Kandula, N.; Cordonnier, B.; Weiss, J.; Dysthe, D.K.; Renard, F. Dynamics of microscale precursors during brittle compressive failure in Carrara marble. J. Geophys. Res. 2019, 124, 6121–6139. [Google Scholar] [CrossRef]
- McBeck, J.; Ben-Zion, Y.; Renard, F. Fracture Network Localization Preceding Catastrophic Failure in Triaxial Compression Experiments on Rocks. Front. Earth Sci. 2021, 9, 778811. [Google Scholar] [CrossRef]
- Venegas-Aravena, P.; Cordaro, E.G.; Laroze, D. Natural Fractals as Irreversible Disorder: Entropy Approach from Cracks in the Semi Brittle-Ductile Lithosphere and Generalization. Entropy 2022, 24, 1337. [Google Scholar] [CrossRef]
- Stakhovsky, I.R. Scale Invariant Structure of Lithosphere Earthquake Source. In Processes in GeoMedia—Volume III; Chaplina, T., Ed.; Springer Geology: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman: San Francisco, CA, USA, 1983; 468p. [Google Scholar]
- Florios, K.; Contopoulos, I.; Christofilakis, V.; Tatsis, G.; Chronopoulos, S.; Repapis, C.; Tritakis, V. Pre-seismic Electromagnetic Perturbations in Two Earthquakes in Northern Greece. Pure Appl. Geophys. 2020, 177, 787–799. [Google Scholar] [CrossRef]
- Wang, J.-H. A compilation of precursor times of earthquakes in Taiwan. Terr. Atmos. Ocean. Sci. 2021, 32, 411–441. [Google Scholar] [CrossRef]
- Schekotov, A.; Hayakawa, M. Seismo-meteo-electromagnetic phenomena observed during a 5-year interval around the 2011 Tohoku earthquake. Phys. Chem. Earth 2015, 85–86, 167–173. [Google Scholar] [CrossRef]
- Xiong, P.; Long, C.; Zhou, H.; Battiston, R.; De Santis, A.; Ouzounov, D.; Zhang, X.; Shen, X. Pre-Earthquake Ionospheric Perturbation Identification Using CSES Data via Transfer Learning. Front. Environ. Sci. 2021, 9, 779255. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Perrone, L.; Campuzano, S.A.; Cianchini, G. Statistical correlation analysis of strong earthquakes and ionospheric electron density anomalies as observed by CSES-01. Il Nuovo Cim. C 2021, 44, 1–4. [Google Scholar] [CrossRef]
- Smirnova, N.A.; Hayakawa, M. Fractal characteristics of the ground-observed ULF emissions in relation to geomagnetic and seismic activities. J. Atmos. Sol. Terr. Phys. 2007, 69, 1833–1841. [Google Scholar] [CrossRef]
- Uritsky, V.; Smirnova, N.; Troyan, V.; Vallianatos, F. Critical dynamics of fractal fault systems and its role in the generation of pre-seismic electromagnetic emissions. Phys. Chem. Earth 2004, 29, 473–480. [Google Scholar] [CrossRef]
- Tozzi, R.; Masci, F.; Pezzopane, M. A stress test to evaluate the usefulness of Akaike information criterion in short-term earthquake prediction. Sci. Rep. 2020, 10, 21153. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, D.; De Santis, A.; Shen, X.; Campuzano, S.A.; Perrone, L.; Piscini, A.; Di Giovambattista, R.; Jin, S.; Ippolito, A.; Cianchini, G.; et al. Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 Mw = 7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data. J. Asian Earth Sci. 2020, 188, 104097. [Google Scholar] [CrossRef]
- Freund, F. Pre-earthquake signals: Underlying physical processes. J. Asian Earth Sci. 2011, 41, 383–400. [Google Scholar] [CrossRef]
- Stroh, A.N. The Formation of Cracks in Plastic Flow II. Philos. Trans. R. Soc. Lond. 1955, A232, 548–560. [Google Scholar] [CrossRef]
- Fan, H. Interfacial Zener-Stroh Crack. ASME J. Appl. Mech. 1994, 61, 829–834. [Google Scholar] [CrossRef]
- Bedford, J.R.; Moreno, M.; Deng, Z.; Oncken, O.; Schurr, B.; John, T.; Báez, J.C.; Bevis, M. Months-long thousand-kilometre-scale wobbling before great subduction earthquakes. Nature 2020, 580, 628–635. [Google Scholar] [CrossRef]
- Vallianatos, F.; Triantis, D. Scaling in Pressure Stimulated Currents related with rock fracture. Physica A 2008, 387, 4940–4946. [Google Scholar] [CrossRef]
- Anastasiadis, C.; Triantis, D.; Stavrakas, I.; Vallianatos, F. Pressure Stimulated Currents (PSC) in marble samples. Ann. Geophys. 2004, 47, 21–28. [Google Scholar] [CrossRef]
- Kuo, C.L.; Lee, L.C.; Huba, J.D. An improved coupling model for the lithosphere-atmosphere-ionosphere system. J. Geophys. Res. Space Phys. 2014, 119, 3189–3205. [Google Scholar] [CrossRef]
- Kelley, M.C.; Swartz, W.E.; Heki, K. Apparent ionospheric total electron content variations prior to major earthquakes due to electric fields created by tectonic stresses. J. Geophys. Res. Space 2017, 122, 6689–6695. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Sornette, D.; Ouillon, G.; Mignan, A.; Freund, F. Preface to the Global Earthquake Forecasting System (GEFS) special issue: Towards using non-seismic precursors for the prediction of large earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 1–5. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, Q.; Ouillon, G.; Sornette, D.; Ma, W.; Zhang, L.; Zhao, J.; Qi, Y.; Gengh, F. Spatially variable model for extracting TIR anomalies before earthquakes: Application to Chinese Mainland. Remote Sens. Environ. 2021, 267, 112720. [Google Scholar] [CrossRef]
- Muto, J.; Yasuoka, Y.; Miura, N.; Iwata, D.; Nagahama, H.; Hirano, M.; Ohmomo, Y.; Mukai, T. Preseismic atmospheric radon anomaly associated with 2018 Northern Osaka earthquake. Sci. Rep. 2021, 11, 7451. [Google Scholar] [CrossRef]
- Enomoto, Y.; Yamabe, T.; Sugiura, S.; Kondo, H. Laboratory investigation of coupled electrical interaction of fracturing rock with gases. Earth Planets Space 2021, 73, 90. [Google Scholar] [CrossRef]
- Hwa Oh, Y.; Kim, G. A radon-thoron isotope pair as a reliable earthquake precursor. Sci. Rep. 2015, 5, 13084. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-J.; Chen, C.-C.; Ouillon, G.; Sornette, D. A paradigm for developing earthquake probability forecasts based on geoelectric data. Eur. Phys. J. Spec. Top. 2021, 230, 381–407. [Google Scholar] [CrossRef]
- Klyuchkin, V.N.; Novikov, V.A.; Okunev, V.I.; Zeigarnik, V.A. Comparative analysis of acoustic and electromagnetic emissions of rocks. IOP Conf. Ser. Earth Environ. Sci. 2021, 929, 012013. [Google Scholar] [CrossRef]
- Li, D.; Wang, E.; Li, Z.; Ju, Y.; Wang, D.; Wang, X. Experimental investigations of pressure stimulated currents from stressed sandstone used as precursors to rock fracture. Int. J. Rock Mech. Min. Sci. 2021, 145, 104841. [Google Scholar] [CrossRef]
- Heraud, J.A.; Centa, V.A.; Mamani, P.; Menendez, D.; Vilchez, N.; Bleier, T. Some Statistical Results from the Triangulation of Electromagnetic Precursors Occurring at the Subduction Zone, Related with Earthquake Activity in Central Peru. In Proceedings of the 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Rome, Italy, 28 August 2021–04 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Venegas-Aravena, P.; Cordaro, E.G.; Laroze, D. The spatial–temporal total friction coefficient of the fault viewed from the perspective of seismo-electromagnetic theory. Nat. Hazards Earth Syst. Sci. 2020, 20, 1485–1496. [Google Scholar] [CrossRef]
- Pastén, D.; Czechowski, Z.; Toledo, B. Time series analysis in earthquake complex networks. Chaos 2018, 28, 083128. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-H.; Carr, J.R.; Barr, D.J.; Haas, C.J. The fractal dimension as a measure of the roughness of rock discontinuity profiles. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1990, 27, 453–464. [Google Scholar] [CrossRef]
- Dascher-Cousineau, K.; Kirkpatrick, J.D.; Cooke, M.L. Smoothing of Fault Slip Surfaces by Scale-Invariant Wear. J. Geophys. Res. Solid Earth 2018, 123, 7913–7930. [Google Scholar] [CrossRef]
- Ohnaka, M. The Physics of Rock Failure and Earthquakes; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Fan, M.; Zhu, K.; De Santis, A.; Marchetti, D.; Cianchini, G.; Piscini, A.; He, X.; Wen, J.; Wang, T.; Zhang, Y.; et al. Analysis of Swarm Satellite Magnetic Field Data for the 2015 Mw 7.8 Nepal Earthquake Based on Nonnegative Tensor Decomposition. IEEE Trans. Geosci. Remote Sens. 2022, 60, 2006119. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venegas-Aravena, P.; Cordaro, E.; Laroze, D. Fractal Clustering as Spatial Variability of Magnetic Anomalies Measurements for Impending Earthquakes and the Thermodynamic Fractal Dimension. Fractal Fract. 2022, 6, 624. https://doi.org/10.3390/fractalfract6110624
Venegas-Aravena P, Cordaro E, Laroze D. Fractal Clustering as Spatial Variability of Magnetic Anomalies Measurements for Impending Earthquakes and the Thermodynamic Fractal Dimension. Fractal and Fractional. 2022; 6(11):624. https://doi.org/10.3390/fractalfract6110624
Chicago/Turabian StyleVenegas-Aravena, Patricio, Enrique Cordaro, and David Laroze. 2022. "Fractal Clustering as Spatial Variability of Magnetic Anomalies Measurements for Impending Earthquakes and the Thermodynamic Fractal Dimension" Fractal and Fractional 6, no. 11: 624. https://doi.org/10.3390/fractalfract6110624
APA StyleVenegas-Aravena, P., Cordaro, E., & Laroze, D. (2022). Fractal Clustering as Spatial Variability of Magnetic Anomalies Measurements for Impending Earthquakes and the Thermodynamic Fractal Dimension. Fractal and Fractional, 6(11), 624. https://doi.org/10.3390/fractalfract6110624