Next Article in Journal
Fractal Perturbation of the Nadaraya–Watson Estimator
Previous Article in Journal
Sliding Mode Control for a Class of Nonlinear Fractional Order Systems with a Fractional Fixed-Time Reaching Law
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities

by
Muhammad Bilal Khan
1,*,
Hatim Ghazi Zaini
2,
Gustavo Santos-García
3,*,
Muhammad Aslam Noor
1 and
Mohamed S. Soliman
4
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Department of Computer Engineering, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
3
Facultad de Economía y Empresa and Multidisciplinary Institute of Enterprise (IME), University of Salamanca, 37007 Salamanca, Spain
4
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2022, 6(11), 679; https://doi.org/10.3390/fractalfract6110679
Submission received: 4 October 2022 / Revised: 4 November 2022 / Accepted: 15 November 2022 / Published: 16 November 2022
(This article belongs to the Topic Advances in Optimization and Nonlinear Analysis Volume II)
(This article belongs to the Section Engineering)

Abstract

:
The fuzzy-number valued up and down λ -convex mapping is originally proposed as an intriguing generalization of the convex mappings. The newly suggested mappings are then used to create certain Hermite–Hadamard- and Pachpatte-type integral fuzzy inclusion relations in fuzzy fractional calculus. It is also suggested to revise the Hermite–Hadamard integral fuzzy inclusions with regard to the up and down λ -convex fuzzy-number valued mappings (U∙D   λ -convex F-N∙V∙Ms). Moreover, Hermite–Hadamard–Fejér has been proven, and some examples are given to demonstrate the validation of our main results. The new and exceptional cases are presented in terms of the change of the parameters i and α in order to assess the accuracy of the obtained fuzzy inclusion relations in this study.

1. Introduction

The generalized convexity of mappings offers a pretty potent principle and tool, which is frequently employed in a variety of mathematical physics issues in addition to applied analysis and nonlinear analysis. See the published publications [1,2,3,4,5,6,7,8,9,10,11,12,13] and the references therein for a large number of scholars’ recent efforts to investigate several intriguing integral inequalities that are due to generalized convexity from various angles. One of the most important mathematical inequalities associated with convex mappings, and one that is frequently employed in many other areas of the mathematical sciences, notably in optimization analysis, is the Hermite-integral Hadamard’s inequality. This inequality stands out in particular because it provides an approximation of the mean value’s error bound in relation to the integrable convex mapping, which has drawn academic interest and research from a large number of academics in the field of mathematical analysis. Significant works published recently relate various families of convex mappings to the Hermite–Hadamard-type (H∙H-type) integral inequalities. For example, we can refer to Szostok [14] for higher-order convex mappings, to Korus [15] for s-convex mappings, to Andric and Pecaric [16] for ( h , g , m ) -convex mappings, to Latif [17] for GA-convex and geometrically quasiconvex mappings, to Niezgoda [18] for G-symmetrized convex mappings, to Demir et al. [19] for trigonometrically convex mappings, and so on. For more information, see [20,21,22,23,24,25,26,27,28,29,30,31,32,33,34].
It has been demonstrated that fractional calculus, as a rather robust technique, is an essential foundational element not only in the mathematical sciences but also in the applied sciences. The field has drawn a lot of research interest in order to answer the important topic. Therefore, many authors have discovered some important integral inequalities by effectively combining different fractional integral techniques. For example, Ahmad et al. [35] studied four different inequalities for convex mappings involving fractional integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequalities involving Sarikaya fractional integrals for twice differentiable mappings, and Set et al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for conformable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities for generalized conformable Riemann–Liouville fractional integrals. We recommend [41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56] to readers who are interested in learning additional significant results relating to fractional integrals.
The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the focus of the branch of set value analysis known as interval analysis [57], which now has a major impact on both the pure and practical sciences. The error boundaries of a numerical solution for a finite state machine were first determined using interval analysis. Interval analysis has grown rapidly over the last several decades and has significant implications for many disciplines of applied sciences, including neural network output optimization [58], computer graphics [59], and automatic error analysis [60]. Numerous academics have researched the current hot topics of various interval analysis theories up until this point in time. For instance, Budak et al. [61] expanded the interval-valued mapping Υ ( ϰ ) defined on to the interval-valued mapping Υ ( ϰ , y ) defined on 2 via Riemann–Liouville fractional integrals. For interval-valued coordinated convex mappings, they derived a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued mappings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex mappings are a notion first developed by Srivastava et al. [64]. The authors also provided the Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequalities. The concept of interval-valued harmonical h-convex mapping was introduced by the authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann integrals using this idea. Additionally, [66] and [67] address a few applications of interval-valued mappings in optimization theory. The reader who is interested in recent advancements in interval-valued mappings can consult [68,69,70,71,72,73,74,75,76] and the references they cite.
Recently, Khan et al., inspired by the following research articles, introduced different classes of convexity and nonconvexity in the fuzzy environment, see [77,78,79,80]. Moreover, with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type integral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characterization of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings with support of fuzzy inclusion relation. Some new classes were also introduced by applying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, see [82,83,84,85,86,87,88,89,90,91,92,93,94,95] and the references therein
The present study is dedicated to resolving various fuzzy inclusion relations relating to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, particularly the findings studied in [54,71,85]. We offer a family of fuzzy-number valued λ -convex mappings to accomplish this goal. It allows us to create certain fuzz fractional integral inclusion relations for the exceptional H∙H- and Pachpatte-type integral inequalities with the help of fuzzy-number valued λ -convex mappings, respectively.

2. Preliminaries

Let X I be the space of all closed and bounded intervals of and w X I be defined by
w = [ w * ,   w * ] = { ϰ |   w * ϰ w * } , ( w * ,   w * ) .
If w * = w * , then w is said to be degenerate. In this article, all intervals will be non-degenerate intervals. If w * 0 , then [ w * ,   w * ] is called positive interval. The set of all positive interval is denoted by X I + and defined as X I + = { [ w * ,   w * ] : [ w * ,   w * ] X I   and   w * 0 } .
Let m and m w be defined by
m w = { [ m w * ,   m w * ]   i f   m > 0 , { 0 }                 i f   m = 0 , [ m w * , m w * ]     i f   m < 0 .  
Then the Minkowski difference x w , addition w + x and w × x for w , x X I are defined by
[ x * ,   x * ] + [ w * ,   w * ] = [ x * + w * ,     x * + w * ] ,
[ x * ,   x * ] × [ w * ,   w * ] = [ min { x * w * ,   x * w * ,   x * w * ,   x * w * } ,   max { x * w * ,   x * w * ,   x * w * ,   x * w * } ]
[ x * ,   x * ] [ w * ,   w * ] = [ x * w * ,     x * w * ] ,
Remark 1. (i) For given [ x * ,   x * ] ,   [ w * ,   w * ] X I , the relation I defined on X I by
[ w * ,   w * ] I [ x * ,   x * ]   if   and   only   if   w * x * ,     x * w * ,
for all [ x * ,   x * ] ,   [ w * ,   w * ] X I , it is a partial interval inclusion relation. The relation [ w * ,   w * ] I [ x * ,   x * ] coincident to [ w * ,   w * ] [ x * ,   x * ] on X I . It can be easily seen that “ I ” looks like “up and down” on the real line , so we call I is “up and down” (or “U∙D” order, in short) [85].
(ii) For given [ x * ,   x * ] ,   [ w * ,   w * ] X I , we say that [ x * ,   x * ] I [ w * ,   w * ] if and only if x * w * ,   x * w * or x * w * ,   x * < w * , it is an partial interval order relation. The relation [ x * ,   x * ] I [ w * ,   w * ] coincident to [ x * ,   x * ] [ w * ,   w * ] on X I . It can be easily seen that I looks like “left and right” on the real line , so we call I is “left and right” (or “LR” order, in short) [77,85].
For [ x * ,   x * ] ,   [ w * ,   w * ] X I , the Hausdorff-Pompeiu distance between intervals [ x * ,   x * ] and [ w * ,   w * ] is defined by
d H ( [ x * ,   x * ] ,   [ w * ,   w * ] ) = m a x { | x * w * | ,   | x * w * | } .
It is familiar fact that ( X I , d H ) is a complete metric space [83].
Definition 1. 
A fuzzy subset L of is distinguished by a mapping w ˜ : [ 0 , 1 ] called the membership mapping of L . That is, a fuzzy subset L of is a mapping w ˜ : [ 0 , 1 ] . So, for further study, we have chosen this notation. We appoint E to denote the set ofall fuzzy subsets of [82,83].
Let w ˜ E . Then, w ˜ is known as a fuzzy-number if the following properties are satisfied by w ˜ :
(1)
w ˜ should be normal if there exists ϰ and w ˜ ( ϰ ) = 1 ;
(2)
w ˜ should be upper semi continuous on if for given ϰ , there exist ε > 0 there exist δ > 0 such that w ˜ ( ϰ ) w ˜ ( s ) < ε for all ϰ ,   s with | ϰ s | < δ ;
(3)
w ˜ should be fuzzy convex that is w ˜ ( ( 1 m ) ϰ + m s ) m i n ( w ˜ ( ϰ ) ,   w ˜ ( s ) ) , for all ϰ , s and m [ 0 ,   1 ] ;
(4)
w ˜ should be compactly supported that is c l { m |   w ˜ ( ϰ ) > 0 } is compact. We appoint E C to denote the set of all fuzzy-numbers of .
Definition 2. 
[82,83] Given w ˜ E C , the level sets or cut sets are given by [ w ˜ ] i = { ϰ |   w ˜ ( ϰ ) > i } for all i [ 0 ,   1 ] and by [ w ˜ ] 0 = { ϰ |   w ˜ ( ϰ ) > 0 } . These sets are known as i -level sets or i -cut sets of w ˜ .
Proposition 1. 
[78] Let w ˜ , x ˜ E C . Then, relation F given on E C by
w ˜ F x ˜   when   and   only   when ,   [ w ˜ ] i I [ x ˜ ] i ,   for   every   i [ 0 ,   1 ] ,  
it is left and right order relation.
Proposition 2. 
[81] Let w ˜ , x ˜ E C . Then, relation F given on E C by
w ˜ F x ˜   when   and   only   when ,   [ w ˜ ] i I [ x ˜ ] i ,   for   every   i [ 0 ,   1 ] ,  
it is U∙D order relation on E C .
Proof: 
The proof follows directly from the U∙D relation I defined on X I . □
Remember the approaching notions, which are offered in the literature. If w ˜ , x ˜ E C and i , then, for every i [ 0 ,   1 ] , the arithmetic operations are defined by
[ w ˜ x ˜ ] i = [ w ˜ ] i + [ x ˜ ] i ,
[ w ˜ x ˜ ] i = [ w ˜ ] i × [   x ˜ ] i ,
[ m w ˜ ] i = m . [ w ˜ ] i .
These operations follow directly from the Equations (4)–(6), respectively.
Theorem 1. 
The space E C dealing with a supremum metric, i.e., for w ˜ ,   x ˜ E C   [83]
d ( w ˜ ,   x ˜ ) = sup 0 i 1 d H ( [ w ˜ ] i ,   [ x ˜ ] i ) ,  
is a complete metric space, where H denote the well-known Hausdorff metric on space of intervals.

Riemann Integral Operators for Interval and Fuzzy-Number Valued Mappings

Now we define and discuss some properties of fractional integral operators of interval and fuzzy-number valued mappings.
Theorem 2. 
If Υ : [ u , z ] X I is an interval-valued mapping (I∙V∙M) satisfying that Υ ( ϰ ) = [ Υ * ( ϰ ) ,   Υ * ( ϰ ) ] , then Υ is Aumann integrable (IA-integrable) over [ u , z ] when and only when, Υ * ( ϰ ) and Υ * ( ϰ ) both are integrable over [ u , z ] such that [83,84]
( I A ) u z Υ ( ϰ ) d ϰ = [ u   z Υ * ( ϰ ) d ϰ ,   u z Υ * ( ϰ ) d ϰ ] .
Definition 3. 
Let Υ ˜ : I E C is called F-N∙V∙M. Then, for every i [ 0 ,   1 ] as well as i -levels define the family of I∙V∙Ms Υ i : I X I satisfying that Υ i ( ϰ ) = [ Υ * ( ϰ , i ) ,   Υ * ( ϰ , i ) ] for every ϰ I . Here, for every i [ 0 ,   1 ] , the endpoint real-valued mappings Υ * ( · , i ) ,   Υ * ( · , i ) : I are called lower and upper mappings of Υ [77].
Definition 4. 
Let Υ ˜ : I E C be a F-N∙V∙M. Then Υ ˜ ( ϰ ) is said to be continuous at ϰ I , if for every i [ 0 ,   1 ] ,   Υ i ( ϰ ) is continuous when and only when both endpoint mappings Υ * ( ϰ , i ) and Υ * ( ϰ , i ) are continuous at ϰ I   [77].
Definition 5. 
Let Υ ˜ : [ u ,   z ] E C is F-N∙V∙M. The fuzzy Aumann integral ( ( F A ) -integral) of Υ ˜ over [ u ,   z ] , denoted by ( F A ) u z Υ ˜ ( ϰ ) d ϰ , is defined level-wise by [84]
[ ( F A ) u z Υ ˜ ( ϰ ) d ϰ ]   i = ( I A ) u z Υ i ( ϰ ) d ϰ = { u z Υ ( ϰ , i ) d ϰ : Υ ( ϰ , i ) S ( Υ i ) } ,  
where S ( Υ i ) = { Υ ( . , i ) : Υ ( . , i )   i s   i n t e g r a b l e   a n d   Υ ( ϰ , i ) Υ i ( ϰ ) } ,   for every i [ 0 ,   1 ] . Υ ˜ is ( F A ) -integrable over [ u ,   z ] if ( F A ) u z Υ ˜ ( ϰ ) d ϰ E C .
Theorem 3. 
Let Υ ˜ : [ u ,   z ] E C be a F-N∙V∙M as well as i -levels define the family of I∙V∙Ms Υ i : [ u ,   z ] X I satisfying that Υ i ( ϰ ) = [ Υ * ( ϰ , i ) ,   Υ * ( ϰ , i ) ] for every ϰ [ u ,   z ] and for every i [ 0 ,   1 ] . Then Υ ˜ is ( F A ) -integrable over [ u ,   z ] when and only when, Υ * ( ϰ , i ) and Υ * ( ϰ , i ) both are integrable over [ u ,   z ] . Moreover, if Υ ˜ is ( F A ) -integrable over [ u ,   z ] , then [78]
[ ( F A ) u z Υ ˜ ( ϰ ) d ϰ ]   i = [ u z Υ * ( ϰ , i ) d ϰ ,   u z Υ * ( ϰ , i ) d ϰ ] = ( I A ) u z Υ i ( ϰ ) d ϰ ,
for every i [ 0 ,   1 ] .
The family of all ( F A ) -integrable F-N∙V∙Ms over [ u ,   z ] , are denoted by   A ( [ u ,   z ] ,   i ) .
Allahviranloo et al. [86] introduced the following fuzzy Riemann–Liouville fractional integral operators:
Definition 6. 
Let α > 0 and L ( [ u ,   z ] , E C ) be the collection of all Lebesgue measurable F-N∙V∙M on [ u , z ] . Then the fuzzy left and right Riemann–Liouville fractional integral of Υ   L ( [ u ,   z ] , E C ) with order α > 0 are defined by
u + α   Υ ( ϰ ) = 1 Γ ( α ) u ϰ ( ϰ φ ) α 1 Υ ( φ ) d φ ,         ( ϰ > u ) ,
and
z α   Υ ( ϰ ) = 1 Γ ( α ) ϰ z ( φ ϰ ) α 1 Υ ( φ ) d φ ,         ( ϰ < z ) ,
respectively, where Γ ( ϰ ) = 0 φ ϰ 1 e φ d φ is the Euler gamma mapping. The fuzzy left and right Riemann–Liouville fractional integral ϰ based on left and right endpoint mappings can be defined, that is
[ u + α   Υ ( ϰ ) ] λ = 1 Γ ( α ) u ϰ ( ϰ φ ) α 1 Υ λ ( φ ) d φ
= 1 Γ ( α ) u ϰ ( ϰ φ ) α 1 [ Υ * ( φ ,   λ ) , Υ * ( φ ,   λ ) ] d φ ,   ( ϰ > u ) ,
where
u + α   Υ * ( ϰ ,   λ ) = 1 Γ ( α ) u ϰ ( ϰ φ ) α 1 Υ * ( φ ,   λ ) d φ ,       ( ϰ > u ) ,
and
u + α   Υ * ( ϰ ,   λ ) = 1 Γ ( α ) u ϰ ( ϰ φ ) α 1 Υ * ( φ ,   λ ) d φ ,     ( ϰ > u ) ,
Similarly, we can define right Riemann–Liouville fractional integral Υ of ϰ based on left and right endpoint mappings.
Breckner discussed the coming emerging idea of interval-valued convexity in [79].
A I∙V∙M Υ : I = [ u ,   z ] X I is called convex I∙V∙M if
Υ ( m ϰ + ( 1 m ) s ) m Υ ( ϰ ) + ( 1 m ) Υ ( s ) ,
for all ϰ ,   y [ u ,   z ] ,   m [ 0 ,   1 ] , where X I is the collection of all real-valued intervals. If (17) is reversed, then Υ is called concave.
Definition 7. 
The F-N∙V∙M Υ ˜ : [ u ,   z ] E C is called convex F-N∙V∙M on   [ u ,   z ] if [80]
Υ ˜ ( m ϰ + ( 1 m ) s   ) F m Υ ˜ ( ϰ ) ( 1 m ) Υ ˜ ( s ) ,  
for all   ϰ ,   s [ u ,   z ] ,   m [ 0 ,   1 ] , where Υ ˜ ( ϰ ) F 0 ˜ for all ϰ [ u ,   z ] . If (18) is reversed then, Υ ˜ is called concave F-N∙V∙M on [ u ,   z ] . Υ ˜ is affine if and only if it is both convex and concave F-N∙V∙M.
Definition 8. 
The F-N∙V∙M Υ ˜ : [ u ,   z ] E C is called U∙D convex F-N∙V∙M on   [ u ,   z ] if [85]
Υ ˜ ( m ϰ + ( 1 m ) s ) F m Υ ˜ ( ϰ ) ( 1 m ) Υ ˜ ( s ) ,  
for all   ϰ ,   s [ u ,   z ] ,   m [ 0 ,   1 ] , where Υ ˜ ( ϰ ) F 0 ˜ for all ϰ [ u ,   z ] . If (19) is reversed then, Υ ˜ is called U∙D concave F-N∙V∙M on [ u ,   z ] . Υ ˜ is U∙D affine F-N∙V∙M if and only if it is both U∙D convex and, U∙D concave F-N∙V∙M.
Definition 9. 
Let K be convex set and λ : [ 0 ,   1 ] K + such that λ 0 . Then F-N∙V∙M Υ ˜ : K E C is said to be U∙D λ -convex on   K if
Υ ˜ ( m ϰ + ( 1 m ) s ) F λ ( m ) Υ ˜ ( ϰ ) λ ( 1 m ) Υ ˜ ( s ) ,    
for all   ϰ ,   s K ,   m [ 0 ,   1 ] , where Υ ˜ ( ϰ ) F 0 ˜ . The F-N∙V∙M  Υ ˜ : K E C is said to be U∙D  λ -concave on K if inequality (25) is reversed. Moreover,   Υ ˜ is known as affine U∙D  λ -convex F-N∙V∙M on   K if
Υ ˜ ( m ϰ + ( 1 m ) s ) = λ ( m ) Υ ˜ ( ϰ ) λ ( 1 m ) Υ ˜ ( s ) ,  
for all   ϰ ,   s K ,   m [ 0 ,   1 ] , where Υ ˜ ( ϰ ) F 0 ˜ .
Remark 2.
The U∙D λ -convex F-N∙V∙Ms have some very nice properties similar to convex F-N∙V∙M,
1)
if Υ ˜ is U∙D  λ -convex F-N∙V∙M, then α Υ ˜ is also U∙D  λ -convex for α 0 .
2)
if Υ ˜ and T ˜ both are U∙D  λ -convex F-N∙V∙Ms, then max ( Υ ˜ ( ϰ ) , T ˜ ( ϰ ) ) is also U∙D  λ -convex F-N∙V∙M.
Here, we will go through a few unique exceptional cases of U∙D  λ -convex F-N∙V∙Ms:
(i)
If λ ( m ) = m s , then U∙D  λ -convex F-N∙V∙M becomes U∙D  s -convex F-N∙V∙M, that is
Υ ˜ ( m ϰ + ( 1 m ) s ) F m s Υ ˜ ( ϰ ) ( 1 m ) s Υ ˜ ( s ) ,     ϰ ,   s K ,   m [ 0 ,   1 ] .
(ii)
If λ ( m ) = m , then U∙D  λ -convex F-N∙V∙M becomes U∙D convex F-N∙V∙M, see [84], that is
Υ ˜ ( m ϰ + ( 1 m ) s ) F m Υ ˜ ( ϰ ) ( 1 m ) Υ ˜ ( s ) ,     ϰ ,   s K ,   m [ 0 ,   1 ] .
(iii)
If λ ( m ) 1 , then U∙D  λ -convex F-N∙V∙M becomes U∙D  P -convex F-N∙V∙M, that is
Υ ˜ ( m ϰ + ( 1 m ) s ) F Υ ˜ ( ϰ ) Υ ˜ ( s ) ,       ϰ ,   s K ,   m [ 0 ,   1 ] .
Note that there are also new special cases (i) and (iii) as well.
Theorem 4. 
Let K be convex set, non-negative real-valued mapping λ : [ 0 ,   1 ] K such that λ 0 and let Υ ˜ : K E C be a F-N∙V∙M, whose i -levels define the family of I∙V∙Ms Υ i : K X I + X I are given by
Υ i ( ϰ ) = [ Υ * ( ϰ , i ) ,   Υ * ( ϰ , i ) ] ,    
for all ϰ K and for all i [ 0 ,   1 ] . Then Υ ˜ is U∙D  λ -convex on K , if and only if, for all i [ 0 ,   1 ] ,   Υ * ( ϰ ,   i ) and Υ * ( ϰ ,   i ) are λ -convex.
Proof. 
Assume that for each i [ 0 ,   1 ] ,   Υ * ( ϰ ,   i ) and Υ * ( ϰ ,   i ) are λ -convex and λ -concave on K . Then, we have
Υ * ( m ϰ + ( 1 m ) s ,   i ) λ ( m ) Υ * ( ϰ ,   i ) + λ ( 1 m ) Υ * ( s ,   i ) ,     ϰ , s K ,   m [ 0 ,   1 ] ,
and
Υ * ( m ϰ + ( 1 m ) s ,   i ) λ ( m ) Υ * ( ϰ ,   i ) + λ ( 1 m ) Υ * ( s ,   i ) ,   ϰ , s K ,   m [ 0 ,   1 ] .
Then by (30), (10) and (12), we obtain
Υ i ( m ϰ + ( 1 m ) s ) = [ Υ * ( m ϰ + ( 1 m ) s ,   i ) ,   Υ * ( m ϰ + ( 1 m ) s ,   i ) ] ,
I [ λ ( m ) Υ * ( ϰ ,   i ) ,   λ ( m ) Υ * ( ϰ ,   i ) ] + [ λ ( 1 m ) Υ * ( s ,   i ) ,   λ ( 1 m ) Υ * ( s ,   i ) ] ,            
that is
Υ ˜ ( m ϰ + ( 1 m ) s ) F λ ( m ) Υ ˜ ( ϰ ) λ ( 1 m ) Υ ˜ ( s ) ,   ϰ , s K ,   m [ 0 ,   1 ] .
Hence, Υ ˜ is U∙D  λ -convex F-N∙V∙M on K .
Conversely, let Υ ˜ is U∙D  λ -convex F-N∙V∙M on K . Then, for all ϰ , s K and m [ 0 ,   1 ] , we have
Υ ˜ ( m ϰ + ( 1 m ) s ) F λ ( m ) Υ ˜ ( ϰ ) λ ( 1 m ) Υ ˜ ( s ) .
Therefore, from (30), we have
Υ i ( m ϰ + ( 1 m ) s ) = [ Υ * ( m ϰ + ( 1 m ) s ,   i ) ,   Υ * ( m ϰ + ( 1 m ) s ,   i ) ] .
Again, from (30), (10) and (12), we obtain
λ ( m ) Υ i ( ϰ ) + λ ( 1 m ) Υ i ( ϰ )
= [ λ ( m ) Υ * ( ϰ ,   i ) ,   λ ( m ) Υ * ( ϰ ,   i ) ] + [ λ ( 1 m ) Υ * ( s ,   i ) ,   λ ( 1 m ) Υ * ( s ,   i ) ] ,
for all ϰ , s K and m [ 0 ,   1 ] . Then by U∙D  λ -convexity of Υ ˜ , we have for all ϰ , s K and m [ 0 ,   1 ] . such that
Υ * ( m ϰ + ( 1 m ) s ,   i ) λ ( m ) Υ * ( ϰ ,   i ) + λ ( 1 m ) Υ * ( s ,   i ) ,
and
Υ * ( m ϰ + ( 1 m ) s ,   i ) λ ( m ) Υ * ( ϰ ,   i ) + λ ( 1 m ) Υ * ( s ,   i ) ,
for each i [ 0 ,   1 ] . Hence, the result follows. □
Remark 3.
If Υ * ( ϰ ,   i ) = Υ * ( ϰ ,   i ) with i = 1 , then U∙D λ -convex F-N∙V∙M reduces to the λ -convex mapping.
If Υ * ( ϰ ,   i ) = Υ * ( ϰ ,   i ) with i = 1 and λ ( m ) = m s with s ( 0 ,   1 ) , then U∙D λ -convex F-N∙V∙M reduces to the s -convex mapping.
If Υ * ( ϰ ,   i ) = Υ * ( ϰ ,   i ) with i = 1 and λ ( m ) = m with s ( 0 ,   1 ) , then U∙D  λ -convex F-N∙V∙M reduces to the convex mapping.
If Υ * ( ϰ ,   i ) = Υ * ( ϰ ,   i ) with i = 1 and λ ( m ) = 1 , then U∙D  λ -convex F-N∙V∙M reduces to the P -convex mapping.
Example 1.
We consider λ ( m ) = m ,   for m [ 0 ,   1 ] and the F-N∙V∙M Υ ˜ : [ 0 ,   1 ] E C defined by
Υ ˜ ( ϰ ) ( σ ) = { σ 2 ϰ 2               σ [ 0 ,   2 ϰ 2 ] 4 ϰ 2 σ 2 ϰ 2       σ ( 2 ϰ 2 ,   4 ϰ 2 ]   0                   o t h e r w i s e ,
Then, for each i [ 0 ,   1 ] , we have Υ i ( ϰ ) = [ 2 i ϰ 2 , ( 4 2 i ) ϰ 2   ] . Since end point mappings Υ * ( ϰ , i ) ,   Υ * ( ϰ , i ) are λ -convex and λ -concave mappings for each i [ 0 ,   1 ] , respectively. Hence Υ ˜ ( ϰ ) is U∙D  λ -convex F-N∙V∙M.
Definition 10. 
Let Υ : [ u ,   z ] E C be a F-N∙V∙M, whose i -levels define the family of I∙V∙Ms Υ i : [ u ,   z ] X C + X C are given by
Υ i ( ϰ ) = [ Υ * ( ϰ , i ) ,   Υ * ( ϰ , i ) ] ,  
for all ϰ [ u ,   z ] and for all i [ 0 ,   1 ] . Then, Υ is lower U∙D  λ -convex ( λ -concave) F-N∙V∙M on [ u ,   z ] , if and only if, for all i [ 0 ,   1 ] ,   Υ * ( ϰ ,   i ) is a λ -convex ( λ -concave) mapping and Υ * ( ϰ ,   λ ) is a λ -affine mapping.
Definition 11. 
Let Υ : [ u ,   z ] E C be a F-N∙V∙M, whose i -levels define the family of I∙V∙Ms Υ i : [ u ,   z ] X C + X C are given by
Υ i ( ϰ ) = [ Υ * ( ϰ , i ) ,   Υ * ( ϰ , i ) ] ,    
for all ϰ [ u ,   z ] and for all i [ 0 ,   1 ] . Then, Υ is an upper U∙D  λ -convex ( λ -concave) F-N∙V∙M on [ u ,   z ] , if and only if, for all i [ 0 ,   1 ] , Υ * ( ϰ ,   i ) is an λ -affine mapping and Υ * ( ϰ ,   i ) is a λ -convex ( λ -concave) mapping.
Remark 4.
If λ ( m ) = m , then both concepts “U∙D λ -convex F-N∙V∙M” and classical “convex F-N∙V∙M, see [80]” are behave alike when Υ is lower U∙D convex F-N∙V∙M.
Both concepts “convex interval-valued mapping, see [79]”and “left and right λ -convex interval-valued mapping, see [85]” are coincident when Υ is lower U∙D  λ -convex F-N∙V∙M with i = 1 .

3. Main Results

The following is a proposal for our first primary result based on the newly presented fuzzy-number valued U∙D  λ -convex mappings and the H∙H-type integral inequalities.
Theorem 5. 
Let Υ ˜ : [ u ,   z ] E C be a U∙D λ -convex F-N∙V∙M on [ u ,   z ] , whose i -levels define the family of I∙V∙Ms Υ i : [ u ,   z ] K C + are given by Υ i ( ϰ ) = [ Υ * ( ϰ , i ) ,   Υ * ( ϰ , i ) ] for all ϰ [ u ,   z ] and for all i [ 0 ,   1 ] . If Υ ˜ L ( [ u ,   z ] , E C ) , then
1 α λ ( 1 2 ) Υ ˜ ( u + z 2 ) F Γ ( α ) ( z u ) α [ u + α   Υ ˜ ( z ) z α   Υ ˜ ( u ) ] F [ Υ ˜ ( u ) Υ ˜ ( z ) ] 0 1 m α 1 [ λ ( m ) + λ ( 1 m ) ] d m .
If Υ ˜ ( ϰ ) is U∙D  λ -concave F-N∙V∙M, then
1 α λ ( 1 2 ) Υ ˜ ( u + z 2 ) F Γ ( α ) ( z u ) α [ u + α   Υ ˜ ( z ) z α   Υ ˜ ( u ) ] F [ Υ ˜ ( u ) Υ ˜ ( z ) ] 0 1 m α 1 [ λ ( m ) + λ ( 1 m ) ] d m .
Proof. 
Let Υ ˜ : [ u ,   z ] E C be a U∙D  λ -convex F-N∙V∙M. Then, by hypothesis, we have
1 λ ( 1 2 ) Υ ˜ ( u + z 2 ) F Υ ˜ ( m u + ( 1 m ) z ) Υ ˜ ( ( 1 m ) u + m z ) .
Therefore, for every i [ 0 ,   1 ] , we have
1 λ ( 1 2 ) Υ * ( u + z 2 ,   i ) Υ * ( m u + ( 1 m ) z ,   i ) + Υ * ( ( 1 m ) u + m z ,   i ) ,     1 λ ( 1 2 ) Υ * ( u + z 2 ,   i ) Υ * ( m u + ( 1 m ) z ,   i ) + Υ * ( ( 1 m ) u + m z , i ) .
Multiplying both sides by m α 1 and integrating the obtained result with respect to m over ( 0 , 1 ) , we have
1 λ ( 1 2 ) 0 1 m α 1 Υ * ( u + z 2 ,   i ) d m 0 1 m α 1 Υ * ( m u + ( 1 m ) z , i ) d m + 0 1 m α 1 Υ * ( ( 1 m ) u + m z ,   i ) d m , 1 λ ( 1 2 ) 0 1 m α 1 Υ * ( u + z 2 , i ) d m 0 1 m α 1 Υ * ( m u + ( 1 m ) z ,   i ) d m + 0 1 m α 1 Υ * ( ( 1 m ) u + m z , i ) d m .
Let x = m u + ( 1 m ) z and z = ( 1 m ) u + m z . Then, we have
1 α λ ( 1 2 ) Υ * ( u + z 2 ,   i ) 1 ( z u ) α   u z ( z x ) α 1 Υ * ( x , i ) d x + 1 ( z u ) α u z ( z u ) α 1 Υ * ( z , i ) d z 1 α λ ( 1 2 ) Υ * ( u + z 2 ,   i ) 1 ( z u ) α   u z ( z x ) α 1 Υ * ( x , i ) d x + 1 ( z u ) α u z ( z u ) α 1 Υ * ( z , i ) d z ,
Γ ( α ) ( z u ) α [ u + α   Υ * ( z ,   i ) + z α   Υ * ( u ,   i ) ]   Γ ( α ) ( z u ) α [ u + α   Υ * ( z ,   i ) + z α   Υ * ( u ,   i ) ] ,
that is
1 α λ ( 1 2 ) [ Υ * ( u + z 2 ,   i ) ,   Υ * ( u + z 2 ,   i ) ]   I Γ ( α ) ( z u ) α [ [ u + α   Υ * ( z ,   i ) + z α   Υ * ( u ,   i ) ] ,   [ u + α   Υ * ( z ,   i ) + z α   Υ * ( u ,   i ) ] ] ,
thus,
1 α λ ( 1 2 )   Υ i ( u + z 2 ) I Γ ( α ) ( z u ) α [ u + α   Υ i ( z ) + z α   Υ i ( u ) ] .
In a similar way as above, we have
Γ ( α ) ( z u ) α [ u + α   Υ i ( z ) + z α   Υ i ( u ) ] I [ Υ i ( u ) + Υ i ( z ) ] 0 1 m α 1 [ λ ( m ) λ ( 1 m ) ] d m .
Combining (36) and (37), we have
1 α λ ( 1 2 ) Υ i ( u + z 2 ) I Γ ( α ) ( z u ) α [ u + α   Υ i ( z ) + z α   Υ i ( u ) ] I [ Υ i ( u ) + Υ i ( z ) ] 0 1 m α 1 [ λ ( m ) λ ( 1 m ) ] d m ,
that is
1 α λ ( 1 2 ) Υ ˜ ( u + z 2 ) F Γ ( α ) ( z u ) α [ u + α   Υ ˜ ( z ) z α   Υ ˜ ( u ) ]
F [ Υ ˜ ( u ) Υ ˜ ( z ) ] 0 1 m α 1 [ λ ( m ) λ ( 1 m ) ] d m .
Hence, the required result. □
Remark 5.
From Theorem 5 we clearly see that:
If λ ( m ) = m , then Theorem 5 reduces to the result for λ-convex F-N∙V∙M, see [55]:
Υ ˜ ( τ + z 2 ) F Γ ( α + 1 ) 2 ( z τ ) α [ τ + α   Υ ˜ ( z ) z α   Υ ˜ ( τ ) ] F Υ ˜ ( τ ) Υ ˜ ( z ) 2 .
If α = 1 , then Theorem 5 reduces to the result for λ-convex F-N∙V∙M, see [55]:
1 2 λ ( 1 2 )   Υ ˜ ( u + z 2 ) F 1 z u   ( F A ) u z Υ ˜ ( ϰ ) d ϰ F [ Υ ˜ ( u ) Υ ˜ ( z ) ] 0 1 λ ( m ) d m .
If α = 1 and Υ ˜ is lower U∙Dλ-convex F-N∙V∙M, then Theorem 5 reduces to the result for λ-convex F-N∙V∙M, see [54]:
1 2 λ ( 1 2 )   Υ ˜ ( u + z 2 ) F 1 z u   ( F A ) u z Υ ˜ ( ϰ ) d ϰ F [ Υ ˜ ( u ) Υ ˜ ( z ) ] 0 1 λ ( m ) d m .
If λ ( m ) = m and Υ ˜ is lower U∙D λ-convex F-N∙V∙M, then Theorem 5 reduces to the result for convex F-N∙V∙M, see [53]:
Υ ˜ ( u + z 2 ) F Γ ( α + 1 ) 2 ( z u ) α [ u + α   Υ ˜ ( z ) z α   Υ ˜ ( u ) ] F Υ ˜ ( u ) Υ ˜ ( z ) 2 .  
Let α = 1 and Υ ˜ is lower U∙D  λ -convex F-N∙V∙M with λ ( m ) = m . Then, Theorem 5 reduces to the result for convex-I∙V∙M given in [52]:
Υ ˜ ( u + z 2 ) F 1 z u   ( F A ) u z Υ ˜ ( ϰ ) d ϰ F Υ ˜ ( u ) Υ ˜ ( z ) 2 .
Let α = 1 = i and Υ * ( ϰ ,   i ) Υ * ( ϰ ,   i ) . Then, from Theorem 5 we obtain the following inequality given in [65]:
1 2 λ ( 1 2 )   Υ ( u + z 2 ) 1 z u   ( I A ) u z Υ ( ϰ ) d ϰ [ Υ ( u ) +   Υ ( z ) ] 0 1 λ ( m ) d m .
If Υ * ( ϰ ,   i ) = Υ * ( ϰ ,   i ) and i = 1 , then, from Theorem 5 we obtain the following inequality given in [68]:
1 α λ ( 1 2 ) Υ ( u + z 2 ) Γ ( α ) ( z u ) α [ u + α   Υ ( z ) + z α   Υ ( u ) ] [ Υ ( u ) + Υ ( z ) ] 0 1 m α 1 [ λ ( m ) λ ( 1 m ) ] d m .
Let α = 1 = i and Υ * ( ϰ ,   i ) = Υ * ( ϰ ,   i ) . Then, from Theorem 5 we obtain the following inequality given in [68]:
1 2 λ ( 1 2 )   Υ ( u + z 2 ) 1 z u   ( R ) u z Υ ( ϰ ) d ϰ [ Υ ( u ) + Υ ( z ) ] 0 1 λ ( m ) d m .
Example 2.
Let α = 1 2 ,   ϰ [ 2 , 3 ] , and the F-N∙V∙M Υ : [ u ,   z ] = [ 2 ,   3 ] E C , defined by
Υ ( ϰ ) ( θ ) = { θ 2 + ϰ 1 2 1 ϰ 1 2 θ [ 2 ϰ 1 2 ,   3 ]   2 + ϰ 1 2 θ ϰ 1 2 1 θ ( 3 ,   2 + ϰ 1 2 ] 0 o t h e r w i s e ,
Then, for each i [ 0 ,   1 ] , we have Υ i ( ϰ ) = [ ( 1 i ) ( 2 ϰ 1 2 ) + 3 i , ( 1 + i ) ( 2 + ϰ 1 2 ) + 3 i ] . Since left and right endpoint mappings Υ * ( ϰ , i ) = i ( 2 ϰ 1 2 ) ,   Υ * ( ϰ ,   i ) = ( 2 i ) ( 2 + ϰ 1 2 ) , are λ -convex and   λ -concave mappings with λ ( m ) = m , for each m [ 0 ,   1 ] respectively, we have Υ ( ϰ ) is U∙D λ -convex F-N∙V∙M. We clearly see that Υ L ( [ u ,   z ] , E C ) and
1 α λ ( 1 2 ) Υ * ( u + z 2 ,   i ) = Υ * ( 5 2 ,   i ) = ( 1 i ) ( 8 2 10 ) + 12 i
1 α λ ( 1 2 ) Υ * ( u + z 2 ,   i ) = Υ * ( 5 2 ,   i ) = ( 1 + i ) ( 8 + 2 10 ) + 12 i
( Υ * ( u , i ) + Υ * ( z ,   i ) ) 0 1 m α 1 [ λ ( m ) λ ( 1 m ) ] d m = 2 ( 1 i ) ( 4 2 3 ) + 12 i
( Υ * ( u , i ) + Υ * ( z ,   i ) ) 0 1 m α 1 [ λ ( m ) λ ( 1 m ) ] d m = 2 ( 1 + i ) ( 4 + 2 + 3 ) + 12 i .
Note that
Γ ( α ) ( z u ) α [ u + α   Υ * ( z ,   i ) + z α   Υ * ( u , i ) ] = Γ ( 1 2 ) 1 π 2 3 ( 3 ϰ ) 1 2   .   ( ( 1 i ) ( 2 ϰ 1 2 ) + 3 i ) d ϰ + Γ ( 1 2 ) 1 π 2 3 ( ϰ 2 ) 1 2   .   ( ( 1 i ) ( 2 ϰ 1 2 ) + 3 i ) d ϰ = ( 1 i ) 16,903 10,000 + 12 i .
Γ ( α ) ( z u ) α [ u + α   Υ * ( z ,   i ) + z α   Υ * ( u , i ) ] = Γ ( 1 2 ) 1 π 2 3 ( 3 ϰ ) 1 2   . (   ( 1 + i ) ( 2 + ϰ 1 2 ) + 3 i ) d ϰ + Γ ( 1 2 ) 1 π 2 3 ( ϰ 2 ) 1 2   .   ( ( 1 + i ) ( 2 + ϰ 1 2 ) + 3 i ) d ϰ = ( 1 + i ) 143,097 10,000 + 12 i .
Therefore
[ ( 1 i ) ( 8 2 10 ) + 12 i , ( 1 + i ) ( 8 + 2 10 ) + 12 i ] I [ ( 1 i ) 16,903 10,000 + 12 i , ( 1 + i ) 143,097 10,000 + 12 i ] I [ 2 ( 1 i ) ( ( 4 2 3 ) ) + 12 i , 2 ( 1 + i ) ( ( 4 + 2 + 3 ) ) + 12 i ] ,  
and Theorem 5 is verified.
We propose the following Pachpatte-type fractional integral inclusions taking use of the fuzzy-number valued U∙D  λ -convexity:
Theorem 6. 
Let Υ ˜ , Τ ˜   : [ u ,   z ] E C be U∙D λ 1 -convex and λ 2 -convex F-N∙V∙Ms on [ u ,   z ] , respectively, whose i -levels Υ i ,   Τ i : [ u ,   z ] K C + are defined by Υ i ( ϰ ) = [ Υ * ( ϰ , i ) ,   Υ * ( ϰ , i ) ] and Τ i ( ϰ ) = [ Τ * ( ϰ , i ) ,   Τ * ( ϰ , i ) ] for all ϰ [ u ,   z ] and for all i [ 0 ,   1 ] . If Υ ˜ Τ ˜   L ( [ u ,   z ] , E ) , then
Γ ( α ) ( z u ) α [ u + α   Υ ˜ ( z ) Τ ˜ ( z ) z α Υ ˜ ( u ) Τ ˜ ( u ) ] F Δ ˜ ( u , z ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] d m
𝛻 ˜ ( u , z ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] d m ,
where Δ ˜ ( u , z ) = Υ ˜ ( u ) Τ ˜ ( u )     Υ ˜ ( z ) Τ ˜ ( z ) , , 𝛻 ˜ ( u , z ) = Υ ˜ ( u ) Τ ˜ ( z )     Υ ˜ ( z ) Τ ˜ ( u ) , and Δ i ( u , z ) = [ Δ * ( ( u , z ) ,   i ) ,   Δ * ( ( u , z ) ,   i ) ] and 𝛻 i ( u , z ) = [ 𝛻 * ( ( u , z ) ,   i ) ,   𝛻 * ( ( u , z ) ,   i ) ] .
Proof. 
Since Υ ˜ ,   Τ ˜ both are U∙D  λ 1 -convex and λ 2 -convex F-N∙V∙Ms then, for each i [ 0 ,   1 ] we have
    Υ * ( m u + ( 1 m ) z ,   i ) λ 1 ( m ) Υ * ( u , i ) + λ 1 ( 1 m ) Υ * ( z ,   i )   Υ * ( m u + ( 1 m ) z ,   i ) λ 1 ( m ) Υ * ( u , i ) + λ 1 ( 1 m ) Υ * ( z ,   i ) .      
and
T * ( m u + ( 1 m ) z ,   i ) λ 2 ( m ) T * ( u , i ) + λ 2 ( 1 m ) T * ( z ,   i )   T * ( m u + ( 1 m ) z ,   i ) λ 2 ( m ) T * ( u , i ) + λ 2 ( 1 m ) T * ( z ,   i ) .  
From the Definition of U∙D  λ -convex F-N∙V∙Ms it follows that 0 ˜ F Υ ˜ ( ϰ ) and 0 ˜ F Τ ˜ ( ϰ ) , so
Υ * ( m u + ( 1 m ) z ,   i ) × Τ * ( m u + ( 1 m ) z ,   i ) λ 1 ( m ) λ 2 ( m ) Υ * ( u , i ) × Τ * ( u , i ) + λ 1 ( 1 m ) λ 2 ( 1 m ) Υ * ( z ,   i ) × Τ * ( z ,   i ) + λ 1 ( m ) λ 2 ( 1 m ) Υ * ( u , i ) × Τ * ( z ,   i ) + λ 1 ( 1 m ) λ 2 ( m ) Υ * ( z ,   i ) × Τ * ( u , i ) Υ * ( m u + ( 1 m ) z ,   i ) × Τ * ( m u + ( 1 m ) z ,   i )   λ 1 ( m ) λ 2 ( m ) Υ * ( u , i ) × Τ * ( u , i ) + λ 1 ( 1 m ) λ 2 ( 1 m ) Υ * ( z ,   i ) × Τ * ( z ,   i ) + λ 1 ( m ) λ 2 ( 1 m ) Υ * ( u , i ) × Τ * ( z ,   i ) + λ 1 ( 1 m ) λ 2 ( m ) Υ * ( z ,   i ) × Τ * ( u , i ) .
Analogously, we have
Υ * ( ( 1 m ) u + m z ,   i ) Τ * ( ( 1 m ) u + m z ,   i ) λ 1 ( 1 m ) λ 2 ( 1 m ) Υ * ( u , i ) × Τ * ( u , i ) + λ 1 ( m ) λ 2 ( m ) Υ * ( z ,   i ) × Τ * ( z ,   i ) + λ 1 ( 1 m ) λ 2 ( m ) Υ * ( u , i ) × Τ * ( z ,   i ) + λ 1 ( m ) λ 2 ( 1 m ) Υ * ( z ,   i ) × Τ * ( u , i ) Υ * ( ( 1 m ) u + m z ,   i ) × Τ * ( ( 1 m ) u + m z ,   i ) λ 1 ( 1 m ) λ 2 ( 1 m ) Υ * ( u , i ) × Τ * ( u , i ) + λ 1 ( m ) λ 2 ( m ) Υ * ( z ,   i ) × Τ * ( z ,   i ) + λ 1 ( 1 m ) λ 2 ( m ) Υ * ( u , i ) × Τ * ( z ,   i ) + λ 1 ( m ) λ 2 ( 1 m ) Υ * ( z ,   i ) × Τ * ( u , i ) .
Adding (48) and (49), we have
Υ * ( m u + ( 1 m ) z ,   i ) × Τ * ( m u + ( 1 m ) z ,   i )                                                         + Υ * ( ( 1 m ) u + m z ,   i ) × Τ * ( ( 1 m ) u + m z ,   i ) [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] [ Υ * ( u , i ) × Τ * ( u , i ) + Υ * ( z ,   i ) × Τ * ( z ,   i ) ] + [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] [ Υ * ( z ,   i ) × Τ * ( u , i ) + Υ * ( u , i ) × Τ * ( z ,   i ) ] Υ * ( m u + ( 1 m ) z ,   i ) × Τ * ( m u + ( 1 m ) z ,   i )   + Υ * ( ( 1 m ) u + m z ,   i ) × Τ * ( ( 1 m ) u + m z ,   i ) [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] [ Υ * ( u , i ) × Τ * ( u , i ) + Υ * ( z ,   i ) × Τ * ( z ,   i ) ] + [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] [ Υ * ( z ,   i ) × Τ * ( u , i ) + Υ * ( u , i ) × Τ * ( z ,   i ) ] .
Taking multiplication of (50) with m α 1 and integrating the obtained result with respect to m over (0,1), we have
0 1 m α 1 Υ * ( m u + ( 1 m ) z ,   i ) × Τ * ( m u + ( 1 m ) z ,   i ) + m α 1 Υ * ( ( 1 m ) u + m z ,   i ) × Τ * ( ( 1 m ) u + m z ,   i ) d m Δ * ( ( u , z ) ,   i ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] d m + 𝛻 * ( ( u , z ) ,   i ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] d m 0 1 m α 1 Υ * ( m u + ( 1 m ) z ,   i ) × Τ * ( m u + ( 1 m ) z ,   i ) + m α 1 Υ * ( ( 1 m ) u + m z ,   i ) × Τ * ( ( 1 m ) u + m z ,   i ) d m Δ * ( ( u , z ) ,   i ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] d m + 𝛻 * ( ( u , z ) ,   i ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] d m .
It follows that,
Γ ( α ) ( z u ) α [ u + α   Υ * ( z ,   i ) × Τ * ( z ,   i ) + z α   Υ * ( u , i ) × Τ * ( u , i ) ] Δ * ( ( u , z ) ,   i ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] d m + 𝛻 * ( ( u , z ) ,   i ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] d m . Γ ( α ) ( z u ) α [ u + α   Υ * ( z ,   i ) × Τ * ( z ,   i ) + z α   Υ * ( u , i ) × Τ * ( u , i ) ]   Δ * ( ( u , z ) ,   i ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] d m + 𝛻 * ( ( u , z ) ,   i ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] d m .  
It follows that
Γ ( α ) ( z u ) α [ u + α Υ * ( z ,   i ) × Τ * ( z ,   i ) + z α   Υ * ( u , i ) × Τ * ( u , i ) ,     u + α   Υ * ( z ,   i ) × Τ * ( z ,   i ) + z α   Υ * ( u , i ) × Τ * ( u ,   i ) ] I [ Δ * ( ( u , z ) ,   i ) ,   Δ * ( ( u , z ) ,   i ) ] 0 1 m α 1 [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] d m + [ 𝛻 * ( ( u , z ) ,   i ) ,   𝛻 * ( ( u , z ) ,   i ) ] 0 1 m α 1 [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] d m ,
that is
Γ ( α ) ( z u ) α [ u + α   Υ i ( z ) × Τ i ( z ) + z α Υ i ( u ) × Τ i ( u ) ] I Δ i ( u , z ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] d m + 𝛻 i ( u , z ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] d m .
Thus,
Γ ( α ) ( z u ) α [ u + α   Υ ˜ ( z ) Τ ˜ ( z ) z α Υ ˜ ( u ) Τ ˜ ( u ) ] F Δ ˜ ( u , z ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] d m 𝛻 ˜ ( u , z ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] d m .
and the theorem has been established. □
Example 3.
Let [ u , z ] = [ 0 , 2 ] , α = 1 2 ,   and the F-N∙V∙Ms Υ ˜ , Τ ˜ : [ u ,   z ] = [ 0 , 2 ] E C , defined by
Υ ˜ ( ϰ ) ( θ ) = { θ ϰ                         θ [ 0 ,   ϰ ]   2 ϰ θ ϰ                 θ ( ϰ ,   2 ϰ ] 0                       o t h e r w i s e ,
Τ ˜ ( ϰ ) ( θ ) = { θ ϰ 2 ϰ                             θ [ ϰ ,   2 ]   8 e ϰ θ 8 e ϰ 2       θ ( 2 ,   8 e ϰ ] 0                       o t h e r w i s e .
Then, for each i [ 0 ,   1 ] , we have Υ i ( ϰ ) = [ i ϰ , ( 2 i ) ϰ ] and Τ i ( ϰ ) = [ ( 1 i ) ϰ + 2 i , ( 1 i ) ( 8 e ϰ ) + 2 i ] . Since left and right endpoint mappings Υ * ( ϰ , i ) = i ϰ ,   Υ * ( ϰ ,   i ) = ( 2 i ) ϰ , Τ * ( ϰ , i ) = ( 1 i ) ϰ + 2 i and Τ * ( ϰ ,   i ) = ( 1 i ) ( 8 e ϰ ) + 2 i are λ -convex and λ -concave mappings with λ ( m ) = m , for each i [ 0 ,   1 ] , we have Υ ( ϰ ) and Τ ( ϰ ) both are U∙D λ -convex F-N∙V∙Ms with λ ( m ) = m . We clearly see that Υ ˜ ( ϰ ) Τ ˜ ( ϰ ) L ( [ u ,   z ] , F ) and
Γ ( α ) ( z u ) α [ u + α   Υ * ( z ) × Τ * ( z ) + z α   Υ * ( u ) × Τ * ( u ) ] = Γ ( 1 2 ) 2 1 π 0 2 ( 2 ϰ ) 1 2   ( i ( 1 i ) ϰ 2 + 2 i 2 ϰ ) d ϰ + Γ ( 1 2 ) 2 1 π 0 2 ( ϰ ) 1 2     ( i ( 1 i ) ϰ 2 + 2 i 2 ϰ ) d ϰ = 8 15 i ( 4 i + 11 ) ,
Γ ( α ) ( z u ) α [ u + α   Υ * ( z ) × Τ * ( z ) + z α   Υ * ( u ) × Τ * ( u ) ] = Γ ( 1 2 ) 2 1 π 0 2 ( 2 ϰ ) 1 2   . [ ( 1 i ) ( 2 i ) ϰ ( 8 e ϰ ) + 2 i ( 2 i ) ϰ ] d ϰ + Γ ( 1 2 ) 2 1 π 0 2 ( ϰ ) 1 2     . [ ( 1 i ) ( 2 i ) ϰ ( 8 e ϰ ) + 2 i ( 2 i ) ϰ ] d ϰ 8 5 ( 2 i ) ( 8 3 i ) .
Note that
Δ * ( ( u , z ) ,   i ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] d m = [ Υ * ( u ) × Τ * ( u ) + Υ * ( z ) × Τ * ( z ) ] 0 1 m α 1 [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] d m = 88 15 i ,  
Δ * ( ( u , z ) ,   i ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] d m = [ Υ * ( u ) × Τ * ( u ) + Υ * ( z ) × Τ * ( z ) ] 0 1 m α 1 [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] d m = 44 15 . ( 2 i ) [ ( 1 i ) ( 8 e 2 ) + 2 i ] ,
𝛻 * ( ( u , z ) ,   i ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] d m = [ Υ * ( u ) × Τ * ( z ) + Υ * ( z ) × Τ * ( u ) ] 0 1 m α 1 [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] d m = 32 15 i 2 ,
𝛻 * ( ( u , z ) ,   i ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] d m = [ Υ * ( u ) × Τ * ( z ) + Υ * ( z ) × Τ * ( u ) ] 0 1 m α 1 [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] d m = 16 15 ( 2 i ) ( 7 5 i ) .
Therefore, we have
Δ i ( u , z ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) ] d m + 𝛻 i ( u , z ) 0 1 m α 1 [ λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) ] d m = 44 15 [ 2 i , ( 2 i ) [ ( 1 i ) ( 8 e 2 ) + 2 i ] ] + 16 15 [ 2 i 2 , ( 2 i ) ( 7 5 i ) ] = 4 15 [ 2 i ( 11 + 4 i ) , ( 2 i ) [ 11 ( 1 i ) ( 8 e 2 ) + 2 i + 28 ] ] .
It follows that
4 5 [ 2 3 i ( 11 + 4 i ) , 2 ( 2 i ) ( 8 3 i ) ] I 4 15 [ 2 i ( 11 + 4 i ) , ( 2 i ) [ 11 ( 1 i ) ( 8 e 2 ) + 2 i + 28 ] ]
and Theorem 6 has been demonstrated.
Theorem 7. 
Let Υ ˜ , Τ ˜   : [ u ,   z ] E C be two U∙D λ 1 -convex and λ 2 -convex F-N∙V∙Ms, respectively, whose i -levels define the family of I∙V∙Ms Υ i ,   Τ i : [ u ,   z ] K C + are given by Υ i ( ϰ ) = [ Υ * ( ϰ , i ) ,   Υ * ( ϰ , i ) ] and Τ i ( ϰ ) = [ Τ * ( ϰ , i ) ,   Τ * ( ϰ , i ) ] for all ϰ [ u ,   z ] and for all i [ 0 ,   1 ] . If Υ ˜ Τ ˜ L ( [ u ,   z ] , E ) , then
1 α λ 1 ( 1 2 ) λ 2 ( 1 2 ) Υ ˜ ( u + z 2 ) Τ ˜ ( u + z 2 ) F Γ ( α ) ( z u ) α [ u + α   Υ ˜ ( z ) Τ ˜ ( z ) z α   Υ ˜ ( u ) Τ ˜ ( u ) ] 𝛻 ˜ ( u , z ) 0 1 [ m α 1 + ( 1 m ) α 1 ] λ 1 ( m ) λ 2 ( 1 m ) d m Δ ˜ ( u , z ) 0 1 [ m α 1 + ( 1 m ) α 1 ] λ 1 ( 1 m ) λ 2 ( 1 m ) d m .
where   Δ ˜ ( u , z ) = Υ ˜ ( u ) Τ ˜ ( u )   Υ ˜ ( z ) Τ ˜ ( z ) ,   𝛻 ˜ ( u , z ) = Υ ˜ ( u ) Τ ˜ ( z ) Υ ˜ ( z ) Τ ˜ ( u ) , and Δ i ( u , z ) = [ Δ * ( ( u , z ) ,   i ) ,   Δ * ( ( u , z ) ,   i ) ] and 𝛻 i ( u , z ) = [ 𝛻 * ( ( u , z ) ,   i ) ,   𝛻 * ( ( u , z ) ,   i ) ] .
Proof. 
Consider Υ ˜ , Τ ˜   : [ u ,   z ] E C are U∙D  λ 1 -convex and λ 2 -convex F-N∙V∙Ms. Then, by hypothesis, for each i [ 0 ,   1 ] , we have
Υ * ( u + z 2 ,   i ) × Τ * ( u + z 2 , i ) Υ * ( u + z 2 , i ) × Τ * ( u + z 2 , i )
λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ Υ * ( m u + ( 1 m ) z ,   i ) × Τ * ( m u + ( 1 m ) z ,   i ) + Υ * ( m u + ( 1 m ) z ,   i ) × Τ * ( ( 1 m ) u + m z ,   i ) ] + λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ Υ * ( ( 1 m ) u + m z ,   i ) × Τ * ( m u + ( 1 m ) z ,   i ) + Υ * ( ( 1 m ) u + m z ,   i ) × Τ * ( ( 1 m ) u + m z ,   i ) ] λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ Υ * ( m u + ( 1 m ) z ,   i ) × Τ * ( m u + ( 1 m ) z ,   i ) + Υ * ( m u + ( 1 m ) z ,   i ) × Τ * ( ( 1 m ) u + m z ,   i ) ] + λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ Υ * ( ( 1 m ) u + m z ,   i ) × Τ * ( m u + ( 1 m ) z ,   i ) + Υ * ( ( 1 m ) u + m z ,   i ) × Τ * ( ( 1 m ) u + m z ,   i ) ] ,
λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ Υ * ( m u + ( 1 m ) z ,   i ) × Τ * ( m u + ( 1 m ) z ,   i ) + Υ * ( ( 1 m ) u + m z ,   i ) × Τ * ( ( 1 m ) u + m z ,   i ) ] + λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ ( m Υ * ( u ,   i ) + ( 1 m ) Υ * ( z ,   i ) ) × ( ( 1 m ) Τ * ( u ,   i ) + m Τ * ( z ,   i ) ) + ( ( 1 m ) Υ * ( u ,   i ) + m Υ * ( z ,   i ) ) × ( m Τ * ( u ,   i ) + ( 1 m ) Τ * ( z ,   i ) ) ] λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ Υ * ( m u + ( 1 m ) z ,   i ) × Τ * ( m u + ( 1 m ) z ,   i ) + Υ * ( ( 1 m ) u + m z ,   i ) × Τ * ( ( 1 m ) u + m z ,   i ) ] + λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ ( m Υ * ( u ,   i ) + ( 1 m ) Υ * ( z ,   i ) ) × ( ( 1 m ) Τ * ( u ,   i ) + m Τ * ( z ,   i ) ) + ( ( 1 m ) Υ * ( u ,   i ) + m Υ * ( z ,   i ) ) × ( m Τ * ( u ,   i ) + ( 1 m ) Τ * ( z ,   i ) ) ] ,
= λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ Υ * ( m u + ( 1 m ) z ,   i ) × Τ * ( m u + ( 1 m ) z ,   i ) + Υ * ( ( 1 m ) u + m z ,   i ) × Τ * ( ( 1 m ) u + m z ,   i ) ]     + λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ { λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) } 𝛻 * ( ( u , z ) ,   i ) + { λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) } Δ * ( ( u , z ) ,   i ) ] = λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ Υ * ( m u + ( 1 m ) z ,   i ) × Τ * ( m u + ( 1 m ) z ,   i ) + Υ * ( ( 1 m ) u + m z ,   i ) × Τ * ( ( 1 m ) u + m z ,   i ) ]     + λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ { λ 1 ( m ) λ 2 ( 1 m ) + λ 1 ( 1 m ) λ 2 ( m ) } 𝛻 * ( ( u , z ) ,   i ) + { λ 1 ( m ) λ 2 ( m ) + λ 1 ( 1 m ) λ 2 ( 1 m ) } Δ * ( ( u , z ) ,   i ) ] .
Taking multiplication of (54) with m α 1 and integrating over ( 0 ,   1 ) , we get
1 α λ 1 ( 1 2 ) λ 2 ( 1 2 ) Υ * ( u + z 2 , i ) × Τ * ( u + z 2 , i )                                                             Γ ( α ) ( z u ) α [ u + α   Υ * ( z ) × Τ * ( z ) + z α   Υ * ( u ) × Τ * ( u ) ] + 𝛻 * ( ( u , z ) ,   i ) 0 1 [ m α 1 + ( 1 m ) α 1 ] λ 1 ( m ) λ 2 ( 1 m ) d m . + Δ * ( ( u , z ) ,   i ) 0 1 [ m α 1 + ( 1 m ) α 1 ] λ 1 ( 1 m ) λ 2 ( 1 m ) d m 1 α λ 1 ( 1 2 ) λ 2 ( 1 2 ) Υ * ( u + z 2 , i ) × Τ * ( u + z 2 , i )   Γ ( α ) ( z u ) α [ u + α   Υ * ( z ) × Τ * ( z ) + z α   Υ * ( u ) × Τ * ( u ) ] + 𝛻 * ( ( u , z ) ,   i ) 0 1 [ m α 1 + ( 1 m ) α 1 ] λ 1 ( m ) λ 2 ( 1 m ) d m + Δ * ( ( u , z ) ,   i ) 0 1 [ m α 1 + ( 1 m ) α 1 ] λ 1 ( 1 m ) λ 2 ( 1 m ) d m .
It follows that
1 α λ 1 ( 1 2 ) λ 2 ( 1 2 ) Υ i ( u + z 2 ) × Τ i ( u + z 2 ) I Γ ( α ) ( z u ) α [ u + α   Υ i ( z ) × Τ i ( z ) + z α   Υ i ( u ) × Τ i ( u ) ] + 𝛻 i ( u , z ) 0 1 [ m α 1 + ( 1 m ) α 1 ] λ 1 ( 1 m ) λ 2 ( 1 m ) d m + Δ i ( u , z ) 0 1 [ m α 1 + ( 1 m ) α 1 ] λ 1 ( 1 m ) λ 2 ( 1 m ) d m ,  
that is
1 α λ 1 ( 1 2 ) λ 2 ( 1 2 ) Υ ˜ ( u + z 2 ) × ˜ Τ ˜ ( u + z 2 ) F Γ ( α ) ( z u ) α [ u + α   Υ ˜ ( z ) Τ ˜ ( z ) z α   Υ ˜ ( u ) Τ ˜ ( u ) ] 𝛻 ˜ ( u , z ) 0 1 [ m α 1 + ( 1 m ) α 1 ] λ 1 ( 1 m ) λ 2 ( 1 m ) d m Δ ˜ ( u , z ) 0 1 [ m α 1 + ( 1 m ) α 1 ] λ 1 ( 1 m ) λ 2 ( 1 m ) d m .
Hence, the required result. □
Let us introduce a new version of fuzzy fractional H∙H-type-Fejér inequality with the help of U∙D  λ -convex F-N∙V∙M. Firstly, we obtain the right part of classical H∙H Fejér inequality through fuzzy Riemann–Liouville fractional integral is known as the second fuzzy fractional H∙H Fejér inequality.
Theorem 8. 
(Second fuzzy fractional H∙H Fejér type inequality) Let Υ ˜ : [ u ,   z ] E C be a U∙D λ -convex F-N∙V∙M with u < z , whose i -levels define the family of I∙V∙Ms Υ i : [ u ,   z ] K C + are given by Υ i ( ϰ ) = [ Υ * ( ϰ , i ) ,   Υ * ( ϰ , i ) ] for all ϰ [ u ,   z ] and for all i [ 0 ,   1 ] . If Υ ˜ L ( [ u ,   z ] , E C ) and F : [ u ,   z ] ,   F ( ϰ ) 0 , symmetric with respect to u + z 2 , then
Γ ( α ) ( z u ) α [ u + α   Υ ˜ F ( z ) z α   Υ ˜ F ( u ) ] F Υ ˜ ( u ) Υ ˜ ( z ) 2 0 1 m α 1 [ λ ( m ) + λ ( 1 m ) ] F ( ( 1 m ) u + m z ) d m .
If Υ ˜ is U∙D  λ -concave F-N∙V∙M, then inequality (55) is reversed.
Proof. 
Let Υ ˜ be a U∙D  λ -convex F-N∙V∙M and m α 1 F ( m u + ( 1 m ) z ) 0 . Then, for each i [ 0 ,   1 ] , we have
m α 1 Υ * ( m u + ( 1 m ) z ,   i ) F ( m u + ( 1 m ) z )                                               m α 1 ( λ ( m ) Υ * ( u ,   i ) + λ ( 1 m ) Υ * ( z ,   i ) ) F ( m u + ( 1 m ) z ) m α 1 Υ * ( m u + ( 1 m ) z ,   i ) F ( m u + ( 1 m ) z )               m α 1 ( λ ( m ) Υ * ( u ,   i ) + λ ( 1 m ) Υ * ( z ,   i ) ) F ( m u + ( 1 m ) z ) ,
and
m α 1 Υ * ( ( 1 m ) u + m z ,   i ) F ( ( 1 m ) u + m z ) m α 1 ( λ ( 1 m ) Υ * ( u ,   i ) + λ ( m ) Υ * ( z ,   i ) ) F ( ( 1 m ) u + m z ) m α 1 Υ * ( ( 1 m ) u + m z ,   i ) F ( ( 1 m ) u + m z )                         m α 1 ( λ ( 1 m ) Υ * ( u ,   i ) + λ ( m ) Υ * ( z ,   i ) ) F ( ( 1 m ) u + m z ) .
After adding (56) and (57), and integrating over [ 0 ,   1 ] , we get
0 1 m α 1 Υ * ( m u + ( 1 m ) z ,   i ) F ( m u + ( 1 m ) z ) d m   + 0 1 m α 1 Υ * ( ( 1 m ) u + m z ,   i ) F ( ( 1 m ) u + m z ) d m     0 1 [ m α 1 Υ * ( u ,   i ) { λ ( m ) F ( m u + ( 1 m ) z ) + λ ( 1 m ) F ( ( 1 m ) u + m z ) } + m α 1 Υ * ( z ,   i ) { λ ( 1 m ) F ( m u + ( 1 m ) z ) + λ ( m ) F ( ( 1 m ) u + m z ) } ] d m = Υ * ( u ,   i ) 0 1 m α 1 [ λ ( m ) + λ ( 1 m ) ] F ( m u + ( 1 m ) z ) d m       + Υ * ( z ,   i ) 0 1 m α 1 [ λ ( m ) + λ ( 1 m ) ] F ( ( 1 m ) u + m z ) d m ,       0 1 m α 1 Υ * ( ( 1 m ) u + m z ,   i ) F ( ( 1 m ) u + m z ) d m + 0 1 m α 1 Υ * ( m u + ( 1 m ) z ,   i ) F ( m u + ( 1 m ) z ) d m 0 1 [ m α 1 Υ * ( u ,   i ) { λ ( m ) F ( m u + ( 1 m ) z ) + λ ( 1 m ) F ( ( 1 m ) u + m z ) } + m α 1 Υ * ( z ,   i ) { λ ( 1 m ) F ( m u + ( 1 m ) z ) + λ ( m ) F ( ( 1 m ) u + m z ) } ] d m = Υ * ( u ,   i ) 0 1 m α 1 [ λ ( m ) + λ ( 1 m ) ] F ( m u + ( 1 m ) z ) d m + Υ * ( z ,   i ) 0 1 m α 1 [ λ ( m ) + λ ( 1 m ) ] F ( ( 1 m ) u + m z ) d m .
Taking right hand side of inequality (58), we have
  0 1 m α 1 Υ * ( m u + ( 1 m ) z ,   i ) F ( ( 1 m ) u + m z ) d m                                         + 0 1 m α 1 Υ * ( ( 1 m ) u + m z ,   i ) F ( ( 1 m ) u + m z ) d m     = 1 ( z u ) α   u z ( ϰ u ) α 1 Υ * ( u + z ϰ , i ) F ( ϰ ) d ϰ + 1 ( z u ) α   u z ( ϰ u ) α 1 Υ * ( ϰ , i ) F ( ϰ ) d ϰ     = 1 ( z u ) α   u z ( z u ) α 1 Υ * ( ϰ , i ) F ( u + z ϰ ) d ϰ + 1 ( z u ) α   u z ( ϰ u ) α 1 Υ * ( ϰ , i ) F ( ϰ ) d ϰ = Γ ( α ) ( z u ) α [ u + α   Υ * F ( z ) + z α   Υ * F ( u ) ] ,       0 1 m α 1 Υ * ( m u + ( 1 m ) z ,   i ) F ( ( 1 m ) u + m z ) d m         + 0 1 m α 1 Υ * ( ( 1 m ) u + m z ,   i ) F ( ( 1 m ) u + m z ) d m     = Γ ( α ) ( z u ) α [ u + α   Υ * F ( z ) + z α   Υ * F ( u ) ] .
From (59), we have
Γ ( α ) ( z u ) α [ u + α Υ * F ( z ) + z α Υ * F ( u ) ]                                                                       [ Υ * ( u ,   i ) + Υ * ( z ,   i ) ] 0 1 m α 1 [ λ ( m ) + λ ( 1 m ) ] F ( ( 1 m ) u + m z ) Γ ( α ) ( z u ) α [ u + α Υ * F ( z ) + z α Υ * F ( u ) ]             [ Υ * ( u ,   i ) + Υ * ( z ,   i ) ] 0 1 m α 1 [ λ ( m ) + λ ( 1 m ) ] F ( ( 1 m ) u + m z ) ,
that is
Γ ( α ) ( z u ) α [ u + α   Υ * F ( z ) + z α   Υ * F ( u ) ,   u + α   Υ * F ( z ) + z α   Υ * F ( u ) ] I [ Υ * ( u ,   i ) + Υ * ( z ,   i ) ,   Υ * ( u ,   i ) + Υ * ( z ,   i ) ] 0 1 m α 1 [ λ ( m ) + λ ( 1 m ) ] F ( ( 1 m ) u + m z ) d m ,
hence
Γ ( α ) ( z u ) α [ u + α   Υ ˜ F ( z ) z α   Υ ˜ F ( u ) ] F [ Υ ˜ ( u ) Υ ˜ ( z ) ] 0 1 m α 1 [ λ ( m ) + λ ( 1 m ) ] F ( ( 1 m ) u + m z ) d m .
Now, we obtain the following result connected with left part of classical H∙H Fejér inequality for U∙D λ-convex F-N∙V∙M through fuzzy order inclusion relation which is known as first fuzzy fractional H∙H Fejér inequality. □
Theorem 9. 
(First fuzzy fractional H∙H Fejér inequality) Let Υ ˜ : [ u ,   z ] E C be a U∙D λ -convex F-N∙V∙M with u < z , whose i -levels define the family of I∙V∙Ms Υ i : [ u ,   z ] K C + are given by Υ i ( ϰ ) = [ Υ * ( ϰ , i ) ,   Υ * ( ϰ , i ) ] for all ϰ [ u ,   z ] and for all i [ 0 ,   1 ] . If Υ ˜   L ( [ u ,   z ] , E C ) and F : [ u ,   z ] ,   F ( ϰ ) 0 , symmetric with respect to u + z 2 , then
1 2 λ ( 1 2 ) Υ ˜ ( u + z 2 ) [ u + α   F ( z ) + z α   F ( u ) ] F [ u + α   Υ ˜ F ( z ) z α   Υ ˜ F ( u ) ] .
If Υ ˜ is U∙D  λ -concave F-N∙V∙M, then inequality (60) is reversed.
Proof. 
Since Υ ˜ is a U∙D  λ -convex F-N∙V∙M, then for i [ 0 ,   1 ] , we have
    Υ * ( u + z 2 ,   i ) λ ( 1 2 ) ( Υ * ( m u + ( 1 m ) z ,   i ) + Υ * ( ( 1 m ) u + m z ,   i ) ) Υ * ( u + z 2 ,   i ) λ ( 1 2 ) ( Υ * ( m u + ( 1 m ) z ,   i ) + Υ * ( ( 1 m ) u + m z ,   i ) ) .
Since F ( m u + ( 1 m ) z ) = F ( ( 1 m ) u + m z ) , then by multiplying (61) by m α 1 F ( ( 1 m ) u + m z ) and integrate it with respect to m over [ 0 ,   1 ] , we obtain
Υ * ( u + z 2 ,   i ) 0 1 m α 1 F ( ( 1 m ) u + m z ) d m                                                               λ ( 1 2 ) ( 0 1 m α 1 Υ * ( m u + ( 1 m ) z ,   i ) F ( ( 1 m ) u + m z ) d m + 0 1 m α 1 Υ * ( ( 1 m ) u + m z ,   i ) F ( ( 1 m ) u + m z ) d m ) , Υ * ( u + z 2 ,   i ) 0 1 m α 1 F ( ( 1 m ) u + m z ) d m                           λ ( 1 2 ) ( 0 1 m α 1 Υ * ( m u + ( 1 m ) z ,   i ) F ( ( 1 m ) u + m z ) d m + 0 1 m α 1 Υ * ( ( 1 m ) u + m z ,   i ) F ( ( 1 m ) u + m z ) d m ) .
Let ϰ = ( 1 m ) u + m z . Then, right hand side of inequality (62), we have
  0 1 m α 1 Υ * ( m u + ( 1 m ) z ,   i ) F ( ( 1 m ) u + m z ) d m                             + 0 1 m α 1 Υ * ( ( 1 m ) u + m z ,   i ) F ( ( 1 m ) u + m z ) d m       = 1 ( z u ) α   u z ( ϰ u ) α 1 Υ * ( u z ϰ , i ) F ( ϰ ) d ϰ + 1 ( z u ) α   u z ( ϰ u ) α 1 Υ * ( ϰ , i ) F ( ϰ ) d ϰ = 1 ( z u ) α   u z ( z u ) α 1 Υ * ( ϰ , i ) F ( u z ϰ ) d ϰ + 1 ( z u ) α   u z ( ϰ u ) α 1 Υ * ( ϰ , i ) F ( ϰ ) d ϰ = Γ ( α ) ( z u ) α [ u + α   Υ * F ( z ) + z α   Υ * F ( u ) ] ,   0 1 m α 1 Υ * ( m u + ( 1 m ) z ,   i ) F ( ( 1 m ) u + m z ) d                       + 0 1 m α 1 Υ * ( ( 1 m ) u + m z ,   i ) F ( ( 1 m ) u + m z ) d m     = Γ ( α ) ( z u ) α [ u + α   Υ * F ( z ) + z α   Υ * F ( u ) ] .          
Then from (63), we have
    1 2 λ ( 1 2 ) Υ * ( u + z 2 ,   i ) [ u + α   F ( z ) + z α   F ( u ) ]   [ u + α   Υ * F ( z ) + z α   Υ * F ( u ) ]     1 2 λ ( 1 2 ) Υ * ( u + z 2 ,   i ) [ u + α   F ( z ) + z α   F ( u ) ]   [ u + α   Υ * F ( z ) + z α   Υ * F ( u ) ] ,
from which, we have
    1 2 λ ( 1 2 ) [ Υ * ( u + z 2 ,   i ) ,     Υ * ( u + z 2 ,   i ) ] [ u + α   F ( z ) + z α   F ( u ) ]                                         I [   u + α   Υ * F ( z ) + z α   Υ * F ( u ) ,     u + α   Υ * F ( z ) + z α   Υ * F ( u ) ] ,                                
it follows that
1 2 λ ( 1 2 ) Υ i ( u + z 2 ) [ u + α   F ( z ) + z α   F ( u ) ] I [ u + α   Υ i F ( z ) + z α   Υ i F ( u ) ] ,  
that is
1 2 λ ( 1 2 ) Υ ˜ ( u + z 2 ) [ u + α   F ( z ) z α   F ( u ) ] F [ u + α   Υ ˜ F ( z ) z α   Υ ˜ F ( u ) ] .
This completes the proof. □
Remark 6.
If F ( ϰ ) = 1 , then from Theorem 8 and Theorem 9, we get Theorem 5.
If Υ ˜ is lower U∙D  λ -convex F-N∙V∙M with λ ( m ) = m , then from Theorem 8 and Theorem 9, we obtain the following factional H∙H Fejér inequality given in [53]:
Υ ˜ ( u + z 2 ) [ u + α   F ( z ) + z α   F ( u ) ] F [ u + α   Υ ˜ F ( z ) z α   Υ ˜ F ( u ) ] F Υ ˜ ( u ) Υ ˜ ( z ) 2 [ u + α   F ( z ) + z α   F ( u ) ] .  
Let Υ ˜ is lower U∙D  λ -convex F-N∙V∙M with λ ( m ) = m and α = 1 . Then, from Theorem 8 and Theorem 9, we obtain the following H∙H Fejér inequality for convex F-N∙V∙M, see [52]:
Υ ˜ ( u + z 2 ) F 1 u z F ( ϰ ) d ϰ   ( F A ) u z Υ ˜ ( ϰ ) F ( ϰ ) d ϰ F Υ ˜ ( u ) Υ ˜ ( z ) 2 .
Let Υ ˜ is lower U∙D  λ -convex F-N∙V∙M with λ ( m ) = m and α = 1 = F ( ϰ ) . Then, from Theorem 8 and Theorem 9, we obtain the following H∙H inequality for convex F-N∙V∙M given in [52]:
Υ ˜ ( u + z 2 ) F ( F A ) u z Υ ˜ ( ϰ ) d ϰ F Υ ˜ ( u ) Υ ˜ ( z ) 2 .
If Υ * ( ϰ ,   i ) = Υ * ( ϰ ,   i ) and 1 = i and   λ ( m ) = m , then from Theorem 8 and Theorem 9, following H∙H Fejér inequality for classical mapping following inequality given in [69]:
Υ ( u + z 2 ) [ u + α   F ( z ) + z α   F ( u ) ] [ u + α   Υ F ( z ) + z α   Υ F ( u ) ] Υ ( u ) + Υ ( z ) 2 [ u + α   F ( z ) + z α   F ( u ) ] .
If Υ * ( ϰ ,   i ) = Υ * ( ϰ ,   i ) and   α = 1 = i and   λ ( m ) = m , then from Theorem 8 and Theorem 9, we obtain the classical H∙H Fejér inequality.
If Υ * ( ϰ ,   i ) = Υ * ( ϰ ,   i ) and F ( ϰ ) = α = 1 = i and λ ( m ) = m , then from Theorem 9 and Theorem 9, we obtain the classical H∙H inequality.
Example 4.
We consider the F-N∙V∙M Υ : [ 0 ,   2 ] E C defined by,
Υ ( ϰ ) ( θ ) = { θ 2 + ϰ 1 2 3 2 2 ϰ 1 2                                     θ [ 2 ϰ 1 2 ,   3 2 ]   2 + ϰ 1 2 θ 2 + ϰ 1 2 3 2                                 θ ( 3 2 ,   2 + ϰ 1 2 ]   0                                     o t h e r w i s e ,
Then, for each i [ 0 ,   1 ] , we have Υ i ( ϰ ) = [ ( 1 i ) ( 2 ϰ 1 2 ) + 3 2 i , ( 1 + i ) ( 2 + ϰ 1 2 ) + 3 2 i ] . Since end-point mappings Υ * ( ϰ , i ) ,   Υ * ( ϰ , i ) are λ -convex and λ -concave mappings with λ ( m ) = m , respectively, for each i [ 0 ,   1 ] , we have Υ ( ϰ ) is U∙D λ -convex F-N∙V∙M with λ ( m ) = m . If
F ( ϰ ) = { ϰ ,             σ [ 0 , 1 ] , 2 ϰ ,       σ ( 1 ,   2 ] ,  
then F ( 2 ϰ ) = F ( ϰ ) 0 , for all ϰ [ 0 ,   2 ] . Since Υ * ( ϰ , i ) = ( 1 i ) ( 2 ϰ 1 2 ) + 3 2 i and Υ * ( ϰ , i ) = ( 1 + i ) ( 2 + ϰ 1 2 ) + 3 2 i . If α = 1 2 , then we compute the following:
[ Υ * ( u ,   i ) + Υ * ( z ,   i ) ] 0 1 m α 1 [ i ( m ) + λ ( 1 m ) ] F ( ( 1 m ) u + m z ) d m = ( 1 i ) π ( 4 2 2 ) + 3 2 π i , [ Υ * ( u ,   i ) + Υ * ( z ,   i ) ] 0 1 m α 1 [ λ ( m ) + λ ( 1 m ) ] F ( ( 1 m ) u + m z ) d m = ( 1 + i ) π ( 4 + 2 2 ) + 3 2 π i ,  
and
Γ ( α ) ( z u ) α [ u + α   Υ * F ( z ) + z α   Υ * F ( u ) ] = 1 2 ( 1 i ) ( 2 π + 4 8 2 3 ) + 3 2 2 π i , Γ ( α ) ( z u ) α [ u + α   Υ * F ( z ) + z α   Υ * F ( u ) ] = 1 2 ( 1 + i ) ( 2 π + 8 2 4 3 ) + 3 2 2 π i .  
From (70) and (71), we have
1 2 [ ( 1 i ) ( 2 π + 4 8 2 3 ) + 3 2 π i ,   ( 1 + i ) ( 2 π + 8 2 4 3 ) + 3 2 π i ] I π [ ( 1 i ) ( 4 2 2 ) + 3 2 i ,   ( 1 + i ) ( 4 + 2 2 ) + 3 2 i ] ,
for each i [ 0 ,   1 ] .
Hence, Theorem 8 is verified.
For Theorem 9, we have
1 2 λ ( 1 2 ) Υ * ( u + z 2 ,   i ) [ u + α   F ( z ) + z α   F ( u ) ] = ( 1 i ) π + 3 2 π i ,   1 2 λ ( 1 2 ) Υ * ( u + z 2 ,   i ) [ u + α   F ( z ) + z α   F ( u ) ] = 3 ( 1 + i ) π + 3 2 π i .  
From (71) and (72), we have
π [ ( 1 i ) + 3 2 i ,   3 ( 1 + i ) + 3 2 i ] I [ ( 1 i ) π ( 2 π + 4 8 2 3 ) + 3 2 π i ,   ( 1 + i ) π ( 2 π + 8 2 4 3 ) + 3 2 π i ] ,
for each i [ 0 ,   1 ] .

4. Conclusions

This study is the first to address fuzzy fractional inclusion relations including fuzzy-number valued λ -convexity, as far as we are aware. Here, we derive the fuzzy fractional integral inclusions for the recently proposed family of mappings together with the H∙H- and Pachpatte-type inequality. Specifically, for the fuzzy-number valued λ -convex mappings, we provide an enhanced version of the fuzzy H∙H-type integral inclusions. This study’s fuzzy integral inclusion relations are significant expansions of the findings made by Tunç in [68]. We would like to underline the wide variety of uses for fuzzy interval analysis in practical mathematics, particularly in the area of fuzzy optimality analysis; for more information, check the published publications [54,71,85]. In certain ways, more studies should be conducted on the significant field of fuzzy-number-valued analytic research that is connected to fuzzy fractional integral operators.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K.; validation, M.A.N. and M.S.S.; formal analysis, G.S.-G. and H.G.Z.; investigation, M.A.N.; resources, M.B.K.; data curation, M.S.S.; writing—original draft preparation, M.B.K., G.S.-G. and M.S.S.; writing—review and editing, M.B.K.; visualization, M.S.S.; supervision, M.B.K. and M.A.N.; project administration, M.B.K.; funding acquisition, G.S.-G. and H.G.Z. All authors have read and agreed to the published version of the manuscript.

Funding

The research of Santos-García was funded by the project ProCode-UCM (PID2019-108528RB-C22) from the Spanish Ministerio de Ciencia e Innovación and this work was also supported by the Taif University Researchers Supporting Project Number (TURSP-2020/345), Taif University, Taif, Saudi Arabia.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research and academic environments.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bermudo, S.; Karus, P.; Nápoles Valdés, J.E. On q-Hermite-Hadamard inequalities for general convex mappings. Acta Math. Hungar. 2020, 162, 364–374. [Google Scholar] [CrossRef]
  2. Budak, H. On Fejer type inequalities for convex mappings utilizing fractional integrals mapping with respect to another mapping. Results Math. 2019, 74, 15. [Google Scholar] [CrossRef]
  3. Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
  4. Du, T.S.; Luo, C.Y.; Cao, Z.J. On the Bullen-type inequalities via generalized fractional integrals and their applications. Fractals 2021, 29, 20. [Google Scholar] [CrossRef]
  5. Iscan, I. Weighted Hermite-Hadamard-Mercer type inequalities for convex mappings. Numer. Methods Partial Differential Eq. 2021, 37, 118–130. [Google Scholar] [CrossRef]
  6. Zhao, T.-H.; Zhou, B.-C.; Wang, M.-K.; Chu, Y.-M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
  7. Zhao, T.-H.; Wang, M.-K.; Zhang, W.; Chu, Y.-M. Quadratic transformation inequalities for Gaussian hyper geometric mapping. J. Inequal. Appl. 2018, 2018, 1–15. [Google Scholar] [CrossRef] [Green Version]
  8. Chu, Y.-M.; Zhao, T.-H. Concavity of the error mapping with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar]
  9. Qian, W.-M.; Chu, H.-H.; Wang, M.-K.; Chu, Y.-M. Sharp inequalities for the Toader mean of order—1 in terms of other bivariate means. J. Math. Inequal. 2022, 16, 127–141. [Google Scholar] [CrossRef]
  10. Zhao, T.-H.; Chu, H.-H.; Chu, Y.-M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J. Math. Inequal. 2022, 16, 157–168. [Google Scholar] [CrossRef]
  11. Zhao, T.-H.; Wang, M.-K.; Dai, Y.-Q.; Chu, Y.-M. On the generalized power-type Toader mean. J. Math. Inequal. 2022, 16, 247–264. [Google Scholar] [CrossRef]
  12. Zhao, T.-H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.-M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
  13. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
  14. Szostok, T. Inequalities of Hermite-Hadamard type for higher order convex mappings, revisited. Commun. Pure Appl. Anal. 2021, 20, 903–914. [Google Scholar] [CrossRef]
  15. Korus, P. An extension of the Hermite-Hadamard inequality for convex and s-convex mappings. Aequat. Math. 2019, 93, 527–534. [Google Scholar] [CrossRef] [Green Version]
  16. Andric, M.; Pecaric, J. On (h;g;m)-convexity and the Hermite-Hadamard inequality. J. Convex Anal. 2022, 29, 257–268. [Google Scholar]
  17. Latif, M.A. Weighted Hermite-Hadamard type inequalities for differentiable GA-convex and geometrically quasiconvex mappings. Rocky Mountain J. Math. 2022, 51, 1899–1908. [Google Scholar] [CrossRef]
  18. Niezgoda, M. G-majorization and Fejer and Hermite-Hadamard like inequalities for G-symmetrized convex mappings. J. Convex Anal. 2022, 29, 231–242. [Google Scholar]
  19. Demir, S.; Iscan, I.; Maden, S.; Kadakal, M. On new Simpson′s type inequalities for trigonometrically convex mappings with applications. Cumhuriyet Sci. J. 2020, 41, 862–874. [Google Scholar] [CrossRef]
  20. Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel mappings of the first kind with respect to Hölder means. Rev. Real Acad. Cienc. Exactas Físicas Y Naturales. Ser. A Matemáticas RACSAM 2020, 114, 1–14. [Google Scholar]
  21. Liu, Z.-H.; Motreanu, D.; Zeng, S.-D. Generalized penalty and regularization method for differential variational- hemivariational inequalities. SIAM J. Optim. 2021, 31, 1158–1183. [Google Scholar] [CrossRef]
  22. Liu, Y.-J.; Liu, Z.-H.; Wen, C.-F.; Yao, J.-C.; Zeng, S.-D. Existence of solutions for a class of noncoercive variational—Hemivariational inequalities arising in contact problems. Appl. Math. Optim. 2021, 84, 2037–2059. [Google Scholar] [CrossRef]
  23. Zeng, S.-D.; Migorski, S.; Liu, Z.-H. Well-posedness, optimal control, and sensitivity analysis for a class of differential variational- hemivariational inequalities. SIAM J. Optim. 2021, 31, 2829–2862. [Google Scholar] [CrossRef]
  24. Liu, Y.-J.; Liu, Z.-H.; Motreanu, D. Existence and approximated results of solutions for a class of nonlocal elliptic variational-hemivariational inequalities. Math. Methods Appl. Sci. 2020, 43, 9543–9556. [Google Scholar] [CrossRef]
  25. Liu, Y.-J.; Liu, Z.-H.; Wen, C.-F. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discret. Contin. Dyn. Syst. Ser. B 2019, 24, 1297–1307. [Google Scholar]
  26. Liu, Z.-H.; Loi, N.V.; Obukhovskii, V. Existence and global bifurcation of periodic solutions to a class of differential variational inequalities. Internat. J. Bifur. Chaos Appl. Sci. Eng. 2013, 23, 1350125. [Google Scholar] [CrossRef]
  27. Zeng, S.-D.; Migórski, S.; Liu, Z.-H. Nonstationary incompressible Navier-Stokes system governed by a quasilinear reaction-diffusion equation. Sci. Sin. Math. 2022, 52, 331–354. [Google Scholar]
  28. Liu, Z.-H.; Sofonea, M.T. Differential quasivariational inequalities in contact mechanics. Math. Mech. Solids. 2019, 24, 845–861. [Google Scholar] [CrossRef]
  29. Zeng, S.-D.; Migórski, S.; Liu, Z.-H.; Yao, J.-C. Convergence of a generalized penalty method for variational-hemivariational inequalities. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105476. [Google Scholar] [CrossRef]
  30. Li, X.-W.; Li, Y.-X.; Liu, Z.-H.; Li, J. Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. Fract. Calc. Appl. Anal. 2018, 21, 1439–1470. [Google Scholar] [CrossRef]
  31. Liu, Z.-H.; Papageorgiou, N.S. Positive solutions for resonant (p,q)-equations with convection. Adv. Nonlinear Anal. 2021, 10, 217–232. [Google Scholar] [CrossRef]
  32. Liu, Y.-J.; Liu, Z.-H.; Motreanu, D. Differential inclusion problems with convolution and discontinuous nonlinearities. Evol. Equ. Control Theory 2020, 9, 1057–1071. [Google Scholar] [CrossRef]
  33. Liu, Z.-H.; Papageorgiou, N.S. Double phase Dirichlet problems with unilateral constraints. J. Differ. Equ. 2022, 316, 249–269. [Google Scholar] [CrossRef]
  34. Liu, Z.-H.; Papageorgiou, N.S. Anisotropic (p,q)-equations with competition phenomena. Acta Math. Sci. 2022, 42B, 299–322. [Google Scholar] [CrossRef]
  35. Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type inequalities for convex mappings via new fractional integrals, J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar]
  36. Mohammed, P.O.; Sarikaya, M.Z. On generalized fractional integral inequalities for twice differentiable convex mappings. J. Comput. Appl. Math. 2020, 372, 15. [Google Scholar]
  37. Set, E.; Butt, S.I.; Akdemir, A.O.; Karaoglan, A.; Abdeljawad, T. New integral inequalities for differentiable convex mappings via Atangana-Baleanu fractional integral operators. Chaos Solitons Fractals 2021, 143, 14. [Google Scholar] [CrossRef]
  38. Khan, M.A.; Ali, T.; Dragomir, S.S.; Sarikaya, M.Z. Hermite-Hadamard type inequalities for conformable fractional integrals. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 2018, 112, 1033–1048. [Google Scholar] [CrossRef]
  39. Meftah, B.; Benssaad, M.; Kaidouchi, W.; Ghomrani, S. Conformable fractional Hermite-Hadamard type inequalities for product of two harmonic s-convex mappings. Proc. Amer. Math. Soc. 2020, 149, 1495–1506. [Google Scholar] [CrossRef]
  40. Dragomir, S.S. Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of h-convex mappings. Math. Meth. Appl. Sci. 2021, 44, 2364–2380. [Google Scholar] [CrossRef]
  41. Kashuri, A.; Ramosacaj, M.; Liko, R. Some new bounds of Gauss-Jacobi and Hermite-Hadamard-type integral inequalities. Ukrainian Math. J. 2022, 73, 1238–1258. [Google Scholar] [CrossRef]
  42. Kunt, M.; Iscan, I.; Turhan, S.; Karapinar, D. Improvement of fractional Hermite-Hadamard type inequality for convex mappings. Miskolc. Math. Notes 2018, 19, 1007–1017. [Google Scholar] [CrossRef]
  43. Mehrez, K.; Agarwal, P. New Hermite-Hadamard type integral inequalities for convex mappings and their applications. J. Comput. Appl. Math. 2019, 350, 274–285. [Google Scholar] [CrossRef]
  44. Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued mappings and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
  45. Qi, Y.F.; Li, G.P. New Hermite-Hadamard-Fejer type inequalities via Riemann-Liouville fractional integrals for convex mappings. Fractals 2021, 29, 11. [Google Scholar] [CrossRef]
  46. Sarikaya, M.Z.; Kilicer, D. On the extension of Hermite-Hadamard type inequalities for coordinated convex mappings. Turkish J. Math. 2021, 45, 2731–2745. [Google Scholar] [CrossRef]
  47. Khan, M.B.; Treanțǎ, S.; Budak, H. Generalized p-Convex Fuzzy-Interval-Valued Mappings and Inequalities Based upon the Fuzzy-Order Relation. Fractal Fract. 2022, 6, 63. [Google Scholar] [CrossRef]
  48. Santos-García, G.; Khan, M.B.; Alrweili, H.; Alahmadi, A.A.; Ghoneim, S.S. Hermite-Hadamard and Pachpatte type inequalities for coordinated preinvex fuzzy-interval-valued mappings pertaining to a fuzzy-interval double integral operator. Mathematics 2022, 10, 2756. [Google Scholar] [CrossRef]
  49. Macías-Díaz, J.E.; Khan, M.B.; Alrweili, H.; Soliman, M.S. Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Mappings in the Second Sense Integral. Symmetry 2022, 14, 1639. [Google Scholar] [CrossRef]
  50. Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Mappings in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
  51. Khan, M.B.; Treanțǎ, S.; Soliman, M.S. Generalized Preinvex Interval-Valued Mappings and Related Hermite-Hadamard Type Inequalities. Symmetry 2022, 14, 1901. [Google Scholar] [CrossRef]
  52. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Hermite–Hadamard inequalities for convex fuzzy-number-valued mappings via fuzzy Riemann integrals. Mathematics 2022, 10, 3251. [Google Scholar] [CrossRef]
  53. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite–Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
  54. Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some new versions of Hermite–Hadamard integral inequalities in fuzzy fractional calculus for generalized pre-invex mappings via fuzzy-interval-valued settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
  55. Narges Hajiseyedazizi, S.; Samei, M.E.; Alzabut, J.; Chu, Y.-M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
  56. Jin, F.; Qian, Z.-S.; Chu, Y.-M.; Rahman, M.U. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
  57. Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2009. [Google Scholar]
  58. de Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef] [Green Version]
  59. Snyder, J.M. Interval analysis for computer graphics. SIGGRAPH Comput. Graph. 1992, 26, 121–130. [Google Scholar] [CrossRef]
  60. Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Ed. 2012, 55, 9–15. [Google Scholar] [CrossRef]
  61. Budak, H.; Kara, H.; Ali, M.A.; Khan, S.; Chu, Y.M. Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex mappings. Open Math. 2021, 19, 1081–1097. [Google Scholar] [CrossRef]
  62. Costa,, T.M.; Silva,, G.N.; Chalco-Cano,, Y.; Roman-Flores,, H. Gauss-type integral inequalities for interval and fuzzy-interval-valued mappings. Comput. Appl. Math. 2019, 38, 13. [Google Scholar]
  63. Liu, P.D.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued mappings in the second sense. Complex Intell. Syst. 2021, 8, 413–427. [Google Scholar] [CrossRef]
  64. Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Baleanu, D.; Kodamasingh, B. Hermite-Hadamard type inequalities for interval-valued preinvex mappings via fractional integral operators. Int. J. Comput. Intell. Syst. 2022, 15, 12. [Google Scholar] [CrossRef]
  65. Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite–Hadamard type inequalities for h-convex interval-valued mappings. J. Inequal. Appl. 2018, 2018, 1–14. [Google Scholar] [CrossRef] [Green Version]
  66. Ghosh, D.; Debnath, A.K.; Pedrycz, W. A variable and a fixed ordering of intervals and their application in optimization with interval-valued mappings, Internat. J. Approx. Reason. 2020, 121, 187–205. [Google Scholar] [CrossRef]
  67. Singh, D.; Dar, B.A.; Kim, D.S. KKT optimality conditions in interval valued multi-objective programming with generalized differentiable mappings. European J. Oper. Res. 2016, 254, 29–39. [Google Scholar] [CrossRef]
  68. Tunç, M. On new inequalities for ℎ-convex mappings via Riemann-Liouville fractional integration. Filomat 2013, 27, 559–565. [Google Scholar] [CrossRef] [Green Version]
  69. İşcan, İ. Hermite–Hadamard–Fejér type inequalities for convex mappings via fractional integrals. Stud. Univ. Babeş–Bolyai Math. 2015, 60, 355–366. [Google Scholar]
  70. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
  71. Sarikaya, M.Z.; Saglam, A.; Yildirim, H. On some Hadamard-type inequalities for h-convex mappings. J. Math. Inequal. 2008, 2, 335–341. [Google Scholar] [CrossRef] [Green Version]
  72. Wang, F.-Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.-M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fishers equations. Fractals 2022, 30, 1–11. [Google Scholar] [CrossRef]
  73. Zhao, T.-H.; Bhayo, B.A.; Chu, Y.-M. Inequalities for generalized Grötzsch ring mapping. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
  74. Iqbal, S.A.; Hafez, M.G.; Chu, Y.-M.; Park, C. Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative. J. Appl. Anal. Comput. 2022, 12, 770–789. [Google Scholar] [CrossRef]
  75. Huang, T.-R.; Chen, L.; Chu, Y.-M. Asymptotically sharp bounds for the complete p-elliptic integral of the first kind. Hokkaido Math. J. 2022, 51, 189–210. [Google Scholar] [CrossRef]
  76. Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. On approximating the arc lemniscate mappings. Indian J. Pure Appl. Math. 2022, 53, 316–329. [Google Scholar] [CrossRef]
  77. Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued mappings. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  78. Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued mappings. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  79. Breckner, W.W. Continuity of generalized convex and generalized concave set–valued mappings. Rev. Anal Numér. Théor. Approx. 1993, 22, 39–51. [Google Scholar]
  80. Nanda, N.; Kar,, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
  81. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued mappings and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  82. Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic. In Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2013; p. 295. [Google Scholar]
  83. Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
  84. Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  85. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued mappings. Fuzzy Sets Syst. 2020, 2020, 1–27. [Google Scholar] [CrossRef]
  86. Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
  87. Zhao, T.-H.; Wang, M.-K.; Hai, G.-J.; Chu, Y.-M. Landen inequalities for Gaussian hypergeometric mapping. Rev. Real Acad. Cienc. Exactas Físicas Y Naturales. Ser. A Matemáticas RACSAM 2022, 116, 1–23. [Google Scholar]
  88. Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y.-M. Inequalities for generalized trigonometric and hyperbolic mappings with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
  89. Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
  90. Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
  91. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
  92. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. Real Acad. Cienc. Exactas Físicas Y Naturales Ser. A Matemáticas RACSAM 2021, 115, 1–13. [Google Scholar]
  93. Chu, H.-H.; Zhao, T.-H.; Chu, Y.-M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
  94. Nwaeze, E.R.; Khan, M.A.; Chu, Y.M. Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex intervalvalued mappings. Adv. Differ. Equ. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
  95. Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. On some refinements for inequalities involving zero-balanced hyper geometric mapping. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Zaini, H.G.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities. Fractal Fract. 2022, 6, 679. https://doi.org/10.3390/fractalfract6110679

AMA Style

Khan MB, Zaini HG, Santos-García G, Noor MA, Soliman MS. New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities. Fractal and Fractional. 2022; 6(11):679. https://doi.org/10.3390/fractalfract6110679

Chicago/Turabian Style

Khan, Muhammad Bilal, Hatim Ghazi Zaini, Gustavo Santos-García, Muhammad Aslam Noor, and Mohamed S. Soliman. 2022. "New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities" Fractal and Fractional 6, no. 11: 679. https://doi.org/10.3390/fractalfract6110679

Article Metrics

Back to TopTop