Existence of Positive Solutions for a Singular Second-Order Changing-Sign Differential Equation on Time Scales
Abstract
1. Introduction
2. Preliminaries and Lemmas
3. Main Results
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, D.R. Eigenvalue intervals for a two-point boundary value problem on a measure chain. J. Comput. Appl. Math. 2002, 141, 57–64. [Google Scholar] [CrossRef]
- GulsanTopal, S. Second-order periodic boundary value problems on time scales. Comput. Math. Appl. 2004, 48, 637–648. [Google Scholar] [CrossRef][Green Version]
- Xu, J.F.; O’Regan, D. Positive solutions for a second order boundary value problem on time scale. J. Appl. Math. Comput. 2016, 51, 127–144. [Google Scholar] [CrossRef]
- Sang, Y.; Wei, Z.L. Existence and uniqueness of positive solutions for second-order Sturm-Liouville and multi-point problems on time scales. Bull. Korean Math. Soc. 2011, 48, 1047–1061. [Google Scholar] [CrossRef][Green Version]
- Sun, J.P.; Li, W.T. Solutions and positive solutions to semipositone Dirichlet BVPs on time scales. Dynam. Systems Appl. 2008, 17, 303–312. [Google Scholar]
- Han, W.; Kang, S. Multiple positive solutions of nonlinear third-order BVP for a class of p-Laplacian dynamic equations on time scales. Math. Comput. Model. 2009, 49, 527–535. [Google Scholar] [CrossRef]
- Dahal, R. Multiple positive solutions of a semipositone singular boundary value problem on time scales. Adv. Differ. Equ. 2013, 2013, 335. [Google Scholar] [CrossRef][Green Version]
- Chyan, C.J.; Wong, P.J.Y. Multiple positive solutions of conjugate boundary value problems on time scales. Taiwan. J. Math. 2007, 11, 421–445. [Google Scholar] [CrossRef]
- Liang, J.; Xiao, T.J.; Hao, Z.C. Positive solutions of singular differential equations on measure chain. Comput. Math. Appl. 2005, 49, 651–663. [Google Scholar] [CrossRef]
- Hong, C.H.; Yeh, C.C. Positive solutions for eigenvalue problems on a measure chain. Nonlinear Anal. 2002, 51, 499–507. [Google Scholar] [CrossRef]
- Erbe, L.; Peterson, A. Positive solutions for a nonlinear differential equation on a measure chain. Math. Comput. Model. 2000, 32, 571–585. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D. Nonlinear boundary value problems on time scales. Nonlinear Anal. 2001, 44, 527–535. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M. Basic Calculus on Time Scales and some of its Applications. Results Math. 1999, 35, 3–22. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales, an Introduction with Applications; Birkhauser: Boston, MA, USA, 2001. [Google Scholar]
- Hilger, S. Analysis on measure chains-A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Hao, Z.; Xiao, T.; Liang, J. Existence of positive solutions for singular boundary value problem on time scales. J. Math. Anal. Appl. 2007, 325, 517–528. [Google Scholar] [CrossRef][Green Version]
- Sang, Y.; Meng, Q. Structure of positive solution sets for second-order Sturm-Liouville semipositone problems on time scales. J. Nonlinear Funct. Anal. 2015, 2015, 14. [Google Scholar]
- Zhang, X.G.; Liu, L.S. Existence of positive solutions for second-order semipositone differential equations on the half-line. Appl. Math. Comput. 2007, 185, 628–635. [Google Scholar] [CrossRef]
- Anderson, D.R.; Wong, P.Y. Positive solutions for second-order semipositone problems on time scales. Comput. Math. Appl. 2009, 58, 281–291. [Google Scholar] [CrossRef][Green Version]
- Bohner, M.; Luo, H. Singular second-order multipoint dynamic boundary value problems with mixed derivatives. Adv. Differ. Equ. 2006, 1–15, 54989. [Google Scholar] [CrossRef]
- Zhang, X.G.; Liu, L.S. Positive solutions of superlinear semipositone singular Dirichlet boundary value problems. J. Math. Anal. Appl. 2006, 316, 525–537. [Google Scholar] [CrossRef]
- Li, H.; Sun, J. Positive solutions of superlinear semipositone nonlinear boundary value problems. Comput. Math. Appl. 2011, 61, 2806–2815. [Google Scholar] [CrossRef]
- Yao, Q. Existence of n solutions and/or positive solutions to a semipositone elastic beam equation. Nonlinear Anal. 2007, 66, 138–150. [Google Scholar] [CrossRef]
- Yang, Y.T.; Meng, F.W. Positive solutions of the singular semipositone boundary value problem on time scales. Math. Comput. Model. 2010, 52, 481–489. [Google Scholar] [CrossRef]
- Atici, F.M.; Guseinov, G.S. On Gree’s functions and positive solutions for boundary value problems on time scales, dynamic equations on time scales. J. Comput. Appl. Math. 2002, 141, 75–99. [Google Scholar] [CrossRef]
- Guo, D.J.; Lakshmikantham, V. Nonlinear Problems in Abstract Cone; Academic Press Inc.: New York, NY, USA, 1988. [Google Scholar]
- Zeidler, E. Nonlinear Analysis and Its Applications I: Fixed-Point Theorems; Springer: New York, NY, USA, 1993. [Google Scholar]
| Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. | 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, H.; Zhang, X.; Wu, Y.; Wiwatanapataphee, B. Existence of Positive Solutions for a Singular Second-Order Changing-Sign Differential Equation on Time Scales. Fractal Fract. 2022, 6, 315. https://doi.org/10.3390/fractalfract6060315
Tian H, Zhang X, Wu Y, Wiwatanapataphee B. Existence of Positive Solutions for a Singular Second-Order Changing-Sign Differential Equation on Time Scales. Fractal and Fractional. 2022; 6(6):315. https://doi.org/10.3390/fractalfract6060315
Chicago/Turabian StyleTian, Hui, Xinguang Zhang, Yonghong Wu, and Benchawan Wiwatanapataphee. 2022. "Existence of Positive Solutions for a Singular Second-Order Changing-Sign Differential Equation on Time Scales" Fractal and Fractional 6, no. 6: 315. https://doi.org/10.3390/fractalfract6060315
APA StyleTian, H., Zhang, X., Wu, Y., & Wiwatanapataphee, B. (2022). Existence of Positive Solutions for a Singular Second-Order Changing-Sign Differential Equation on Time Scales. Fractal and Fractional, 6(6), 315. https://doi.org/10.3390/fractalfract6060315
 
         
                                                



