Study of a Fractional Creep Problem with Multiple Delays in Terms of Boltzmann’s Superposition Principle
Abstract
:1. Introduction
2. Fundamental Results on the Linear Problem
3. Existence and Uniqueness Results
4. Ulam–Hyers Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anastassiou, G.A. Unification of Fractional Calculi with Applications; Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Sabatier, J.; Farges, C.; Tartaglione, V. Fractional Behaviours Modelling. Analysis and Application of Several Unusual Tools; Intelligent Systems, Control and Automation: Science and Engineering; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Nikan, O.; Avazzadeh, Z.; Tenreiro Machado, J.A. Numerical approach for modeling fractional heat conduction in porous medium with the generalized Cattaneo model. Appl. Math. Model. 2021, 100, 107–124. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z. Numerical simulation of fractional evolution model arising in viscoelastic mechanics. Appl. Numer. Math. 2021, 169, 303–320. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z.; Machado, J.T. Numerical study of the nonlinear anomalous reaction–subdiffusion process arising in the electroanalytical chemistry. J. Comput. Sci. 2021, 53, 101394. [Google Scholar] [CrossRef]
- Al-Habahbeh, A. Exact solution for commensurate and incommensurate linear systems of fractional differential equations. J. Math. Comput. Sci. 2022, 28, 123–136. [Google Scholar] [CrossRef]
- Burkhan, K.; Elmyra, A.; Beissenova, G. On the asymptotic solutions of singulary perturbed differential systems of fractional order. J. Math. Comput. Sci. 2021, 24, 165–172. [Google Scholar]
- Li, Q.; Chen, H. Numerical analysis for compact difference scheme of fractional viscoelastic beam vibration models. Appl. Math. Comput. 2022, 427, 127146. [Google Scholar] [CrossRef]
- Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Tobolsky, A.V. Stress relaxation studies of the viscoelastic properties of polymers. J. Appl. Phys. 1956, 27, 673–685. [Google Scholar] [CrossRef]
- Caponi, M.; Sapio, F. An existence result for the fractional Kelvin-Voigt’s model on time-dependent cracked domains. J. Evol. Equ. 2021, 21, 4095–4143. [Google Scholar] [CrossRef]
- Ciambella, J.; Paolone, A.; Vidoli, S. A comparison of nonlinear integral-based viscoelastic models through compression tests on filled rubber. Mech. Mater. 2010, 42, 932–944. [Google Scholar] [CrossRef]
- Fukunaga, M.; Shimizu, N. Fractional derivative constitutive models for finite deformation of viscoelastic materials. J. Comput. Nonlinear Dyn. 2015, 10, 061002. [Google Scholar] [CrossRef]
- Hristov, J. Response functions in linear viscoelastic constitutive equations and related fractional operators. Math. Model. Nat. Phenom. 2019, 14, 305. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Freed, A.D. A constitutive model for elastic-plastic materials using scalar conjugate stress/strain base pairs. J. Mech. Phys. Solids 2021, 155, 104535. [Google Scholar] [CrossRef]
- Marques, S.P.C.; Creus, G.J. Computational Viscoelasticity; Springer Briefs in Applied Sciences and Technology; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 1996, 7, 1461–1477. [Google Scholar] [CrossRef]
- Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Debbouche, A.; Torres, D.F.M. Approximate controllability of fractional delay dynamic inclusions with nonlocal control conditions. Appl. Math. Comput. 2014, 243, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Vadivoo, B.S.; Jothilakshmi, G.; Almalki, Y.; Debbouche, A.; Lavanya, M. Relative controllability analysis of fractional order differential equations with multiple time delays. Appl. Math. Comput. 2022, 428, 127192. [Google Scholar] [CrossRef]
- Benchohra, M.; Henderson, J.; Ntouyas, S.K.; Ouahab, A. Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 2008, 338, 1340–1350. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, L.; Luo, Z. Stability of the solutions for nonlinear fractional differential equations with delays and integral boundary conditions. Adv. Differ. Equ. 2013, 2013, 43. [Google Scholar] [CrossRef] [Green Version]
- Hristova, S.; Tunc, C. Stability of nonlinear Volterra integro-differential equations with Caputo fractional derivative and bounded delays. Electron. J. Differ. Equ. 2019, 2019, 1–11. [Google Scholar]
- Khan, H.; Tunc, C.; Khan, A. Green function’s properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 2475–2487. [Google Scholar] [CrossRef] [Green Version]
- Atmania, R.; Bouzitouna, S. Existence and Ulam stability results for two-orders fractional differential equation. Acta Math. Univ. Comenian. 2019, 88, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011, 2011, 10. [Google Scholar] [CrossRef]
- Schneider, W.R. Completely monotone generalized Mittag-Leffler functions. Expo. Math. 1996, 14, 3–16. [Google Scholar]
- Chidouh, A.; Guezane-Lakoud, A.; Bebbouchi, R. Positive solutions for an oscillator fractional initial value problem. J. Appl. Math. Comput. 2017, 54, 57–68. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Sidi Ammi, M.R.; Tahiri, M.; Torres, D.F.M. Global stability of a Caputo fractional SIRS model with general incidence rate. Math. Comput. Sci. 2021, 15, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.J.; Torres, D.F.M. Stability of a fractional HIV/AIDS model. Math. Comput. Simul. 2019, 164, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Eidinejad, Z.; Saadati, R. Hyers-Ulam-Rassias-Kummer stability of the fractional integro-differential equations. Math. Biosci. Eng. 2022, 19, 6536–6550. [Google Scholar] [CrossRef]
- Develi, F. Existence and Ulam-Hyers stability results for nonlinear fractional Langevin equation with modified argument. Math. Methods Appl. Sci. 2022, 45, 3417–3425. [Google Scholar] [CrossRef]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chidouh, A.; Atmania, R.; Torres, D.F.M. Study of a Fractional Creep Problem with Multiple Delays in Terms of Boltzmann’s Superposition Principle. Fractal Fract. 2022, 6, 434. https://doi.org/10.3390/fractalfract6080434
Chidouh A, Atmania R, Torres DFM. Study of a Fractional Creep Problem with Multiple Delays in Terms of Boltzmann’s Superposition Principle. Fractal and Fractional. 2022; 6(8):434. https://doi.org/10.3390/fractalfract6080434
Chicago/Turabian StyleChidouh, Amar, Rahima Atmania, and Delfim F. M. Torres. 2022. "Study of a Fractional Creep Problem with Multiple Delays in Terms of Boltzmann’s Superposition Principle" Fractal and Fractional 6, no. 8: 434. https://doi.org/10.3390/fractalfract6080434
APA StyleChidouh, A., Atmania, R., & Torres, D. F. M. (2022). Study of a Fractional Creep Problem with Multiple Delays in Terms of Boltzmann’s Superposition Principle. Fractal and Fractional, 6(8), 434. https://doi.org/10.3390/fractalfract6080434