Exact Solutions for the KMM System in (2+1)-Dimensions and Its Fractional Form with Beta-Derivative
Abstract
:1. Introduction
2. Lie Symmetry Analysis and Optimal System of KMM System (3)
3. Reduction Equations and Group-Invariant Solutions to (3) and (1)
4. Power Series Solutions to Systems (3) and (1)
5. Traveling Wave Solutions of (1)
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oldham, K.B.; Spanier, J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman: San Francisco, CA, USA, 1982. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin, Germany, 2010. [Google Scholar]
- Cattani, C. Fractal and fractional. Fractal Fract. 2017, 1, 1. [Google Scholar] [CrossRef]
- Cattani, C.; Spigler, R. Fractional dynamics. Fractal Fract. 2018, 2, 19. [Google Scholar] [CrossRef]
- Barkai, E.; Metzler, R.; Klafter, J. From continuous time random walks to the fractional Fokker-Planck equation. Phys. Rev. E 2000, 61, 132–138. [Google Scholar] [CrossRef]
- Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. The fractional-order governing equation of Levy motion. Water Resour. Res. 2000, 36, 1413–1423. [Google Scholar] [CrossRef]
- Liu, F.; Anh, V.; Turner, I. Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 2004, 166, 209–219. [Google Scholar] [CrossRef]
- Gholami, M.; Ghaziani, R.K.; Eskandari, Z. Three-dimensional fractional system with the stability condition and chaos control. Math. Model. Numer. Simul. Appl. 2022, 2, 41–47. [Google Scholar] [CrossRef]
- Hammouch, Z.; Yavuz, M.; Özdemir, N. Numerical solutions and synchronization of avariable-order fractional chaotic system. Math. Model. Numer. Simul. Appl. 2021, 1, 11–23. [Google Scholar]
- Dehghan, M.; Shakeri, F. A semi-numerical technique for solving the multi-point boundary value problemsand engineering applications. Int. J. Numer. Methods Heat Fluid Flow 2011, 21, 794–809. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Swroop, R. Numerical solution of time-and space-fractional coupled Burger’s equationsvia homotopy algorithm. Alex. Eng. J. 2016, 55, 1753–1763. [Google Scholar] [CrossRef]
- Jafari, H.; Jassim, H.K.; Tchier, F.; Baleanu, D. On the approximate solutions of local fractional differentialequations with local fractional operator. Entropy 2016, 18, 150. [Google Scholar] [CrossRef]
- Baleanu, D.; Jassim, H.K. Exact solution of two-dimensional fractional partialdifferential equations. Fractal Fract. 2020, 4, 21. [Google Scholar] [CrossRef]
- Baleanu, D.; Inc, M.; Yusuf, A.; Aliyu, A.I. Lie symmetry analysis, exact solutions and conservation lawsfor the time fractional Caudrey-Dodd-Gibbon-Sawada-KoteraEquation. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 222–234. [Google Scholar] [CrossRef]
- Baleanu, D.; İnç, M.; Yusuf, A.; Aliyu, A.I. Space-time fractional Rosenou-Haynamequation: Lie symmetry analysis, explicit solutions and conservation laws. Adv. Differ. Equ. 2018, 2018, 46. [Google Scholar] [CrossRef]
- Baleanu, D.; Jassim, H.K. Approximate solutions of the damped wave equation and dissipative wave equation in fractal strings. Fractal Fract. 2019, 3, 26. [Google Scholar] [CrossRef]
- Khalil, R.; Al-Horani, M.; Yousef, A.; Sababheh, M. A new definitionof fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D.; Alsaedi, A. Analysis of time-fractional Hunter-Saxton equation: A model of Neumatic liquid crystal. Open. Phys. 2016, 14, 145–149. [Google Scholar] [CrossRef]
- Hosseini, K.; Kaur, L.; Mirzazadeh, M.; Baskonus, H.M. 1-Soliton solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain model with the beta time derivative. Opt. Quant. Electron. 2021, 53, 125. [Google Scholar] [CrossRef]
- Yusuf, A.; Inc, M.; Aliyu, A.I.; Baleanu, D. Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fibers. Front. Phys. 2019, 7, 34. [Google Scholar] [CrossRef]
- Arshed, S.; Raza, N.; Butt, A.R.; Akgül, A. Exact solutions for Kraenkel-Manna-Merle model in saturated ferromagnetic materials using β-derivative. Phys. Scr. 2021, 96, 124018. [Google Scholar] [CrossRef]
- Wadati, M. Wave propagation in nonlinear lattice. I. J. Phys. Soc. Jpn. 1975, 38, 673–680. [Google Scholar] [CrossRef]
- Hirota, R.; Satsuma, J. Soliton solutions of a coupled Korteweg-de Vries equation. Phys. Lett. A 1981, 85, 407–408. [Google Scholar] [CrossRef]
- Conte, R.; Musette, M. Painleve analysis and Bäcklund transformation in the Kuramoto-Sivashinsky equation. J. Phys. A Math. Gen. 1989, 22, 169. [Google Scholar] [CrossRef]
- Zhang, L.H. Traveling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms. Appl. Math. Comput. 2009, 208, 144–155. [Google Scholar]
- Olver, P.J. Application of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Bluman, G.W.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kraenkel, R.A.; Manna, M.A.; Merle, V. Nonlinear short-wave propagation in ferrites. Phys. Rev. E 2000, 61, 976–979. [Google Scholar] [CrossRef] [PubMed]
- Nguepjouo, F.T.; Kuetche, V.K.; Kofane, T.C. Soliton interactions between multivalued localized waveguide channels within ferrites. Phys. Rev. E 2014, 89, 063201. [Google Scholar] [CrossRef]
- Tchokouansi, H.T.; Kuetche, V.K.; Kofane, T.C. On the propagation of solitons in ferrites: The inverse scattering approach. Chaos Solitons Fractals 2016, 86, 64–74. [Google Scholar] [CrossRef]
- Li, B.Q.; Ma, Y.L. Rich soliton structures for the Kraenkel-Manna-Merle (KMM) system in ferromagnetic materials. J. Supercond. Nov. Magn. 2018, 31, 1773–1778. [Google Scholar] [CrossRef]
- Tchidjo, R.T.; Tchokouansi, H.T.; Felenou, E.T.; Kuetche, V.K.; Bouetou, T.B. Influence of damping effects on the propagation of magnetic waves in ferrites. Chaos Solitons Fractals 2019, 119, 203–209. [Google Scholar] [CrossRef]
- Jin, X.W.; Lin, J. Rogue wave, interaction solutions to the KMM system. J. Magn. Magn. Mater. 2020, 502, 166590. [Google Scholar] [CrossRef]
- Jin, X.W.; Lin, J. The contributions of Gilbert-damping and inhomogeneous exchange effects on the electromagnetic short waves propagation in saturated ferrite films. J. Magn. Magn. Mater. 2020, 514, 167192. [Google Scholar] [CrossRef]
- Abdel-Gawad, H.I. Zig-zag, bright, short and long solitons formation in inhomogeneous ferromagnetic materials. Kraenkel-Manna-Merle equation with space dependent coefficients. Phys. Scr. 2021, 96, 125212. [Google Scholar] [CrossRef]
- Li, B.Q.; Ma, Y.L. Oscillation rogue waves for the Kraenkel-Manna-Merle system in ferrites. J. Magn. Magn. Mater. 2021, 537, 168182. [Google Scholar] [CrossRef]
- Younas, U.; Sulaiman, T.A.; Yusuf, A.; Bilal, M.; Younis, M.; Rehman, S.U. New solitons and other solutions in saturated ferromagnetic materials modeled by Kraenkel-Manna-Merle system. Indian J. Phys. 2022, 96, 181–191. [Google Scholar] [CrossRef]
- Si, H.L.; Li, B.Q. Two types of soliton twining behaviors for the Kraenkel-Manna-Merle system in saturated ferromagnetic materials. Optik 2018, 166, 49–55. [Google Scholar] [CrossRef]
- Lemoula, R.K.K.; Kamdem, B.A.; Kuetche, V.K.; Noule, R.S.; Defo, J.J.; Youssoufa, S. Kruskal’s simplification scheme in ferrite dynamics. J. Math. Phys. 2021, 62, 093513. [Google Scholar] [CrossRef]
- Kamdem, B.A.; Lemoula, R.K.K.; Kuetche, V.K.; Defo, J.J.; Noule, R.S.; Youssoufa, S. Polarized wave guide excitations in microwave ferrites: The singularity structure analysis. Phys. Scr. 2021, 96, 115206. [Google Scholar] [CrossRef]
- Tchokouansi, H.T.; Tchidjo, R.T.; Kuetche, V.K.; Felenou, E.T. Propagation of single valued magnetic solitary waves in circularly polarized ferrites. Chaos Solitons Fractals 2022, 154, 111690. [Google Scholar] [CrossRef]
- Manna, M.; Leblond, H. Transverse stability of short line-solitons in ferromagnetic media. J. Phys. A Math. Gen. 2006, 39, 10437–10447. [Google Scholar] [CrossRef]
- Leblond, H.; Manna, M. Nonlinear dynamics of two-dimensional electromagnetic solitons in a ferromagnetic slab. Phys. Rev. B 2008, 77, 224416. [Google Scholar] [CrossRef]
- Leblond, H.; Manna, M. Single-oscillation two-dimensional solitons of magnetic polaritons. Phys. Rev. Lett. 2007, 99, 064102. [Google Scholar] [CrossRef]
- Leblond, H.; Manna, M. Electromagnetic line solitons in ferromagnets: Suppression of a background instability. J. Phys. A Math. Theor. 2008, 41, 185201. [Google Scholar] [CrossRef]
- Leblond, H.; Manna, M. Two-dimensional electromagnetic solitons in a perpendicularly magnetized ferromagnetic slab. Phys. Rev. B 2009, 80, 064424. [Google Scholar] [CrossRef] [Green Version]
- Leblond, H.; Manna, M. Short waves in ferromagnetic media. Phys. Rev. E 2009, 80, 037602. [Google Scholar] [CrossRef] [PubMed]
- Kuetche, V.K.; Bouetou, T.B.; Kofane, T.C. Fractal structure of ferromagnets: The singularity structure analysis. J. Math. Phys. 2011, 52, 092903. [Google Scholar] [CrossRef]
- Nguepjouo, F.T.; Kuetche, V.K.; Kofane, T.C. Inhomogeneous exchange within higher-dimensional ferrites: The singularity structure analysis and pattern formations. J. Magn. Magn. Mater. 2019, 489, 165400. [Google Scholar] [CrossRef]
- Jin, X.W.; Shen, S.J.; Yang, Z.Y.; Lin, J. Magnetic lump motion in saturated ferromagnetic films. Phys. Rev. E 2022, 105, 014205. [Google Scholar] [CrossRef]
- Hu, X.R.; Li, Y.Q.; Chen, Y. A direct algorithm of one dimensional optimal system for the group invariant solutions. J. Math. Phys. 2015, 56, 053504. [Google Scholar] [CrossRef]
- Zhang, L.H.; Xu, F.S.; Ma, L.X. Optimal system, group invariant solutions and conservation laws of the CGKP equation. Nonlinear Dyn. 2017, 88, 2503–2511. [Google Scholar] [CrossRef]
- Cai, R.X.; Liu, Q.B. A new method for deriving analytical solutions of partial differential equations--algebraically explicit analytical solutions of two-buoyancy natural convection in porous media. Sci. China Ser. G 2008, 51, 1733–1744. [Google Scholar] [CrossRef]
- Lou, S.Y. Consistent Riccati expansion for integrable systems. Stud. Appl. Math. 2015, 134, 372–402. [Google Scholar] [CrossRef]
- Ren, B.; Lin, J.; Lou, Z.M. Consistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equation. Appl. Math. Lett. 2020, 105, 106326. [Google Scholar] [CrossRef]
- Liu, H.Z.; Geng, Y.X. Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid. J. Differ. Equ. 2013, 254, 2289–2303. [Google Scholar] [CrossRef]
- Rudin, W. Principles of Mathematical Analysis; China Machine Press: Beijing, China, 2004; pp. 166–170. [Google Scholar]
- Uddin, M.F.; Hafez, M.G.; Hammouch, Z.; Baleanu, D. Periodic and rogue waves for Heisenberg models of ferromagnetic spin chains with fractional beta derivative evolution and obliqueness. Waves Random Complex Media 2021, 31, 2135–2149. [Google Scholar] [CrossRef]
0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | ||
0 | 0 | 0 | |||
0 | 0 | ||||
0 | 0 |
Ad | |||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Shen, B.; Jiao, H.; Wang, G.; Wang, Z. Exact Solutions for the KMM System in (2+1)-Dimensions and Its Fractional Form with Beta-Derivative. Fractal Fract. 2022, 6, 520. https://doi.org/10.3390/fractalfract6090520
Zhang L, Shen B, Jiao H, Wang G, Wang Z. Exact Solutions for the KMM System in (2+1)-Dimensions and Its Fractional Form with Beta-Derivative. Fractal and Fractional. 2022; 6(9):520. https://doi.org/10.3390/fractalfract6090520
Chicago/Turabian StyleZhang, Lihua, Bo Shen, Hongbing Jiao, Gangwei Wang, and Zhenli Wang. 2022. "Exact Solutions for the KMM System in (2+1)-Dimensions and Its Fractional Form with Beta-Derivative" Fractal and Fractional 6, no. 9: 520. https://doi.org/10.3390/fractalfract6090520
APA StyleZhang, L., Shen, B., Jiao, H., Wang, G., & Wang, Z. (2022). Exact Solutions for the KMM System in (2+1)-Dimensions and Its Fractional Form with Beta-Derivative. Fractal and Fractional, 6(9), 520. https://doi.org/10.3390/fractalfract6090520