Disturbance Rejection-Based Optimal PID Controllers for New 6ISO AVR Systems
Abstract
:1. Introduction
- Only one study [25] evaluated the value of the regulator parameters under network operation and within permitted voltage limits, when the generator voltage reference value was changed.
- We provided an innovative 6ISO AVR contour model for the first time in the literature based on the author’s knowledge.
- We explained the physical sense of the derived contour and tested the impact of all signals on the generator voltage waveforms.
- We derived the mathematical expressions for all signals in the derived contour.
- We proposed a novel strategy for identifying the parameters of the regulator.
- We compared the obtained results with the corresponding results presented in the literature.
2. Proposed 6ISO AVR Model
3. Comparison of the Output Voltage Response and Literature Review
4. PSO–AVO Algorithm
5. Simulation Results
5.1. Regulator Parameter Estimation for Different Maximum Values of the Excitation Voltage
5.2. Comparison of the Results Obtained with Different Literature Approaches
5.3. Robustness Analysis
5.4. Proposed Algorithm Tests
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boldea, I. Synchronous Generators, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Nadeem, M.; Imran, K.; Khattak, A.; Ulasyar, A.; Pal, A.; Zeb, M.Z.; Khan, A.N.; Padhee, M. Optimal Placement, Sizing and Coordination of FACTS Devices in Transmission Network Using Whale Optimization Algorithm. Energies 2020, 13, 753. [Google Scholar] [CrossRef]
- Sikander, A.; Thakur, P. A New Control Design Strategy for Automatic Voltage Regulator in Power System. ISA Trans. 2020, 100, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, S.; Hekimoglu, B. Improved Kidney-Inspired Algorithm Approach for Tuning of PID Controller in AVR System. IEEE Access 2019, 7, 39935–39947. [Google Scholar] [CrossRef]
- Micev, M.; Ćalasan, M.; Ali, Z.M.; Hasanien, H.M.; Abdel Aleem, S.H.E. Optimal design of automatic voltage regulation controller using hybrid simulated annealing—Manta ray foraging optimization algorithm. Ain Shams Eng. J. 2021, 12, 641–657. [Google Scholar] [CrossRef]
- Sikander, A.; Thakur, P.; Bansal, R.C.; Rajasekar, S. A novel technique to design cuckoo search-based FOPID controller for AVR in power systems. Comput. Electr. Eng. 2018, 70, 261–274. [Google Scholar] [CrossRef]
- Ortiz-Quisbert, M.E.; Duarte-Mermoud, M.A.; Milla, F.; Castro-Linares, R.; Lefranc, G. Optimal fractional-order adaptive controllers for AVR applications. Electr. Eng. 2018, 100, 267–283. [Google Scholar] [CrossRef]
- Mosaad, A.M.; Attia, M.A.; Abdelaziz, A.Y. Whale optimization algorithm to tune PID and PIDA controllers on AVR system. Ain Shams Eng. J. 2019, 10, 755–767. [Google Scholar] [CrossRef]
- Sahib, M.A. A novel optimal PID plus second-order derivative controller for AVR system. Eng. Sci. Technol. Int. J. 2015, 18, 194–206. [Google Scholar] [CrossRef]
- Panda, S.; Sahu, B.K.; Mohanty, P.K. Design and performance analysis of PID controller for an automatic voltage regulator system using simplified particle swarm optimization. J. Frankl. Inst. 2012, 349, 2609–2625. [Google Scholar] [CrossRef]
- Zhang, D.-L.; Tang, Y.-G.; Guan, X.-P. Optimum Design of Fractional Order PID Controller for an AVR System Using an Improved Artificial Bee Colony Algorithm. Acta Autom. Sin. 2014, 40, 973–979. [Google Scholar] [CrossRef]
- Mosaad, A.M.; Attia, M.A.; Abdelaziz, A.Y. Comparative Performance Analysis of AVR Controllers Using Modern Optimization Techniques. Electr. Power Compon. Syst. 2018, 46, 2117–2130. [Google Scholar] [CrossRef]
- Gozde, H.; Taplamacioglu, M.C. Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system. J. Frankl. Inst. 2011, 348, 1927–1946. [Google Scholar] [CrossRef]
- Gaing, Z.L. A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Convers. 2004, 19, 384–391. [Google Scholar] [CrossRef]
- Rais, M.C.; Dekhandji, F.Z.; Recioui, A.; Rechid, M.S.; Djedi, L. Comparative Study of Optimization Techniques Based PID Tuning for Automatic Voltage Regulator System. Eng. Proc. 2022, 14, 21. [Google Scholar] [CrossRef]
- Micev, M.; Ćalasan, M.; Oliva, D. Fractional-order PID controller design for an AVR system using Chaotic Yellow Saddle Goatfish Algorithm. Mathematics 2020, 8, 1182. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mukherjee, V. PID controller for automatic voltage regulator using teaching–learning-based optimization technique. Int. J. Electr. Power Energy Syst. 2016, 77, 418–429. [Google Scholar] [CrossRef]
- Ayas, M.S.; Sahin, E. FOPID controller with fractional filter for an automatic voltage regulator. Comput. Electr. Eng. 2021, 90, 106895. [Google Scholar] [CrossRef]
- Elsisi, M.; Tran, M.Q.; Hasanien, H.M.; Turky, R.A.; Albalawi, F.; Ghoneim, S.S.M. Robust model predictive control paradigm for automatic voltage regulators against uncertainty based on optimization algorithms. Mathematics 2021, 9, 2885. [Google Scholar] [CrossRef]
- Tang, Y.; Cui, M.; Hua, C.; Li, L.; Yang, Y. Optimum design of fractional-order PIλDμ controller for AVR system using chaotic ant swarm. Expert Syst. Appl. 2012, 39, 6887–6896. [Google Scholar] [CrossRef]
- Tang, Y.; Zhao, L.; Han, Z.; Bi, X.; Guan, X. Optimal gray PID controller design for automatic voltage regulator system via imperialist competitive algorithm. Int. J. Mach. Learn. Cybern. 2016, 7, 229–240. [Google Scholar] [CrossRef]
- Ćalasan, M.; Micev, M.; Radulović, M.; Zobaa, A.F.; Hasanien, H.M.; Abdel Aleem, S.H.E. Optimal PID controllers for AVR system considering excitation voltage limitations using hybrid equilibrium optimizer. Machines 2021, 9, 265. [Google Scholar] [CrossRef]
- Hasanien, H.M. Design Optimization of PID Controller in Automatic Voltage Regulator System Using Taguchi Combined Genetic Algorithm Method. IEEE Syst. J. 2013, 7, 825–831. [Google Scholar] [CrossRef]
- Blondin, M.J.; Sanchis, J.; Sicard, P.; Herrero, J.M. New optimal controller tuning method for an AVR system using a simplified Ant Colony Optimization with a new constrained Nelder–Mead algorithm. Appl. Soft Comput. 2018, 62, 216–229. [Google Scholar] [CrossRef]
- Alghamdi, S.; Sindi, H.F.; Rawa, M.; Alhussainy, A.A.; Ćalasan, M.; Micev, M.; Ali, Z.M.; Abdel Aleem, S.H.E. Optimal PID Controllers for AVR Systems Using Hybrid Simulated Annealing and Gorilla Troops Optimization. Fractal Fract. 2022, 6, 682. [Google Scholar] [CrossRef]
- Blondin, M.J.; Sicard, P.; Pardalos, P.M. Controller Tuning approach with robustness, stability, and dynamic criteria for the original AVR System. Math. Comput. Model. 2019, 163, 168–182. [Google Scholar] [CrossRef]
- Bingul, Z.; Karahan, O. A novel performance criterion approach to the optimum design of PID controller using cuckoo search algorithm for AVR system. J. Frankl. Inst. 2018, 355, 5534–5559. [Google Scholar] [CrossRef]
- Çelik, E.; Durgut, R. Performance enhancement of automatic voltage regulator by modified cost function and symbiotic organisms search algorithm. Int. J. Eng. Sci. Technol. 2018, 21, 1104–1111. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
- Sakthivel, V.P.; Bhuvaneswari, R.; Subramanian, S. Multiobjective parameter estimation of induction motor using particle swarm optimization. Eng. Appl. Artif. Intell. 2010, 23, 302–312. [Google Scholar] [CrossRef]
Reference | Regulator | Mathematical Formula | Explanation |
---|---|---|---|
[4,5] | PID | Kp, Ki, and Kd are proportional, integral, and differential constants/gains | |
[5] | Real PID | N represents the filter coefficient | |
[6,7] | FOPID | μ and λ are additional variables | |
[8,9] | PIDD2 | Kd1 and Kd2 are constants |
Reference | Objective | Formula |
---|---|---|
[10] | Integral time absolute error | * |
[11] | Integral absolute error | |
[12] | Integral square error | |
[13] | Integral time square error | |
[14] | Zwe-Lee Gaing criteria ** |
Element | Formula | Value of Constants |
---|---|---|
Generator | KG = 1, TG = 1 | |
Exciter | KE = 1, TE = 0.4 | |
Amplifier | KA = 10, TA = 0.1 | |
Sensor | KS = 1, TS = 0.01 |
Algorithm Number | Ref. | Year | Kp | Ki | Kd | Kd2 | N | μ | λ |
---|---|---|---|---|---|---|---|---|---|
1 | [25] | 2022 | 1.263847093 | 1.400111255 | 0.4484544985 | - | - | - | - |
2 | 1.120196097 | 1.200245817 | 0.4066544346 | - | 895.0548956 | - | - | ||
3 | 4.825180395 | 5 | 1.810016229 | 0.2140057958 | - | - | - | ||
4 | [5] | 2021 | 0.6778 | 0.3802 | 0.2663 | - | - | - | - |
5 | 0.6672 | 0.5938 | 0.2599 | - | 863.2453 | - | - | ||
6 | 2.9943 | 2.9787 | 1.5882 | 0.102 | - | - | |||
7 | [4] | 2019 | 1.0426 | 1.0093 | 0.5999 | - | - | - | - |
8 | [8] | 2019 | 0.7847 | 0.9961 | 0.3061 | - | - | - | - |
9 | [26] | 2019 | 0.6392 | 0.4757 | 0.2159 | - | 484.09 | - | - |
10 | 0.3120 | 0.2567 | 0.1503 | - | 500.00 | - | - | ||
11 | 0.5463 | 0.3409 | 0.1485 | - | 500.00 | - | - | ||
12 | [27] | 2018 | 0.6198 | 0.4165 | 0.2126 | - | 1000.00 | - | - |
13 | [28] | 2018 | 0.5693 | 0.4097 | 0.1750 | - | - | - | - |
14 | [12] | 2018 | 0.9685 | 1.0000 | 0.8983 | - | - | - | - |
15 | 0.9519 | 0.9997 | 0.8994 | - | - | - | - | ||
16 | 0.86832 | 0.9325 | 0.9419 | - | - | - | - | ||
17 | [5] | 2021 | 1.8931 | 0.8699 | 0.3595 | 1.278 | 1.0408 |
Maximum Value of the Excitation Voltage (pu) | Kp | Ki | Kd | Kd2 |
---|---|---|---|---|
4 | 6.00207895 | 9.998225621 | 1.752147902 | 0.1219506251 |
3.5 | 4.83462096 | 6.660546549 | 1.460820502 | 0.1012411096 |
2.5 | 3.316938682 | 6.24857332 | 1.073055102 | 0.06168327877 |
2 | 2.543216148 | 4.612845672 | 0.8360649507 | 0.04035158476 |
1.6 | 1.721672893 | 2.60276874 | 0.5202193961 | 0.02250916367 |
Data/Index | Vexc (pu) | Rise Time (s) | Settling Time (s) | Overshoot | IAE2 | IAE3 |
---|---|---|---|---|---|---|
Rated data | 4.5 | 0.0434 | 28.6967 | 0.2904 | 110.8120 | 56.0344 |
3.5 | 0.0558 | 28.6807 | 0.2829 | 157.0528 | 61.0512 | |
2.5 | 0.0845 | 29.0360 | 0.5872 | 199.6626 | 97.1969 | |
2 | 0.1082 | 29.1516 | 0.8259 | 268.2481 | 122.9044 | |
1.6 | 0.1598 | 29.2778 | 1.0049 | 429.2218 | 167.9799 | |
Kg = 0.8, Tg = 1 | 4.5 | 0.0587 | 28.8174 | 0.3649 | 111.4692 | 68.2982 |
3.5 | 0.0744 | 28.8383 | 0.3416 | 157.5952 | 74.4678 | |
2.5 | 0.1063 | 29.1354 | 0.6173 | 202.7036 | 117.8960 | |
2 | 0.1328 | 29.2558 | 0.8094 | 272.9293 | 147.5527 | |
1.6 | 0.1933 | 29.3992 | 1.0069 | 436.6376 | 199.7077 | |
Kg = 1, Tg = 0.8 | 4.5 | 0.0321 | 28.4393 | 0.3378 | 110.2565 | 44.4013 |
3.5 | 0.0417 | 28.1276 | 0.2055 | 156.5757 | 47.5932 | |
2.5 | 0.0676 | 28.9269 | 0.4888 | 196.9766 | 77.3264 | |
2 | 0.0895 | 29.0470 | 0.7395 | 264.0571 | 98.7213 | |
1.6 | 0.1355 | 29.1557 | 0.8651 | 422.8000 | 135.5663 | |
Kg = 0.8, Tg = 0.8 | 4.5 | 0.0440 | 28.6626 | 0.2453 | 110.7300 | 53.6813 |
3.5 | 0.0570 | 28.5562 | 0.2082 | 156.9520 | 57.9109 | |
2.5 | 0.0865 | 29.0493 | 0.4762 | 199.1215 | 93.5674 | |
2 | 0.1109 | 29.1712 | 0.6830 | 267.2914 | 118.0934 | |
1.6 | 0.1649 | 29.2938 | 0.8067 | 427.4951 | 160.5367 |
Statistical results | Algorithm | PSO–AVOA | Chaotic AVOA | AVOA |
Best | 177.6180 | 177.6192 | 177.6193 | |
Worst | 177.7449 | 178.8152 | 179.0001 | |
Mean | 177.6708 | 177.8962 | 178.0258 | |
Median | 177.6611 | 177.6892 | 178.1863 | |
Stand. dev. | 0.0364 | 0.0377 | 0.0389 | |
p-value | PSO–AVOA vs. Chaotic AVOA | PSO–AVOA vs. AVOA | ||
1.3562 × 10−8 | 2.66812318276 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawa, M.; Alghamdi, S.; Calasan, M.; Aldosari, O.; Ali, Z.M.; Alkhalaf, S.; Micev, M.; Abdel Aleem, S.H.E. Disturbance Rejection-Based Optimal PID Controllers for New 6ISO AVR Systems. Fractal Fract. 2023, 7, 765. https://doi.org/10.3390/fractalfract7100765
Rawa M, Alghamdi S, Calasan M, Aldosari O, Ali ZM, Alkhalaf S, Micev M, Abdel Aleem SHE. Disturbance Rejection-Based Optimal PID Controllers for New 6ISO AVR Systems. Fractal and Fractional. 2023; 7(10):765. https://doi.org/10.3390/fractalfract7100765
Chicago/Turabian StyleRawa, Muhyaddin, Sultan Alghamdi, Martin Calasan, Obaid Aldosari, Ziad M. Ali, Salem Alkhalaf, Mihailo Micev, and Shady H. E. Abdel Aleem. 2023. "Disturbance Rejection-Based Optimal PID Controllers for New 6ISO AVR Systems" Fractal and Fractional 7, no. 10: 765. https://doi.org/10.3390/fractalfract7100765
APA StyleRawa, M., Alghamdi, S., Calasan, M., Aldosari, O., Ali, Z. M., Alkhalaf, S., Micev, M., & Abdel Aleem, S. H. E. (2023). Disturbance Rejection-Based Optimal PID Controllers for New 6ISO AVR Systems. Fractal and Fractional, 7(10), 765. https://doi.org/10.3390/fractalfract7100765