High-Order Chebyshev Pseudospectral Tempered Fractional Operational Matrices and Tempered Fractional Differential Problems
Abstract
:1. Introduction
2. Important Properties of Chebyshev Polynomials
3. Definitions of Some Tempered Fractional Operators
4. Chebyshev Pseudospectral Tempered Fractional Operational Matrices
4.1. Chebyshev Pseudospectral Tempered Differentiation Matrix
4.2. Chebyshev Pseudospectral Tempered Integration Matrix
4.3. Chebyshev Pseudospectral Tempered Fractional Differentiation/Integration Matrix
5. Stability and Convergence Analysis
6. Numerical Tests
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Computational Algorithm
Algorithm A1 PCTFM algorithm for solving tempered fractional Burgers’ problem. |
|
References
- Hendy, A.S.; Zaky, M.A. Combined Galerkin spectral/finite difference method over graded meshes for the generalized nonlinear fractional Schrödinger equation. Nonlinear Dyn. 2021, 103, 2493–2507. [Google Scholar] [CrossRef]
- Roy, R.; Akbar, M.A.; Wazwaz, A.M. Exact wave solutions for the nonlinear time fractional Sharma–Tasso–Olver equation and the fractional Klein–Gordon equation in mathematical physics. Opt. Quantum Electron. 2018, 50, 1–19. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional differential equations. Math. Sci. Eng. 1999, 198, 41–119. [Google Scholar]
- Sabzikar, F.; Meerschaert, M.M.; Chen, J. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Rosenau, P. Tempered diffusion: A transport process with propagating fronts and inertial delay. Phys. Rev. A 1992, 46, R7371. [Google Scholar] [CrossRef] [PubMed]
- Meerschaert, M.M.; Zhang, Y.; Baeumer, B. Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 2008, 35, L17403. [Google Scholar] [CrossRef]
- He, J.Q.; Dong, Y.; Li, S.T.; Liu, H.L.; Yu, Y.J.; Jin, G.Y.; Liu, L.D. Study on force distribution of the tempered glass based on laser interference technology. Optik 2015, 126, 5276–5279. [Google Scholar] [CrossRef]
- Samiee, M.; Akhavan-Safaei, A.; Zayernouri, M. Tempered fractional LES modeling. J. Fluid Mech. 2022, 932, A4. [Google Scholar] [CrossRef]
- Cartea, A.; del Castillo-Negrete, D. Fractional diffusion models of option prices in markets with jumps. Phys. A Stat. Mech. Its Appl. 2007, 374, 749–763. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Sabzikar, F.; Phanikumar, M.S.; Zeleke, A. Tempered fractional time series model for turbulence in geophysical flows. J. Stat. Mech. Theory Exp. 2014, 2014, P09023. [Google Scholar] [CrossRef]
- Hanyga, A. Wave propagation in media with singular memory. Math. Comput. Model. 2001, 34, 1399–1421. [Google Scholar] [CrossRef]
- Shiri, B.; Wu, G.C.; Baleanu, D. Collocation methods for terminal value problems of tempered fractional differential equations. Appl. Numer. Math. 2020, 156, 385–395. [Google Scholar] [CrossRef]
- Boniece, B.C.; Didier, G.; Sabzikar, F. On fractional Lévy processes: Tempering, sample path properties and stochastic integration. J. Stat. Phys. 2020, 178, 954–985. [Google Scholar] [CrossRef]
- Aboelenen, T. Stability analysis and error estimates of implicit–explicit Runge–Kutta local discontinuous Galerkin methods for nonlinear fractional convection–diffusion problems. Comput. Appl. Math. 2022, 41, 1–27. [Google Scholar] [CrossRef]
- Carr, P.; Geman, H.; Madan, D.B.; Yor, M. Stochastic volatility for Lévy processes. Math. Financ. 2003, 13, 345–382. [Google Scholar] [CrossRef]
- Zhang, Y.; Meerschaert, M.M.; Packman, A.I. Linking fluvial bed sediment transport across scales. Geophys. Res. Lett. 2012, 39, L20404. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Sabzikar, F. Tempered fractional Brownian motion. Stat. Probab. Lett. 2013, 83, 2269–2275. [Google Scholar] [CrossRef]
- Cao, J.; Li, C.; Chen, Y. On tempered and substantial fractional calculus. In Proceedings of the 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Italy, 10–12 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–6. [Google Scholar]
- Ding, H.; Li, C. A high-order algorithm for time-Caputo-tempered partial differential equation with Riesz derivatives in two spatial dimensions. J. Sci. Comput. 2019, 80, 81–109. [Google Scholar] [CrossRef]
- Zhao, L.; Deng, W.; Hesthaven, J.S. Spectral methods for tempered fractional differential equations. Math. Comput. 2016. [Google Scholar]
- Deng, J.; Zhao, L.; Wu, Y. Fast predictor-corrector approach for the tempered fractional differential equations. Numer. Algorithms 2017, 74, 717–754. [Google Scholar] [CrossRef]
- Alrawashdeh, M.S.; Kelly, J.F.; Meerschaert, M.M.; Scheffler, H.P. Applications of inverse tempered stable subordinators. Comput. Math. Appl. 2017, 73, 892–905. [Google Scholar] [CrossRef]
- Lu, B.; Zhang, Y.; Reeves, D.M.; Sun, H.; Zheng, C. Application of tempered-stable time fractional-derivative model to upscale subdiffusion for pollutant transport in field-scale discrete fracture networks. Mathematics 2018, 6, 5. [Google Scholar] [CrossRef]
- Rawashdeh, M.S. The fractional natural decomposition method: Theories and applications. Math. Methods Appl. Sci. 2017, 40, 2362–2376. [Google Scholar] [CrossRef]
- Rawashdeh, M.S.; Al-Jammal, H. Numerical solutions for systems of nonlinear fractional ordinary differential equations using the FNDM. Mediterr. J. Math. 2016, 13, 4661–4677. [Google Scholar] [CrossRef]
- Rawashdeh, M.S. An efficient approach for time-fractional damped Burger and time-Sharma-Tasso-Olver equations using the FRDTM. Appl. Math. Inf. Sci. 2015, 9, 1239. [Google Scholar]
- Sejdić, E.; Djurović, I.; Stanković, L. Fractional Fourier transform as a signal processing tool: An overview of recent developments. Signal Process. 2011, 91, 1351–1369. [Google Scholar] [CrossRef]
- Obeidat, N.A.; Bentil, D.E. New theories and applications of tempered fractional differential equations. Nonlinear Dyn. 2021, 105, 1689–1702. [Google Scholar] [CrossRef]
- Zhao, W.; Maitama, S. Beyond Sumudu transform and natural transform: J-transform properties and applications. J. Appl. Anal. Comput. 2020, 10, 1223–1241. [Google Scholar]
- Grandclément, P.; Fodor, G.; Forgács, P. Numerical simulation of oscillatons: Extracting the radiating tail. Phys. Rev. D 2011, 84, 065037. [Google Scholar] [CrossRef]
- Guo, B. Some progress in spectral methods. Sci. China Math. 2013, 56, 2411–2438. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Alofi, A.S. A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 62–70. [Google Scholar] [CrossRef]
- Burns, K.J.; Vasil, G.M.; Oishi, J.S.; Lecoanet, D.; Brown, B.P. Dedalus: A flexible framework for numerical simulations with spectral methods. Phys. Rev. Res. 2020, 2, 023068. [Google Scholar] [CrossRef]
- Miquel, B.; Julien, K. Hybrid Chebyshev function bases for sparse spectral methods in parity-mixed PDEs on an infinite domain. J. Comput. Phys. 2017, 349, 474–500. [Google Scholar] [CrossRef]
- Viswanath, D. Spectral integration of linear boundary value problems. J. Comput. Appl. Math. 2015, 290, 159–173. [Google Scholar] [CrossRef]
- Doha, E.H.; Bhrawy, A.H.; Baleanu, D.; Ezz-Eldien, S.S. On shifted Jacobi spectral approximations for solving fractional differential equations. Appl. Math. Comput. 2013, 219, 8042–8056. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Ezz-Eldien, S.S.; Doha, E.H.; Abdelkawy, M.A.; Baleanu, D. Solving fractional optimal control problems within a Chebyshev–Legendre operational technique. Int. J. Control 2017, 90, 1230–1244. [Google Scholar] [CrossRef]
- Zaky, M.; Ezz-Eldien, S.; Doha, E.; Tenreiro Machado, J.; Bhrawy, A. An efficient operational matrix technique for multidimensional variable-order time fractional diffusion equations. J. Comput. Nonlinear Dyn. 2016, 11, 061002. [Google Scholar] [CrossRef]
- Dabiri, A.; Butcher, E.A. Efficient modified Chebyshev differentiation matrices for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2017, 50, 284–310. [Google Scholar] [CrossRef]
- Dahy, S.A.; Elgindy, K.T. High-order numerical solution of viscous Burgers’ equation using an extended Cole–Hopf barycentric Gegenbauer integral pseudospectral method. Int. J. Comput. Math. 2022, 99, 446–464. [Google Scholar] [CrossRef]
- Elgindy, K.T.; Dahy, S.A. High-order numerical solution of viscous Burgers’ equation using a Cole-Hopf barycentric Gegenbauer integral pseudospectral method. Math. Methods Appl. Sci. 2018, 41, 6226–6251. [Google Scholar] [CrossRef]
- Moghaddam, B.P.; Machado, J.; Babaei, A. A computationally efficient method for tempered fractional differential equations with application. Comput. Appl. Math. 2018, 37, 3657–3671. [Google Scholar] [CrossRef]
- Bhrawy, A.; Zaky, M. Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 2015, 80, 101–116. [Google Scholar] [CrossRef]
- Dabiri, A.; Butcher, E.A.; Nazari, M. Coefficient of restitution in fractional viscoelastic compliant impacts using fractional Chebyshev collocation. J. Sound Vib. 2017, 388, 230–244. [Google Scholar] [CrossRef]
- Dabiri, A.; Nazari, M.; Butcher, E.A. Optimal fractional state feedback control for linear fractional periodic time-delayed systems. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2778–2783. [Google Scholar]
- Stenger, F. Handbook of Sinc Numerical Methods; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Piessens, R. Computing integral transforms and solving integral equations using Chebyshev polynomial approximations. J. Comput. Appl. Math. 2000, 121, 113–124. [Google Scholar] [CrossRef]
- Huang, Z.; Boyd, J.P. Bandwidth truncation for Chebyshev polynomial and ultraspherical/Chebyshev Galerkin discretizations of differential equations: Restrictions and two improvements. J. Comput. Appl. Math. 2016, 302, 340–355. [Google Scholar] [CrossRef]
- Boyd, J.P. Large-degree asymptotics and exponential asymptotics for Fourier, Chebyshev and Hermite coefficients and Fourier transforms. J. Eng. Math. 2009, 63, 355–399. [Google Scholar] [CrossRef]
- Gutleb, T.; Carrillo, J.; Olver, S. Computing equilibrium measures with power law kernels. Math. Comput. 2022, 91, 2247–2281. [Google Scholar] [CrossRef]
- Bulychev, Y.G.; Bulycheva, E.Y. Some new properties of the Chebyshev polynomials and their use in analysis and design of dynamic systems. Autom. Remote Control 2003, 64, 554–563. [Google Scholar] [CrossRef]
- Elbarbary, E.M.; El-Sayed, S.M. Higher order pseudospectral differentiation matrices. Appl. Numer. Math. 2005, 55, 425–438. [Google Scholar] [CrossRef]
- Elbarbary, E.M. Pseudospectral integration matrix and boundary value problems. Int. J. Comput. Math. 2007, 84, 1851–1861. [Google Scholar] [CrossRef]
- Gholami, S.; Babolian, E.; Javidi, M. Fractional pseudospectral integration/differentiation matrix and fractional differential equations. Appl. Math. Comput. 2019, 343, 314–327. [Google Scholar] [CrossRef]
- Morgado, M.L.; Rebelo, M. Well-posedness and numerical approximation of tempered fractional terminal value problems. Fract. Calc. Appl. Anal. 2017, 20, 1239–1262. [Google Scholar] [CrossRef]
- Saedshoar Heris, M.; Javidi, M. A predictor–corrector scheme for the tempered fractional differential equations with uniform and non-uniform meshes. J. Supercomput. 2019, 75, 8168–8206. [Google Scholar] [CrossRef]
- Zayernouri, M.; Karniadakis, G.E. Fractional spectral collocation method. SIAM J. Sci. Comput. 2014, 36, A40–A62. [Google Scholar] [CrossRef]
N | ||||||
---|---|---|---|---|---|---|
3 | ||||||
4 | ||||||
5 | ||||||
6 | ||||||
7 | ||||||
8 |
N | ||||||
---|---|---|---|---|---|---|
3 | ||||||
4 | ||||||
5 | ||||||
6 | ||||||
7 | ||||||
8 |
t | ||||||
---|---|---|---|---|---|---|
x | ||||||||
---|---|---|---|---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Abed, A.; Dahy, S.A.; El-Hawary, H.M.; Aboelenen, T.; Fahim, A. High-Order Chebyshev Pseudospectral Tempered Fractional Operational Matrices and Tempered Fractional Differential Problems. Fractal Fract. 2023, 7, 777. https://doi.org/10.3390/fractalfract7110777
El-Abed A, Dahy SA, El-Hawary HM, Aboelenen T, Fahim A. High-Order Chebyshev Pseudospectral Tempered Fractional Operational Matrices and Tempered Fractional Differential Problems. Fractal and Fractional. 2023; 7(11):777. https://doi.org/10.3390/fractalfract7110777
Chicago/Turabian StyleEl-Abed, Amel, Sayed A. Dahy, H. M. El-Hawary, Tarek Aboelenen, and Alaa Fahim. 2023. "High-Order Chebyshev Pseudospectral Tempered Fractional Operational Matrices and Tempered Fractional Differential Problems" Fractal and Fractional 7, no. 11: 777. https://doi.org/10.3390/fractalfract7110777
APA StyleEl-Abed, A., Dahy, S. A., El-Hawary, H. M., Aboelenen, T., & Fahim, A. (2023). High-Order Chebyshev Pseudospectral Tempered Fractional Operational Matrices and Tempered Fractional Differential Problems. Fractal and Fractional, 7(11), 777. https://doi.org/10.3390/fractalfract7110777