Second-Order Dynamic Equations with Noncanonical Operator: Oscillatory Behavior
Abstract
:1. Introduction
- (H1)
- is a ratio of two positive integers;
- (H2)
- and
- (H3)
- is positive.
2. Preliminary Results
3. Main Results
4. Some Illustrative Examples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Bohner, M.; Peterson, A.C. Advances in Dynamic Equations on Time Scales; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Trench, W.F. Canonical forms and principal systems for general disconjugate equations. Trans. Am. Math. Soc. 1974, 189, 319–327. [Google Scholar] [CrossRef]
- Chatzarakis, G.; Indrajith, N.; Panetsos, S.; Thandapani, E. Oscillations of second-order noncanonical advanced difference equations via canonical transformation. Carpathian J. Math. 2022, 38, 383–390. [Google Scholar] [CrossRef]
- Saker, S.H. Oscillation theorems for second-order nonlinear delay difference equations. Period. Math. Hung. 2003, 47, 201–213. [Google Scholar] [CrossRef]
- Saranya, K.; Piramanantham, V.; Thandapani, E.; Alzabut, J. Oscillation of noncanonical second-order functional differential equations via canonical transformation. Qual. Theory Dyn. Syst. 2022, 21, 1–14. [Google Scholar] [CrossRef]
- Wu, H.; Erbe, L.; Peterson, A. Oscillation of solution to second-order half-linear delay dynamic equations on time scales. Electron. J. Differ. Equ. 2016, 71, 1–15. [Google Scholar]
- Grace, S.R.; Džurina, J.; Graef, J.; Tunc, E. Oscillation of second-order nonlinear noncanonical dynamic equations with deviating arguments. Acta Math. Univ. Comen. 2022, 91, 113–120. [Google Scholar]
- Hassan, T.S. Kamenev-type oscillation criteria for second-order nonlinear dynamic equations on time scales. Appl. Math. Comput. 2011, 217, 5285–5297. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T. Some oscillation results for second-order nonlinear delay dynamic equations. Appl. Math. Lett. 2013, 26, 1114–1119. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Džurina, J.; Jadlovská, I. New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 2019, 347, 404–416. [Google Scholar] [CrossRef]
- Erbe, L.H.; Kong, Q.; Zhang, B.-G. Oscillation Theory for Functional Differential Equations; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Kamenev, I.V. An integral criterion for oscillation of linear differential equations of second order. Math. Notes Acad. Sci. USSR 1978, 23, 136–138. [Google Scholar] [CrossRef]
- Li, H.J. Oscillation criteria for second order linear differential equations. J. Math. Anal. Appl. 1995, 194, 217–234. [Google Scholar] [CrossRef]
- Rogovchenko, Y.V. Oscillation criteria for certain nonlinear differential equations. J. Math. Anal. Appl. 1999, 229, 399–416. [Google Scholar] [CrossRef] [Green Version]
- Thandapani, E.; Ravi, K.; Graef, J. Oscillation and comparison theorems for half-linear second-order difference equations. Comput. Math. Appl. 2001, 42, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, E.; Chatzarakis, G.E.; Palani, G.; Thandapani, E. Oscillation criteria for advanced difference equations of second order. Appl. Math. Comput. 2020, 372, 124963. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovská, I. Oscillation theorems for certain second-order nonlinear retarded difference equations. Math. Slovaca 2021, 71, 871–880. [Google Scholar] [CrossRef]
- Indrajith, N.; Graef, J.R.; Thandapani, E. Kneser-type oscillation criteria for second-order half-linear advanced difference equations. Opusc. Math. 2022, 42, 55–64. [Google Scholar] [CrossRef]
- Grace, S.R.; Džurina, J.; Jadlovská, I.; Li, T. An improved approach for studying oscillation of second-order neutral delay differential equations. J. Inequal. Appl. 2018, 2018, 193. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Ramos, H.; Awrejcewicz, J. Second-order Emden–Fowler neutral differential equations: A new precise criterion for oscillation. Appl. Math. Lett. 2021, 118, 107172. [Google Scholar] [CrossRef]
- Moaaz, O.; Anis, M.; Baleanu, D.; Muhib, A. More effective criteria for oscillation of second-order differential equations with neutral arguments. Mathematics 2020, 8, 986. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Some oscillation theorems for nonlinear second-order differential equations with an advanced argument. Adv. Differ. Equ. 2020, 2020, 160. [Google Scholar] [CrossRef]
- Moaaz, O.; Bazighifan, O. Oscillation criteria for second-order quasi-linear neutral functional differential equation. Discret. Contin. Dyn. Syst. Ser. B 2020, 13, 2465–2473. [Google Scholar] [CrossRef]
- Moaaz, O.; Masood, F.; Cesarano, C.; Alsallami, S.A.M.; Khalil, E.M.; Bouazizi, M.L. Neutral Differential Equations of Second-Order: Iterative Monotonic Properties. Mathematics 2022, 10, 1356. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Han, Z. New oscillation criterion for Emden–Fowler type nonlinear neutral delay differential equations. J. Appl. Math. Comput. 2019, 60, 191–200. [Google Scholar] [CrossRef]
- Dzurina, J.; Jadlovská, I.; Stavroulakis, I.P. Oscillatory results for second-order noncanonical delay differential equations. Opusc. Math. 2019, 39, 483–495. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; George, E.; Grace, S.R. Oscillation of 2nd-order Nonlinear Noncanonical Difference Equations with Deviating Argument. J. Nonlinear Model. Anal. 2021, 3, 495–504. [Google Scholar]
- Saker, S.H. Oscillation of second-order nonlinear delay difference equations. Bull. Korean Math. Soc. 2003, 40, 489–501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, A.M.; Ramos, H.; Moaaz, O. Second-Order Dynamic Equations with Noncanonical Operator: Oscillatory Behavior. Fractal Fract. 2023, 7, 134. https://doi.org/10.3390/fractalfract7020134
Hassan AM, Ramos H, Moaaz O. Second-Order Dynamic Equations with Noncanonical Operator: Oscillatory Behavior. Fractal and Fractional. 2023; 7(2):134. https://doi.org/10.3390/fractalfract7020134
Chicago/Turabian StyleHassan, Ahmed Mohamed, Higinio Ramos, and Osama Moaaz. 2023. "Second-Order Dynamic Equations with Noncanonical Operator: Oscillatory Behavior" Fractal and Fractional 7, no. 2: 134. https://doi.org/10.3390/fractalfract7020134
APA StyleHassan, A. M., Ramos, H., & Moaaz, O. (2023). Second-Order Dynamic Equations with Noncanonical Operator: Oscillatory Behavior. Fractal and Fractional, 7(2), 134. https://doi.org/10.3390/fractalfract7020134