On Discrete Weighted Lorentz Spaces and Equivalent Relations between Discrete ℓp-Classes
Abstract
:1. Introduction
2. Preliminaries and Basic Lemmas
3. The Relations between Classes , , and
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bober, J.; Hughes, E.C.K.; Pierce, L.B. On a discrete version of Tanaka’s theorem for maximal functions. Proc. Amer. Math. Soc. 2012, 140, 1669–1680. [Google Scholar] [CrossRef] [Green Version]
- Liu, F. Endpoint regularity of discrete multisublinear fractional maximal operators associated with l1-balls. J. Ineq. Appl. 2018, 2018, 33. [Google Scholar] [CrossRef] [PubMed]
- Madrid, J. Sharp inequalities for the variation of the discrete maximal function. Bull. Austr. Math. Soc. 2017, 95, 94–107. [Google Scholar] [CrossRef] [Green Version]
- Magyar, A.; Stein, E.M.; Wainger, S. Discrete analogues in harmonic analysis: Spherical averages. Ann. Math. 2002, 155, 189–208. [Google Scholar] [CrossRef] [Green Version]
- Stein, E.M.; Wainger, S. Discrete analogues in harmonic analysis I: l2-estimates for singular Radon transforms. Am. J. Math. 1999, 121, 1291–1336. [Google Scholar] [CrossRef]
- Stein, E.M.; Wainger, S. Discrete analogues in harmonic analysis II: Fractional integration. J. d’Analyse Math. 2000, 80, 335–355. [Google Scholar] [CrossRef]
- Stein, E.M.; Wainger, S. Two discrete fractional integral operators revisited. J. d’Analyse Math. 2002, 87, 451–479. [Google Scholar] [CrossRef]
- Connor, J. Open Problems in Sequence Spaces. 1992, Unpublished notes.
- Bennett, G. Some elementary inequalities. Quart. J. Math. Oxf. Ser. 1987, 38, 401–425. [Google Scholar] [CrossRef]
- Bennett, G. Some Elementary Inequalities II. Quart. Math. Oxf. 1988, 3, 385–400. [Google Scholar] [CrossRef]
- Bennett, G. Some elementary inequalities III. Quart. Math. Oxf. Ser. 1991, 42, 149–174. [Google Scholar] [CrossRef]
- Andersen, K.F.; Heinig, H.P. Weighted norm inequalities for certain integral operators. SIAM J. Math. Anal. 1983, 14, 834–844. [Google Scholar] [CrossRef]
- Ariňo, M.; Muckenhoupt, B. Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for non-increasing functions. Trans. Amer. Math. Soc. 1990, 320, 727–735. [Google Scholar]
- Bradely, J.S. Hardy inequalities with mixed norms. Canad. Math. Bull. 1920, 21, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Carro, J.M.; Soria, J. Boundedness of some integral operators. Canad. J. Math. 1993, 45, 1155–1166. [Google Scholar] [CrossRef]
- Carro, J.M.; Lorente, M. Rubio De Francia’s extrapolation theorem for Bp-weights. Proc. Amer. Math. Soc. 2010, 138, 629–640. [Google Scholar] [CrossRef] [Green Version]
- Gogatishvili, A.; Kufner, A.; Persson, L.E. Some new scales of characterizations of Hardy’s inequality. Proc. Est. Acad. Sci. 2010, 59, 7–18. [Google Scholar] [CrossRef]
- Kufner, A.; Persson, L.E.; Wedestig, A. Astudy of Some Constants Characterizing the Weighted Hardy Inequality. Banach Cent. Publ. 2004, 64, 135–146. [Google Scholar]
- Sinnamon, G.J.; Stepanov, W.D. The weighted Hardy inequality: New proofs and the case p = 1. J. Lond. Math. Soc. 1996, 54, 89–101. [Google Scholar] [CrossRef]
- Muckenhoupt, B. Hardy’s inequality with weights. Studia Math. 1972, 44, 31–83. [Google Scholar] [CrossRef] [Green Version]
- Bennett, G.; Grosse-Erdmann, K.-G. Weighted Hardy inequalities for decreasing sequences and functions. Math. Ann. 2006, 334, 489–531. [Google Scholar] [CrossRef]
- Saker, S.H.; O’Regan, D.; Agarwal, R.P. A higher integrability theorem from a reverse weighted inequality. Bull. Lond. Math. Soc. 2019, 51, 967–977. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Saker, S.H.; Baleanu, D.; Krnić, M. Some further properties of discrete Muckenhoupt and Gehring weights. J. Math. Ineq. 2022, 16, 1–18. [Google Scholar] [CrossRef]
- Saker, S.H.; Rabie, S.S.; Agarwal, R.P. Boundedness of discrete operators and equivalence and embedding relations between ℓp-classes. Appl. Anal. Discrete Math. submitted.
- Saker, S.H.; Agarwal, R.P. Theory of discrete Muckenhoupt weights and discrete Rubio de Francia extrapolation theorems. Appl. Anal. Discret. Math. 2021, 15, 295–316. [Google Scholar] [CrossRef]
- Saker, S.H.; Alzabut, J.; O’Regan, D.; Agarwal, R.P. Self-improving properties of weighted Gehring classes with applications to partial differential equations. Adv. Differ. Eqns. 2021, 2021, 397. [Google Scholar] [CrossRef]
- Saker, S.H.; Krnić, M. The weighted discrete Gehring classes, Muckenhoupt classes and their basic properties. Proc. Amer. Math. Soc. 2021, 149, 231–243. [Google Scholar] [CrossRef]
- Saker, S.H.; Mahmoud, R.R. Boundedness of both discrete Hardy and Hardy-Littlewood Maximal operators via Muckenhoupt weights. Rocky Mount. J. Math. 2021, 51, 733–746. [Google Scholar] [CrossRef]
- Heing, H.P.; Kufner, A. Hardy operators of monotone functions and sequences in Orlicz spaces. J. Lond. Math. Soc. 1996, 53, 256–270. [Google Scholar] [CrossRef]
- Okpoti, C.A.; Persson, L.E.; Wedestig, A. Scales of Weight Characterizations for the Discrete Hardy and Carleman Inequalities. In Proceedings of the Function Spaces, Differential Operators and Nonlinear Analysis (FSDONA ’04), Milovy, Czech Republic, 28 May–2 June 2004; Academy of Sciences of the Czech Republic, Milovy: Sněžné, Czech Republic, 2004; pp. 236–258. [Google Scholar]
- Lorentz, G.G. Some new functional spaces. Ann. Math. II 1950, 51, 37–55. [Google Scholar] [CrossRef]
- Lorentz, G.G. On the theory of spaces Λ. Pacific J. Math. 1951, 1, 411–429. [Google Scholar] [CrossRef]
- Barza, S.; Soria, J. Sharp constants between equivalent norms in weighted Lorentz spaces. J. Aust. Math. Soc. 2010, 88, 19–27. [Google Scholar] [CrossRef]
- Barza, S.; Kolyada, V.; Soria, J. Sharp constants related to the triangle inequality in Lorentz spaces. Trans. Amer. Math. Soc. 2009, 361, 5555–5574. [Google Scholar] [CrossRef]
- Barza, S.; Marcocli, A.N.; Persson, L.-E. Best constants between equivalent norms in Lorentz sequence spaces. J. Funct. Spaces Appl. 2012, 2012, 713534. [Google Scholar] [CrossRef] [Green Version]
- Barza, S.; Marcoci, A.N.; Marcoci, L.G.; Persson, L.-E. Optimal estimates in Lorentz spaces of sequences with an increasing weight. Proc. Rom. Acad. Ser. A 2013, 14, 20–27. [Google Scholar]
- Bennett, C.; Sharpley, R. Interpolation of Operators; Academic Press: Boston, MA, USA, 1988. [Google Scholar]
- Bennett, G. Factorizing the Classical Inequalities; American Mathematical Society: Providence, RI, USA, 1996; p. 576. [Google Scholar]
- Carro, M.J.; Raposo, J.A.; Soria, J. Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities. Mem. Am. Math. Soc. 2007, 187. [Google Scholar] [CrossRef]
- Carro, M.; Pick, L.; Soria, J.; Stepanov, V.D. On embeddings between classical Lorentz spaces. Math. Ineq. Appl. 2001, 4, 397–428. [Google Scholar] [CrossRef] [Green Version]
- Carro, M.; Soria, J. Weighted Lorentz spaces and the Hardy operator. J. Funct. Anal. 1993, 112, 480–494. [Google Scholar] [CrossRef] [Green Version]
- Gogatishvili, A.; Soudsk, F. Normability of Lorentz Spaces-an alternative approach. Czechoslov. Math. J. 2014, 64, 581–597. [Google Scholar] [CrossRef] [Green Version]
- Jameson, G.J.O.; Lashkaripour, R. Norms of certain operators on weighted lp spaces and Lorentz sequences spaces. J. Inequal. Pure Appl. Math. 2002, 3, 6. [Google Scholar]
- Kolyada, V. Inequalities of Gagliardo-Nirenberg type and estimates for the moduli of continuity. Russ. Math. Surv. 2005, 60, 1147–1164. [Google Scholar] [CrossRef]
- Sawyer, E. Boundedness of classical operators on classical Lorentz spaces. Stud. Math. 1990, 96, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Garling, D.J.H. Inequalities: A Journey into Linear Analysis; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Saker, S.H.; Krnić, M.; Baleanu, D. On structure of discrete Muckenhoupt and discrete Gehring classes. J. Ineq. Appl. 2020, 2020, 233. [Google Scholar] [CrossRef]
- Saker, S.H.; Rabie, S.S.; Alzabut, J.; O’Regan, D.; Agarwal, R.P. Some basic properties and fundamental relations for discrete Muckenhoupt and Gehring classes. Adv. Differ. Eqns. 2021, 2021, 8. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, R.P.; Rabie, S.S.; Saker, S.H. On Discrete Weighted Lorentz Spaces and Equivalent Relations between Discrete ℓp-Classes. Fractal Fract. 2023, 7, 261. https://doi.org/10.3390/fractalfract7030261
Agarwal RP, Rabie SS, Saker SH. On Discrete Weighted Lorentz Spaces and Equivalent Relations between Discrete ℓp-Classes. Fractal and Fractional. 2023; 7(3):261. https://doi.org/10.3390/fractalfract7030261
Chicago/Turabian StyleAgarwal, Ravi P., Safi S. Rabie, and Samir H. Saker. 2023. "On Discrete Weighted Lorentz Spaces and Equivalent Relations between Discrete ℓp-Classes" Fractal and Fractional 7, no. 3: 261. https://doi.org/10.3390/fractalfract7030261
APA StyleAgarwal, R. P., Rabie, S. S., & Saker, S. H. (2023). On Discrete Weighted Lorentz Spaces and Equivalent Relations between Discrete ℓp-Classes. Fractal and Fractional, 7(3), 261. https://doi.org/10.3390/fractalfract7030261