A Time-Fractional Schrödinger Equation with Singular Potentials on the Boundary
Abstract
:1. Introduction
- To the best of our knowledge, the study of nonexistence of solutions to Schrödinger equation (time-Schrödinger equation) with a Hardy potential has not been considered in previous works.
- The Hardy potential (as well as the potential function ) involved in (1) is singular on the extremity a.
- The boundary condition (3) involves the variable time.
2. Basics from Fractional Calculus and Notations
3. Main Results
- (i)
- , , ;
- (ii)
- .
- (I)
- and ;
- (II)
- and (17) holds;
- (III)
- and
4. Preliminaries
- (i)
- If , thenfor every and , provided that , .
- (ii)
- If , thenfor every and , provided that , .
5. Proofs of the Main Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge Univ. Press: Cambridge, UK, 1934. [Google Scholar]
- Vazquez, J.L.; Zuazua, E. The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 2000, 173, 103–153. [Google Scholar] [CrossRef]
- Kalf, H.; Schmincke, U.W.; Walter, J.; Wüst, R. On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials. In Spectral Theory and Differential Equations; Lecture Notes in Math; Springer: Berlin/Heidelberg, Germany, 1975; Volume 448, pp. 182–226. [Google Scholar]
- Case, K.M. Singular potentials. Phys. Rev. 1950, 80, 797–806. [Google Scholar] [CrossRef]
- Cazenave, T. Semilinear Schrödinger Equations; Courant Lecture Notes in Mathematics 10; American Mathematical Society: New York, NY, USA, 2003. [Google Scholar]
- Tsutsumi, Y. L2-solutions for nonlinear Schrödinger equations and nonlinear groups. Funkc. Ekvac. 1987, 30, 115–125. [Google Scholar]
- Kenig, C.; Ponce, G.; Vega, L. Quadratic forms for the 1-D semilinear Schrödinger equation. Trans. Am. Math. Soc. 1996, 348, 3323–3353. [Google Scholar] [CrossRef]
- Strauss, W.A. Nonlinear scattering theory at low energy. J. Funct. Anal. 1981, 41, 110–133. [Google Scholar] [CrossRef]
- Ikeda, M.; Wakasugi, Y. Small data blow-up of L2-solution for the nonlinear Schrödinger equation without gauge invariance. Differ. Integr. Equ. 2013, 26, 1275–1285. [Google Scholar]
- Ikeda, M.; Inui, T. Small data blow-up of L2 or H1-solution for the semilinear Schrödinger equation without gauge invariance. J. Evol. Equ. 2015, 15, 571–581. [Google Scholar] [CrossRef]
- Ahmad, I.; Ahmad, H.; Thounthong, P.; Chu, Y.-M.; Cesarano, C. Solution of multi-term time-fractional PDE models arising in mathematical biology and physics by local meshless method. Symmetry 2020, 12, 1195. [Google Scholar] [CrossRef]
- Alshammari, S.; Al-Smadi, M.; Hashim, I.; Alias, M.A. Residual Power Series Technique for simulating fractional Bagley-Torvik problems emerging in applied physics. Appl. Sci. 2019, 9, 5029. [Google Scholar] [CrossRef]
- Jannelli, A. Numerical solutions of fractional differential equations arising in engineering sciences. Mathematics 2020, 8, 215. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhou, Y. Numerical analysis for time-fractional Schrödinger equation on two space dimensions. Adv. Differ. Equ. 2020, 53, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, G.; Bu, L.; Mei, L. Two second-order and linear numerical schemes for the multi-dimensional nonlinear time-fractional Schrödinger equation. Numer. Algorithms 2021, 88, 419–451. [Google Scholar] [CrossRef]
- Mohebbi, A.; Abbaszadeh, M.; Dehghan, M. The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics. Eng. Anal. Bound. Elem. 2013, 37, 475–485. [Google Scholar] [CrossRef]
- Wei, L.; He, Y.; Zhang, X.; Wang, S. Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation. Finite Elem. Anal. Des. 2012, 59, 28–34. [Google Scholar] [CrossRef]
- Zhu, X.; Yuan, Z.; Wang, J.; Nie, Y.; Yang, Z. Finite element method for time-space-fractional Schrödinger equation. Electron. J. Differ. Equ. 2017, 166, 18. [Google Scholar]
- Fino, A.Z.; Dannawi, I.; Kirane, M. Blow-up of solutions for semilinear fractional Schrödinger equations. J. Integr. Equ. Appl. 2018, 30, 67–80. [Google Scholar] [CrossRef]
- Kirane, M.; Nabti, A. Life span of solutions to a nonlocal in time nonlinear fractional Schrödinger equation. Z. Angew. Math. Phys. 2015, 66, 1473–1482. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, H.R.; Li, Y. The nonexistence of global solutions for a time fractional nonlinear Schrödinger equation without gauge invariance. Appl. Math. Lett. 2017, 64, 119–124. [Google Scholar] [CrossRef]
- Naber, M.G. Time fractional Schrödinger equation. J. Math. Phys. 2004, 45, 3339–3352. [Google Scholar] [CrossRef]
- Kirane, M.; Fino, A.Z. Some nonexistence results for space-time fractional Schrödinger equations without gauge invariance. FCAA 2022, 25, 1361–1387. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. On the critical exponent for nonlinear Schrödinger equations without gauge invariance in exterior domains. J. Math. Anal. Appl. 2019, 469, 188–201. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: San Diego, CA, USA, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alazman, I.; Jleli, M.; Samet, B. A Time-Fractional Schrödinger Equation with Singular Potentials on the Boundary. Fractal Fract. 2023, 7, 417. https://doi.org/10.3390/fractalfract7060417
Alazman I, Jleli M, Samet B. A Time-Fractional Schrödinger Equation with Singular Potentials on the Boundary. Fractal and Fractional. 2023; 7(6):417. https://doi.org/10.3390/fractalfract7060417
Chicago/Turabian StyleAlazman, Ibtehal, Mohamed Jleli, and Bessem Samet. 2023. "A Time-Fractional Schrödinger Equation with Singular Potentials on the Boundary" Fractal and Fractional 7, no. 6: 417. https://doi.org/10.3390/fractalfract7060417
APA StyleAlazman, I., Jleli, M., & Samet, B. (2023). A Time-Fractional Schrödinger Equation with Singular Potentials on the Boundary. Fractal and Fractional, 7(6), 417. https://doi.org/10.3390/fractalfract7060417